Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (13): 2724-2736.doi: 10.3864/j.issn.0578-1752.2021.13.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

QTL Mapping of Resistance to Fusarium Ear Rot in Maize Based on Image Analysis

WEN Jing(),SHEN YanQi,WANG ZiYu,LI ShiJie,MO LanYue,LEI YuHao,ZHANG Yan,HAN SiPing()   

  1. Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033
  • Received:2020-12-09 Revised:2021-01-18 Online:2021-07-01 Published:2021-07-12
  • Contact: SiPing HAN E-mail:jlruby1988@126.com;hansp@cjaas.com

Abstract:

【Objective】Ear rot in maize is a kind of fungal disease that is prevalent and giving serious threat to maize production worldwide, among which,Fusarium ear rot (FER) is the most commonly reported in China. The location of FER disease resistance QTL is very important for the genetic improvement of maize ear rot. Locating FER disease-resistant QTL by an image analysis method not only explores a new disease evaluation method for FER in maize, but also validated the FER resistance QTLs located in the early stage through the disease rating method. 【Method】In this study, three F2 populations (namely F2-C, F2-D and F2-J) and their corresponding F2:3 families were used for QTL mapping of resistance to FER, which were constructed from a highly FER-susceptible inbred line ZW18 and three highly FER-resistant inbred lines (Cheng 351, Dan 598 and JiV203) respectively. The percentage of diseased spots was obtained by image analysis for the ears of F2:3 families, then the FER resistance QTLs were mapped.【Result】18 FER resistance QTLs were mapped. Among them, qRf2,qRf3 and qRf4 located in 2.02-2.03 bins, 4.06-4.07 bins and 8.06 bin explained the phenotypic variation as high as 21.80%, 25.80% and 27.40%, respectively. The qRf11 of the F2-J population and the qRf1 of the F2-C population and the qRf6 of the F2-D population all have an overlapping interval, and the explainable phenotypic variation rate reached 16.50%. The qRf9 from the F2-D population and theqRf16 from the F2-J population have an overlapping interval in 8.05 bin, and the qRf3 from the F2-C population and the qRf15 from the F2-J population have an overlapping interval in the 4.06-4.07 bins of 4th chromosome. In addition, compared with the results of the previous positioning by the disease rating method,qRf1, qRf6 andqRf11 overlap with the disease resistance site qRfer13 located by the rating method at 1.06-1.07 bins, and qRf3 and qRf15 at 4.06-4.07 bins and the resistance location located by the rating method. The disease site qRfer3 and qRfer17overlap, qRf7 and qRfer6 completely overlap in the 2.04 bin location interval, qRf17 and qRfer20 are located in the overlap interval of 9.03-9.05 bins in the S2 duplication, and are derived from the same source of resistance. 【Conclusion】 The 18 FER resistance sites located in 3 populations, among which the resistance sites located in 1.04-1.07 bins, 4.06-4.07 bins and 8.05 bin can be detected in different populations, located in 2.04 bin and 9.03-9.05 bins can be detected by different detection methods, indicating that FER resistance sites may exist in these intervals. The overlap of QTL positioning intervals in different populations verifies the authenticity of the positioning intervals to a certain extent. The overlapping intervals are located between different methods, indicating that the image analysis method is used to locate FER disease-resistant QTLs with certain accuracy.

Key words: maize, Fusarium verticilloides, resistance, QTL

Fig. 1

Field incidence of different parents A: Cheng351; B: Dan598; C: JiV203; D: ZW18"

Fig. 2

Process steps of image processing A: Original image; B: Picture of maize with background removed; C: Use different colors to mark pictures of lesions and unaffected parts; D: Data analysis"

Fig. 3

Histogram of different repetitions for different groups A: F2-C; B: F2-D; C: F2-J. G1: 1st replicate in Gongzhuling; G2: 2nd replicate in Gongzhuling; S1: 1st replicate in Songyuan; S2: 2nd replicate in Songyuan. The same as below "

Table 1

Analysis of percentage area of parents and F2 population "

群体
Populations
重复
Replication
抗病亲本
Resistant
parents
感病亲本
Susceptible
parents
F2群体
平均值
Mean
标准差
SD
偏度
Skewness
峰度
Kurtosis
变异系数
CV (%)
遗传力
H2
F2-C G1 0.0 49.22 6.24 7.09 3.38 15.16 113.63 0.63
G2 0.0 82.26 5.14 4.70 2.50 11.67 91.46
S1 0.0 63.85 1.65 3.06 5.30 33.16 185.50
S2 0.0 55.38 5.41 5.09 1.96 6.41 94.03
F2-D G1 0.0 49.22 8.30 8.80 5.60 51.70 106.03 0.29
G2 0.0 82.26 7.75 5.54 1.16 2.04 71.50
S1 0.0 63.85 6.11 8.62 6.61 67.02 141.03
S2 2.4 55.38 7.03 8.52 6.53 66.75 121.22
F2-J G1 0.0 49.22 9.74 9.30 5.60 48.80 95.52 0.56
G2 0.0 82.26 7.73 5.34 1.23 1.51 69.02
S1 1.3 63.85 4.72 4.78 2.44 8.14 101.11
S2 0.0 55.38 7.86 6.03 1.39 2.45 76.72

Table 2

Analysis of variances after artificial inoculation for FER resistance"

群体
Populations
变异来源
Sources
自由度
Df
离均差平方和
SS
均方
MS
F
F value
P
P value (>F0.001)
显著性
Significance
偏度分析
Pr
F2-C
G 117 5803.8 49.60 2.1406 8.118e-07 ***
L 1 553.7 553.67 23.8927 2.015e-06 ***
R 1 179.1 179.09 7.7283 0.005928 **
G:L 107 1952.0 18.24 0.7873 0.916935
Residuals 211 4889.6 23.17 7.410274e-15
F2-D
G 199 17047.6 85.67 1.5483 0.0001392 ***
L 1 410.4 410.45 7.4184 0.0067446 **
R 1 7.5 7.55 0.1364 0.7120661
G:L 196 11814.3 60.28 1.0894 0.2392358
Residuals 392 21688.7 55.33 1.390253e-14
F2-J
G 173 12665.6 73.21 1.8950 3.547e-07 ***
L 1 941.4 941.42 24.3679 1.261e-06 ***
R 1 41.6 41.61 1.0770 0.3001
G:L 165 5293.4 32.08 0.8304 0.9113
Residuals 333 12864.9 38.63 -8.235978e-13

Fig. 4

QQ plot of residuals in F2 populations after artificial inoculation "

Fig. 5

Detection of FER resistance QTLs in different population A: F2-C; B: F2-D; C: F2-J. G: Average of G1 and G2; S: Average of S1 and S2; BLUE: Best linear unbiased estimation "

Table 3

Parameters associated with quantitative trait loci for FER resistance identified"

位点
QTL
染色体
Chr.
位置Site
(Bins)
重复
Replication
侧翼标记
Flanking markers
LOD 加性效应
Additive
显性效应
Dominance
抗性来源
SRA
表型变异率
R2(%)
qRf1 1 1.04—1.06 BLUE e1583803—e1188929 4.78 1.6956 -0.7136 承351 Cheng351 15.60
qRf2 2 2.02—2.03 S1 e2102115—e2161221 3.84 1.6043 -1.4111 承351 Cheng351 21.80
2 2.02 S e2102115—e2126291 3.78 1.5500 -2.0277 承351 Cheng351 20.30
2 2.02—2.03 BLUE e2102115—e2161221 4.49 1.9089 0.3621 承351 Cheng351 9.70
qRf3 4 4.06—4.07 G1 e4156956—e4175573 6.05 3.7277 -2.9966 承351 Cheng351 25.80
4 4.06—4.07 BLUE e4167183—e4179848 5.41 2.0177 -0.8886 承351 Cheng351 19.60
qRf4 8 8.06 G1 e8161042—e8165169 5.61 3.9752 -3.3116 承351 Cheng351 27.40
8 8.06 BLUE e8153595—e8165169 6.38 2.3975 -1.2185 承351 Cheng351 26.00
qRf5 8 8.07—8.08 BLUE e8167666—e8171604 4.19 -2.0687 -0.6555 ZW18 7.10
qRf6 1 1.07 BLUE e1197737—e1212331 4.16 -1.3688 1.6416 ZW18 10.82
qRf7 2 2.04 BLUE e2365995—e2639635 5.93 2.1626 0.9592 丹598 Dan598 7.94
qRf8 3 3.03—3.04 S e3106087—e3335621 4.09 2.1894 -1.1950 丹598 Dan598 10.04
qRf9 8 8.05—8.06 BLUE e8130926—e8150778 4.48 1.8506 -0.6254 丹598 Dan598 10.85
qRf10 10 10.06 S e1013859—e1014290 4.17 2.4951 -1.4593 丹598 Dan598 12.32
qRf11 1 1.06—1.07 S2 e1178476—e1200620 5.69 2.8361 -1.3421 吉V203 JiV203 16.50
qRf12 3 3.04—3.05 S1 e3170341—e3154562 4.08 -2.9888 0.8469 ZW18 13.46
qRf13 3 3.06—3.07 G1 e3180570—e3195935 3.91 -4.3654 -0.5613 ZW18 7.38
qRf14 4 4.01—4.02 G1 e4359518—e4107296 3.69 3.4943 -2.2933 吉V203 JiV203 11.93
4 4.01—4.03 BLUE e4359518—e4120869 4.56 1.8443 -0.5136 吉V203 JiV203 11.65
qRf15 4 4.05—4.07 G2 e4689700—e4171651 5.91 30.334 -0.8452 吉V203 JiV203 17.96
4 4.06—4.07 S2 e4168742—e4178823 5.25 3.4990 0.6582 吉V203 JiV203 8.16
qRf16 8 8.03—8.05 S e8842299—e8144487 4.59 3.5113 -2.2912 吉V203 JiV203 8.15
qRf17 9 9.03—9.05 S2 e9432770—e9128660 5.55 -2.5901 -2.3177 ZW18 3.61
qRf18 9 9.06—9.07 G e9143806—e9149382 3.93 -2.2164 -1.6562 ZW18 2.85

Table 4

Parameters associated with quantitative trait loci for FER resistance identified by grading method"

位点
Name
染色体
Chr.
位置
Site (Bins)
重复
Replication
侧翼标记
Flanking markers
LOD 加性效应
Additive
显性效应
Dominant
抗性来源
SRA
表型变异率
R2(%)
qRfer3 4 4.06—4.07 G e4163306—e4177040 4.22 0.5365 -0.2592 承351 Cheng351 18.34
4.06—4.08 BLUE e4167183—e4179848 4.78 0.4623 -0.1894 承351 Cheng351 17.76
qRfer6 2 2.04 BLUE e2365995—e2639635 5.12 0.3268 0.0293 丹598 Dan598 7.02
qRfer13 1 1.05—1.06 S1 e1100903—e1182999 5.13 0.3924 0.2506 吉V203 JiV203 5.45
1.06—1.07 S2 e1178476—e1202995 7.40 0.6921 -0.1173 吉V203 JiV203 16.73
qRfer17 4 4.05—4.06 G1 e4327859—e4163646 5.97 0.6190 -0.0758 吉V203 JiV203 12.02
4.05—4.07 G2 e4978482—e4172059 7.83 0.7965 -0.3242 吉V203 JiV203 21.81
4.05—4.06 G e4327859—e4163646 8.42 0.6540 -0.1231 吉V203 JiV203 17.96
4.05—4.06 BLUE e4327859—e4163646 6.65 0.5549 -0.0784 吉V203 JiV203 17.37
qRfer20 9 9.03—9.05 S2 e9432770—e9130925 6.81 -0.3540 -0.4352 ZW18 4.10
[1] ULLSTRUP A J. An undescribed ear rot of corn caused byPhysalospora zeae. Phytopathology, 1946, 36:201-212.
[2] BEZUIDENHOUT H, MAXASAS W F O. Botryosphaeria zeae: The cause of grey ear rot of maize (Zea mays) in South Africa. Phytophylaetica, 1978, 10(1):21-24.
[3] KUMAR V, SHETTY H S. A new ear and kernel rot of maize caused by Trichoderma viride pers. ex Fries. Current Science, 1982, 5(12):620-621.
[4] 张艳, 谭静. 玉米穗粒腐病的研究进展. 现代农业科技, 2014, 21(1):121-125.
ZHANG Y, TAN J. Research progress on ear rot in maize. Modern Agricultural Science and Technology, 2014, 21(1):121-122. (in Chinese)
[5] 任金平. 玉米穗腐病研究进展. 吉林农业科学, 1993(3):39-43.
REN J P. Progress in researching of ear rot of maize. Jilin Agricultural Sciences, 1993(3):39-43. (in Chinese)
[6] 胡南, 章红. 吉林省玉米穗腐病病原真菌中镰刀菌毒素的研究. 玉米科学, 1997, 5(2):66-68.
HU N, ZHANG H. A study on production of three Fusarium mycotoxinsof corn ear rot pathogenic fungi in Jilin province . Journal of Maize Sciences, 1997, 5(2):66-68. (in Chinese)
[7] WANG J H, NDOYE M, ZHANG J B, LI H P, LIAO Y C. Population structure and genetic diversity of the Fusarium graminearum species complex. Toxins, 2011, 3(8):1020-1037.
doi: 10.3390/toxins3081020
[8] 王晓鸣, 石洁, 晋齐鸣, 李晓, 孙世贤. 玉米病虫害田间手册. 北京:中国农业科学技术出版社, 2010: 55-61.
WANG X M, SHI J, JIN Q M, LI X, SUN S X. Field Manual of Corn Pests and Diseases. Beijing:China Agricultural Science and Technology Press, 2010:55-61. (in Chinese)
[9] 徐书法, 陈捷, 高增贵, 邹庆道, 纪明山, 刘海南. 中国玉米茎基腐病和穗腐病研究进展. 植物病理学报, 2006, 36(3):193-203.
XU S F, CHEN J, GAO Z G, ZOU Q D, JI M S, LIU H N. Maize stalk rot and ear rot in China. Acta Phytopathologica Sinica, 2006, 36(3):193-203. (in Chinese)
[10] 秦子惠, 任旭, 江凯, 武小菲, 杨知还, 王晓鸣. 我国玉米穗腐病致病镰孢种群及禾谷镰孢复合种的鉴定. 植物保护学报, 2014, 41(5):589-596.
QIN Z H, REN X, JIANG K, WU X F, YANG Z H, WANG X M. Identification of Fusarium species and F. graminearum species complex causing maize ear rot in China . Journal of Plant Protection, 2014, 41(5):589-596. (in Chinese)
[11] 孙华, 张海剑, 郭宁, 石洁, 陈丹, 马红霞. 黄淮海夏玉米主产区穗腐病病原菌的分离鉴定. 植物保护学报, 2017, 44(5):796-802.
SUN H, ZHANG H J, GUO N, SHI J, CHEN D, MA H X. Isolation and identification of pathogens causing maize ear rot in Huang-Huai- Hai summer corn region. Journal of Plant Protection, 2017, 44(5):796-802. (in Chinese)
[12] HAAFSMA A W, LIMAY-RIOS V, TAMBURIC-ILINCIC L. Mycotoxins and Fusarium species associated with maize ear rot in Ontario, Canada. Cereal Research Communications, 2008, 36:525-527.
[13] 孙华, 张海剑, 马红霞, 石洁, 郭宁, 陈丹, 李坡. 春玉米区穗腐病病原菌组成、分布及禾谷镰孢复合种的鉴定. 物病理学报, 2018, 48(1):8-15.
SUN H, ZHANG H J, MA H X, SHI J, GUO N, CHEN D, LI P. Composition and distribution of pathogens causing ear rot in spring maize region and identification of Fusarium graminearum species complex . Acta Phytopathologica Sinica, 2018, 48(1):8-15. (in Chinese)
[14] ATANASOVA V, PONS S, PINSON L, PICOT A, RICHARD F. Chlorogenic acid and maize ear rot resistance: A dynamic study investigating Fusarium graminearum development, deoxynivalenol production and phenolic acid accumulation. Molecular Plant-microbe Interactions, 2012, 25(12):1605-1616.
[15] 张婷, 孙晓东, 吕国忠. 我国东北地区玉米穗腐镰孢菌的种类及其分离频率. 菌物研究, 2011, 9(1):9-14.
ZHANG T, SUN X D, LÜ G Z. Fusariumspecies and its isolation frequency from rot ears of maize in northeast China . Journal of Fungal Research, 2011, 9(1):9-14. (in Chinese)
[16] 潘惠康, 张兰新. 玉米对穗粒腐病菌的抗病性. 华北农学报, 1987, 2(3):86-89.
PAN H K, ZHANG L X. Disease resistance of corn to ear and kernel rot. Acta Agriculturae Boreali-Sinica, 1987, 2(3):86-89. (in Chinese)
[17] 刘春元, 李洪连, 吴建宇, 刘建华. 穗粒腐病菌对玉米幼苗的致病性研究. 河南农业科学, 2005, 11:58-62.
LIU C Y, LI H L, WU J Y, LIU J H. Studies on pathogenicity of pathogen of ear and seed rot in maize hybrids to maize seedling blight. Journal of Henan Agricultural Sciences, 2005, 11:58-62. (in Chinese)
[18] 陈广泉. 河西走廊玉米穗粒腐病侵染规律及发病因子研究. 玉米科学, 2006, 14(1):158-160.
CHEN G Q. Study on infection law and disease factor of corn spike kernel rotten in Hexi corridor. Journal of Maize Sciences, 2006, 14(1):158-160. (in Chinese)
[19] 刘振库, 贾娇, 苏前富, 孟玲敏, 晋齐鸣. 齐齐哈尔玉米穗腐病病原菌的鉴定和致病性测定. 吉林农业科学, 2014, 39(6):28-30.
LIU Z K, JIA J, SU Q F, MENG L M, JIN Q M. Identification of pathogen and pathogenicity of maize ear rot in Qiqihaer. Journal of Northeast Agricultural Sciences, 2014, 39(6):28-30. (in Chinese)
[20] ZHOU D N, WANG X M, CHEN G K, SUN S L, YANG Y, ZHU Z D, DUAN C X. The major Fusarium species causing maize ear and kernel rot and their toxigenicity in Chongqing, China. Toxins, 2018, 10(2):90-103.
doi: 10.3390/toxins10020090
[21] 席靖豪, 赵清爽, 林焕洁, 袁虹霞, 丁胜利, 李洪连. 河南省及周边地区玉米穗腐病病原菌的分离及鉴定. 河南科学, 2018, 36(5):688-692.
XI J H, ZHAO Q S, LIN H J, YUAN H X, DING S L, LI H L. Isolation and characterization of fungal pathogenic species causing maize ear rot in Henan and beyond provinces. Henan Science, 2018, 36(5):688-692. (in Chinese)
[22] CHEN J F, SHRESTHA R, DING J Q, ZHENG H J, MU C H, WU J Y, GEORGE M. Genome-wide association study and QTL mapping reveal genomic loci associated with Fusariumear rot resistance in tropical maize germplasm. Genes Genomes Genetics, 2016, 6(12):3803-3815.
[23] COAN M M D, SENHORINHO H J C, PINTO R J B, SCAPIM C A, TESSMANN D J, WILLIAMS W P, WARBURTON M L. Genome-wide association study of resistance to ear rot byFusariumverticillioides in a tropical field maize and popcorn core collection. Crop Science, 2018, 58(2):564-578.
doi: 10.2135/cropsci2017.05.0322
[24] YAO L S, LI Y M, MA C Y, TONG L X, DU F L, XU M L. Combined genome-wide association study and transcriptome analysis reveal candidate genes for resistance to Fusarium ear rot in maize. Journal of Integrative Plant Biology, 2020, 62(10):1535-1551.
doi: 10.1111/jipb.v62.10
[25] GUO Z F, ZOU C, LIU X G, WANG S H, LI W X, JEFFERS D, FAN X M, XU M L, XU Y B. Complex genetic system involved inFusarium ear rot resistance in maize as revealed by GWAS, bulked sample analysis, and genomic prediction. Plant Disease, 2020, 104(6):1725-1735.
doi: 10.1094/PDIS-07-19-1552-RE
[26] ZILA C T, SAMAYOA L F, SANTIAGO R, BUTRON A, HOLLAND J B. A genome-wide association study reveals genes associated with Fusarium ear rot resistance in a maize core diversity panel. G3:Genes Genomes Genetics, 2013, 3:2095-2104.
[27] JU M, ZHOU Z J, MU C, ZHANG X C, GAO J Y, LIANG Y K, CHEN J F, WU Y B, LI X P, WANG S W, WEN J J, YANG L M, WU J Y. Dissecting the genetic architecture ofFusarium verticillioides seed rot resistance in maize by combining QTL mapping and genome-wide association analysis. Scientific Reports, 2017, 7(1):1109-1115.
doi: 10.1038/s41598-017-01187-4
[28] PEREA B D, HEFFERS D, GONZALEZ D, KHAIRALLAH M, CORTES M, VELAZQUEZ G, AZPIROZ S, SRINIVASAN G, QTL mapping of Fusarium moniliforme ear rot resistance in highland maize, Mexico. Agrociencia, 2001, 35:181-196.
[29] BUTRON A, SANTIAGO R, CAO A, SAMAYOA L F, MALVAR R A, QTLs for resistance to Fusarium ear rot in a multiparent advanced generation intercross (MAGIC) maize population. Plant Disease, 2019, 103:897-904.
doi: 10.1094/PDIS-09-18-1669-RE
[30] ROBERTSON L A, JINES M, BALINT P J, KLEINSCHMIDT C E, WHITE D G, PAYNE G A, MARAGOS C M, MOLNAR T L, HOLLAND J B, QTL mapping for Fusarium ear rot and fumonisin contamination resistance in two maize populations. Crop Science, 2006, 46(4):17434-1743.
[31] LI Z M, DING J Q, WANG R X, CHEN J F, SUN X D, CHEN W, SONG W B, DONG H F, DAI X D, XIA Z L, WU J Y,2011. A new QTL for resistance to Fusarium ear rot in maize. Journal of Applied Genetics, 2011, 52(4):403-406.
doi: 10.1007/s13353-011-0054-0
[32] DING J Q, WANG X M, CHANDER S, YAN J B, LI J S, QTL mapping of resistance to Fusarium ear rot using a RIL population in maize. Molecular Breeding, 2008, 22(3):395-403.
doi: 10.1007/s11032-008-9184-4
[33] CHEN J F, DING J Q, LI H M, LI H, LI Z M, SUN X D, LI J J, WANG R X, DAI X D, DONG H F, SONG W B, CHEN W, XIA Z L, WU J Y. Detection and verification of quantitative trait loci for resistance to Fusarium ear rot in maize. Molecular Breeding, 2012, 30(4):1649-1656.
doi: 10.1007/s11032-012-9748-1
[34] LIU Y B, HU G H, ZHANG A, LOLADZE A, HU Y X, WANG H, QU J T, ZHANG X C, OLSEN M, VICENTE F S, CROSSA J, LIN F, PRASANNA B M. Genome-wide association study and genomic prediction of Fusarium ear rot resistance in tropical maize germplasm. The Crop Journal, 2020, doi: 10.1016/j.cj.2020.08.008.
[35] 贾玉芳. 玉米穗腐病的发病原因及防治措施. 中国农业信息, 2015(7):51.
JIA Y F. Causes of corn ear rot and its control measures. China Agricultural Informatics, 2015(7):51. (in Chinese)
[36] ZENG Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136(4):1457-1468.
doi: 10.1093/genetics/136.4.1457
[37] GARCIA S A, THORNSBERRY J M, TH B E. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54(1):357-374.
doi: 10.1146/annurev.arplant.54.031902.134907
[38] WEN J, SHEN Y Q, XING Y X, WANG Z Y, HAN S P, LI S J, YANG C M, HAO D Y, ZHANG Y. QTL mapping of Fusarium ear rot resistance in maize. Plant Disease, 2020, doi: 10.1094/PDIS-02-20-0411-RE.
[39] 张艳, 张叶, 王梓钰, 闻竞, 韩四平, 郭嘉, 邢跃先. 44份玉米自交系对镰孢穗腐病的抗性鉴定. 植物遗传资源学报, 2019, 20(2):276-283.
ZHANG Y, ZHANG Y, WANG Z Y, WEN J, HAN S P, GUO J, XING Y X. Evaluation of resistance to Fusariumear rot in 44 maize inbred lines . Journal of Plant Genetic Resources, 2019, 20(2):276-283. (in Chinese)
[40] 邹成佳, 崔丽娜, 章振羽, 张小飞, 李荣进, 陈耕, 李晓. 玉米自交系对轮枝镰孢菌穗腐病的抗性评价, 西南农学报, 2017, 30:1346-1349.
ZOU C J, CUI L N, ZHANG Z Y, ZHANG X F, LI R J, CHEN G, LI X. Evaluation of maize inbred lines for resistance to Fusarium verticillioides ear rot . Southwest China Journal of Agricultural Sciences, 2017, 30:1346-1349. (in Chinese)
[41] MASCHIETTO V, COLOMBI C, PIRONA R, PEA G, STROZZI F, MAROCCO A, ROSSINI L, LANUBILE A. QTL mapping and candidate genes for resistance to Fusarium ear rot and fumonisin contamination in maize. BMC Plant Biology, 2017, 17(20):20.
doi: 10.1186/s12870-017-0970-1
[42] ALESSANDRA L, VALENTINA M, BORRELLI V M, LORENZO S, LOGRIECO A F, ADRIANO M. Molecular basis of resistance to Fusarium ear rot in maize. Frontiers in Plant Science, 2017, 8:1774.
doi: 10.3389/fpls.2017.01774
[43] JONG G D, PAMPLONA A K A, PINHO R G, BALESTRE M. Genome-wide association analysis of ear rot resistance caused by Fusarium verticillioides in maize. Genomics, 2018, 110(5):291-303.
doi: 10.1016/j.ygeno.2017.12.001
[44] KING S B, SCOTT G E. Genotypic differences in maize to kernel infection byFusariummoniliforme. Phytopathology, 1981, 71:1245-1247.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[4] CHAI HaiYan,JIA Jiao,BAI Xue,MENG LingMin,ZHANG Wei,JIN Rong,WU HongBin,SU QianFu. Identification of Pathogenic Fusarium spp. Causing Maize Ear Rot and Susceptibility of Some Strains to Fungicides in Jilin Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 64-78.
[5] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[6] XIONG WeiYi,XU KaiWei,LIU MingPeng,XIAO Hua,PEI LiZhen,PENG DanDan,CHEN YuanXue. Effects of Different Nitrogen Application Levels on Photosynthetic Characteristics, Nitrogen Use Efficiency and Yield of Spring Maize in Sichuan Province [J]. Scientia Agricultura Sinica, 2022, 55(9): 1735-1748.
[7] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[8] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[9] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[10] LI Qian,QIN YuBo,YIN CaiXia,KONG LiLi,WANG Meng,HOU YunPeng,SUN Bo,ZHAO YinKai,XU Chen,LIU ZhiQuan. Effect of Drip Fertigation Mode on Maize Yield, Nutrient Uptake and Economic Benefit [J]. Scientia Agricultura Sinica, 2022, 55(8): 1604-1616.
[11] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[12] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[13] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[14] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[15] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!