Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (15): 3062-3070.doi: 10.3864/j.issn.0578-1752.2022.15.016

• ANIMAL SCIENCE·VETERINARY SCIENCE • Previous Articles    

Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes

WEI Tian1(),WANG ChengYu1(),WANG FengJie2,LI ZhongPeng1,ZHANG FangYu1,ZHANG ShouFeng2,HU RongLiang2,*(),LÜ LiLiang1,WANG YongZhi1,*()   

  1. 1Academy of Agricultural Sciences of Jilin Province, Changchun 130124
    2Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122
  • Received:2021-07-25 Accepted:2022-04-07 Online:2022-08-01 Published:2022-08-02
  • Contact: RongLiang HU,YongZhi WANG E-mail:595972178@qq.com;514099956@qq.com;yzwang@126.com;ronglianghu@hotmail.com

Abstract:

【Objective】In this study, monoclonal antibodies (MAbs) against the p30 protein of African swine fever virus (ASFV) were prepared and the linear epitopes on p30 was analyzed, which could lay the foundation for ASFV and its antibody detection as well as the study of p30 protein structure and function.【Method】BALB/c female mice aged 6 to 8 weeks were immunized with prokaryotic expression and purified recombinant p30 protein. The mice were immunized once every two weeks, with three times in total. First immunization was done with emulsification of antigen and equal volume Freund’s complete adjuvant, then, the mice were immunized with emulsification of antigen and equal volume of Freund’s incomplete adjuvant for the second and third immunization. After three immunizations, the tail was cut off and the blood was collected, and the serum antibody titer was detected by indirect enzyme-linked immunosorbent assay (ELISA). The mice with the highest serum titer were selected for enhanced immunization. Three days later, the mice spleen lymphocytes and SP2/0 myeloma cells were fused with PEG at a ratio of 4﹕1. The positive hybridoma cells were screened by indirect ELISA by using the recombinant p30 protein as coated antigen. and the MAbs which could secrete antibodies steadily were cloned and purified by limited dilution method. ASFV was inoculated into porcine alveolar macrophages, and the indirect immunofluorescence assay (IFA) was performed with MAbs as primary antibody and rabbit anti-rat HRP-IgG as secondary antibody. The ASFV-infected and uninfected cells were precipitated and transferred to the nitrocellulose membrane by SDS-PAGE. p30 MAbs were obtained by Western blotting analysis of MAbs and identified positive by IFA, which was used as primary antibody and rabbit anti-rat HRP-IgG as secondary antibody. Primers were designed to amplify two truncated genes p30ab and p30bc, p30ab stands for truncated amino acid residues at position 86-153 and p30bc stands for truncated amino acid residues at position 120-153. The recombinant protein GST-p30ab and recombinant protein GST-p30bc were obtained by partial overlapping truncated p30 protein expression in prokaryotes. GST-p30ab and GST-p30bc fusion proteins were used as coated antigens, and the epitopes of p30 protein were preliminarily identified by indirect ELISA with 5 MAbs as primary antibodies, with rabbit anti-rat HRP-IgG as secondary antibodies. 【Result】The purified recombinant protein was used as the coated antigen, and 25 hybridoma cell lines were screened by indirect ELISA, which could secrete anti-recombinant p30 protein. IFA results showed that 5 MAbs (8F4, 1D3, 1H2, 6C3 and 8E11) were positive for ASFV-infected cells. Western blotting results showed that all 5 strains of MAbs could react positively with ASFV-infected cells and negatively with uninfected cells. The recombinant p30 protein GST-p30ab was expressed in soluble and inclusion body forms, and GST-p30bc was expressed in inclusion body form. The truncated fusion proteins of the two groups were used as the coated antigens. Indirect ELISA showed that MAbs 8F4, 1H2 and 6C3 could effectively bind to the two recombinant proteins that means MAbs 8F4, 1H2 and 6C3 recognized the epitope amino acid 120-153; MAbs 8E11 and 1D3 could only bind to GST-p30ab protein, which meant they recognized the epitope amino acid 86-119. 【Conclusion】In this study, the recombinant p30 protein with amino acid truncated at position 86-153 was expressed in soluble form. Five MAbs were prepared and two p30 protein epitopes were located. Combined with ELISA and IFA, it could be formed a very reliable method for the detection of ASFV and its antibody.

Key words: African swine fever virus, p30 protein, enzyme-linked immunosorbent assay, monoclonal antibody, epitope

Fig. 1

IFA assay of MAbs reaction with ASFV-infected cells"

Fig. 2

Identification of the MAbs by Western blotting"

Fig. 3

SDS-PAGE analysis of protein expression results of GST-p30ab and GST-p30bc before and after induction 1: Total protein supernatant expressed by GST-p30ab before induction; 2: Total protein supernatant expressed by GST-p30ab after induction; 3: Total protein supernatant expressed by GST-p30bc before induction; 4: Total protein supernatant expressed by GST-p30bc after induction; 5: Total protein precipitation expressed by GST-p30ab before induction; 6: Total protein precipitation expressed by GST-p30ab after induction; 7: Total protein precipitation expressed by GST-p30bc before induction; 8: Total protein precipitation expressed by GST-p30bc after induction"

Table 1

Indirect ELISA test results of truncated GST-p30ab and GST-p30bc proteins"

单克隆抗体 Monoclonal antibody GST-p30ab GST-p30bc 阴性对照Negative control 阳性对照 Positive control
8F4 2.223±0.05 2.131±0.09 0.101 0.531
1D3 2.129±0.07 0.122±0.002 0.072 0.483
8E11 2.053±0.05 0.093±0.002 0.058 0.392
6C3 2.276±0.04 2.025±0.09 0.079 0.516
1H2 2.173±0.04 1.958±0.07 0.068 0.481
[1] HOWEY E B, O’DONNELL V, DE CARVALHO FERREIRA H C, BORCA M V, ARZT J. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Research, 2013, 178(2): 328-339. doi: 10.1016/j.virusres.2013.09.024.
doi: 10.1016/j.virusres.2013.09.024
[2] MONTGOMERY R E. On A form of swine fever occurring in British east Africa (Kenya colony). Journal of Comparative Pathology and Therapeutics, 1921, 34: 159-191. doi: 10.1016/S0368-1742(21)80031-4.
doi: 10.1016/S0368-1742(21)80031-4
[3] 王颖, 缪发明, 陈腾, 周鑫韬, 李楠, 吕宗吉, 张静远, 刘晔, 张国军, 张守峰, 扈荣良. 中国首例非洲猪瘟诊断研究. 病毒学报, 2018, 34(6): 817-821. doi: 10.13242/j.cnki.bingduxuebao.003459.
doi: 10.13242/j.cnki.bingduxuebao.003459
WANG Y, MIAO F M, CHEN T, ZHOU X T, LI N, LÜ Z J, ZHANG J Y, LIU Y, ZHANG G J, ZHANG S F, HU R L. Diagnosis of the first African swine fever in China. Chinese Journal of Virology, 2018, 34(6): 817-821. doi: 10.13242/j.cnki.bingduxuebao.003459. (in Chinese)
doi: 10.13242/j.cnki.bingduxuebao.003459
[4] 王涛, 孙元, 罗玉子, 仇华吉. 非洲猪瘟防控及疫苗研发: 挑战与对策. 生物工程学报, 2018, 34(12): 1931-1942. doi: 10.13345/j.cjb.180415.
doi: 10.13345/j.cjb.180415
WANG T, SUN Y, LUO Y Z, QIU H J. Prevention, control and vaccine development of African swine fever: Challenges and countermeasures. Chinese Journal of Biotechnology, 2018, 34(12): 1931-1942. doi: 10.13345/j.cjb.180415. (in Chinese)
doi: 10.13345/j.cjb.180415
[5] GE S Q, LI J M, FAN X X, LIU F X, LI L, WANG Q H, REN W J, BAO J Y, LIU C J, WANG H, LIU Y T, ZHANG Y Q, XU T G, WU X D, WANG Z L. Molecular characterization of African swine fever virus, China. Emerging Infectious Diseases, 2018, 24(11): 2131-2133. doi: 10.3201/eid2411.181274.
doi: 10.3201/eid2411.181274
[6] CHENAIS E, DEPNER K, GUBERTI V, DIETZE K, VILTROP A, STÅHL K. Epidemiological considerations on African swine fever in Europe 2014-2018. Porcine Health Management, 2019, 5: 6. doi: 10.1186/s40813-018-0109-2.
doi: 10.1186/s40813-018-0109-2
[7] 郗永义, 林艳丽, 王友亮. 非洲猪瘟研究进展. 生物技术通讯, 2019, 30(3): 449-454. doi: 10.3969/j.issn.1009-0002.2019.03.027.
doi: 10.3969/j.issn.1009-0002.2019.03.027
XI Y Y, LIN Y L, WANG Y L. Research progress in African swine fever. Letters in Biotechnology, 2019, 30(3): 449-454. doi: 10.3969/j.issn.1009-0002.2019.03.027. (in Chinese)
doi: 10.3969/j.issn.1009-0002.2019.03.027
[8] 李飞, 徐雷, 朱玲. 非洲猪瘟疫苗研究进展. 病毒学报, 2019, 35(4): 701-707. doi: 10.13242/j.cnki.bingduxuebao.003570.
doi: 10.13242/j.cnki.bingduxuebao.003570
LI F, XU L, ZHU L. Progress in development of a vaccine against African swine fever. Chinese Journal of Virology, 2019, 35(4): 701-707. doi: 10.13242/j.cnki.bingduxuebao.003570. (in Chinese)
doi: 10.13242/j.cnki.bingduxuebao.003570
[9] DIXON L K, CHAPMAN D A G, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013, 173(1): 3-14. doi: 10.1016/j.virusres.2012.10.020.
doi: 10.1016/j.virusres.2012.10.020
[10] GALINDO I, ALONSO C. African swine fever virus: A review. Viruses, 2017, 9(5): 103. doi: 10.3390/v9050103.
doi: 10.3390/v9050103
[11] 陈晶, 王晓虎, 黄元, 黄忠, 向华, 陈金平, 康桦华. 非洲猪瘟流行病学研究进展. 广东畜牧兽医科技, 2019, 44(3): 1-4. doi: 10.3969/j.issn.1005-8567.2019.03.001.
doi: 10.3969/j.issn.1005-8567.2019.03.001
CHEN J, WANG X H, HUANG Y, HUANG Z, XIANG H, CHEN J P, KANG H H. Advances in epidemiological studies of African swine fever. Guangdong Journal of Animal and Veterinary Science, 2019, 44(3): 1-4. doi: 10.3969/j.issn.1005-8567.2019.03.001. (in Chinese)
doi: 10.3969/j.issn.1005-8567.2019.03.001
[12] LITHGOW P, TAKAMATSU H, WERLING D, DIXON L, CHAPMAN D. Correlation of cell surface marker expression with African swine fever virus infection. Veterinary Microbiology, 2014, 168(2/3/4): 413-419. doi: 10.1016/j.vetmic.2013.12.001.
doi: 10.1016/j.vetmic.2013.12.001
[13] CUBILLOS C, GÓMEZ-SEBASTIAN S, MORENO N, NUÑEZ M C, MULUMBA-MFUMU L K, QUEMBO C J, HEATH L, ETTER E M C, JORI F, ESCRIBANO J M, BLANCO E. African swine fever virus serodiagnosis: A general review with a focus on the analyses of African serum samples. Virus Research, 2013, 173(1): 159-167. doi: 10.1016/j.virusres.2012.10.021.
doi: 10.1016/j.virusres.2012.10.021
[14] KAZAKOVA A S, IMATDINOV I R, DUBROVSKAYA O A, IMATDINOV A R, SIDLIK M V, BALYSHEV V M, KRASOCHKO P A, SEREDA A D. Recombinant protein p30 for serological diagnosis of African swine fever by immunoblotting assay. Transboundary and Emerging Diseases, 2017, 64(5): 1479-1492. doi: 10.1111/tbed.12539.
doi: 10.1111/tbed.12539
[15] PETROVAN V, YUAN F F, LI Y H, SHANG P C, MURGIA M V, MISRA S, ROWLAND R R R, FANG Y. Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus. Virus Research, 2019, 269: 197632. doi: 10.1016/j.virusres.2019.05.010.
doi: 10.1016/j.virusres.2019.05.010
[16] WU P, LOWE A D, RODRÍGUEZ Y Y, MURGIA M V, DODD K A, ROWLAND R R, JIA W. Antigenic regions of African swine fever virus phosphoprotein P30. Transboundary and Emerging Diseases, 2020, 67(5): 1942-1953. doi: 10.1111/tbed.13533.
doi: 10.1111/tbed.13533
[17] 王永志, 安鼎杰, 李小宇, 李忠鹏, 张静远, 张守峰, 扈荣良, 赵玉民. 非洲猪瘟病毒沈阳分离株p30基因的克隆及其亲水区的原核表达. 东北农业科学, 2019, 44(1): 40-43. doi: 10.16423/j.cnki.1003-8701.2019.01.009.
doi: 10.16423/j.cnki.1003-8701.2019.01.009
WANG Y Z, AN D J, LI X Y, LI Z P, ZHANG J Y, ZHANG S F, HU R L, ZHAO Y M. Clone of African swine fever virus p30 gene and expression of its hydrophilic area. Journal of Northeast Agricultural Sciences, 2019, 44(1): 40-43. doi: 10.16423/j.cnki.1003-8701.2019.01.009. (in Chinese)
doi: 10.16423/j.cnki.1003-8701.2019.01.009
[18] 王凌凤, 杨涛, 孙恩成, 耿宏伟, 秦永丽, 赵晶, 蔡绪禹, 刘霓红, 李文京, 吴东来. 蓝舌病病毒17型VP2蛋白单克隆抗体的制备及其抗原表位的鉴定. 中国预防兽医学报, 2011, 33(6): 465-470. doi: 10.3969/j.issn.1008-0589.2011.06.13.
doi: 10.3969/j.issn.1008-0589.2011.06.13
WANG L F, YANG T, SUN E C, GENG H W, QIN Y L, ZHAO J, CAI X Y, LIU N H, LI W J, WU D L. Preparation of the monoclonal antibodies against VP2 protein of bluetongue virus serotype 17 and the VP2 B-cell epitope identification. Chinese Journal of Preventive Veterinary Medicine, 2011, 33(6): 465-470. doi: 10.3969/j.issn.1008-0589.2011.06.13. (in Chinese)
doi: 10.3969/j.issn.1008-0589.2011.06.13
[19] DIXON L K, ABRAMS C C, CHAPMAN D D G, GOATLEY L C, NETHERTON C L, TAYLOR G, TAKAMATSU H H. Prospects for development of African swine fever virus vaccines. Developments in Biologicals, 2013, 135: 147-157. doi: 10.1159/000170936.
doi: 10.1159/000170936
[20] LOKHANDWALA S, WAGHELA S D, BRAY J, SANGEWAR N, CHARENDOFF C, MARTIN C L, HASSAN W S, KOYNARSKI T, GABBERT L, BURRAGE T G, BRAKE D, NEILAN J, MWANGI W. Adenovirus-vectored novel African Swine Fever Virus antigens elicit robust immune responses in swine. PLoS ONE, 2017, 12(5): e0177007. doi: 10.1371/journal.pone.0177007.
doi: 10.1371/journal.pone.0177007
[21] QUEMBO C J, JORI F, HEATH L, PÉREZ-SÁNCHEZ R, VOSLOO W. Investigation into the epidemiology of African swine fever virus at the wildlife - domestic interface of the gorongosa National Park, central Mozambique. Transboundary and Emerging Diseases, 2016, 63(4): 443-451. doi: 10.1111/tbed.12289.
doi: 10.1111/tbed.12289
[22] ZAKARYAN H, REVILLA Y. African swine fever virus: current state and future perspectives in vaccine and antiviral research. Veterinary Microbiology, 2016, 185: 15-19. doi: 10.1016/j.vetmic.2016.01.016.
doi: 10.1016/j.vetmic.2016.01.016
[23] ŚMIETANKA K, WOŹNIAKOWSKI G, KOZAK E, NIEMCZUK K, FRĄCZYK M, BOCIAN Ł, KOWALCZYK A, PEJSAK Z. African swine fever epidemic, Poland, 2014-2015. Emerging Infectious Diseases, 2016, 22(7): 1201-1207. doi: 10.3201/eid2207.151708.
doi: 10.3201/eid2207.151708
[24] PÉREZ-FILGUEIRA D M, GONZÁLEZ-CAMACHO F, GALLARDO C, RESINO-TALAVÁN P, BLANCO E, GÓMEZ-CASADO E, ALONSO C, ESCRIBANO J M. Optimization and validation of recombinant serological tests for African Swine Fever diagnosis based on detection of the p30 protein produced in Trichoplusia ni larvae. Journal of Clinical Microbiology, 2006, 44(9): 3114-3121. doi: 10.1128/JCM.00406-06.
doi: 10.1128/JCM.00406-06
[25] HUTCHINGS G H, FERRIS N P. Indirect sandwich ELISA for antigen detection of African swine fever virus: Comparison of polyclonal and monoclonal antibodies. Journal of Virological Methods, 2006, 131(2): 213-217. doi: 10.1016/j.jviromet.2005.08.009.
doi: 10.1016/j.jviromet.2005.08.009
[26] OURA C A L, EDWARDS L, BATTEN C A. Virological diagnosis of African swine fever-Comparative study of available tests. Virus Research, 2013, 173(1): 150-158. doi: 10.1016/j.virusres.2012.10.022.
doi: 10.1016/j.virusres.2012.10.022
[27] GIMÉNEZ-LIROLA L G, MUR L, RIVERA B, MOGLER M, SUN Y X, LIZANO S, GOODELL C, HARRIS D L H, ROWLAND R R R, GALLARDO C, SÁNCHEZ-VIZCAÍNO J M, ZIMMERMAN J. Detection of African swine fever virus antibodies in serum and oral fluid specimens using a recombinant protein 30 (p30) dual matrix indirect ELISA. PLoS ONE, 2016, 11(9): e0161230. doi: 10.1371/journal.pone.0161230.
doi: 10.1371/journal.pone.0161230
[28] 孙娟, 王愉涵, 刘艳, 郭进露, 武丽涛, 李冬民. 抗原表位鉴定方法的研究进展. 国外医学(医学地理分册), 2017, 38(3): 291-295. doi: 10.3969/j.issn.1001-8883.2017.03.025.
doi: 10.3969/j.issn.1001-8883.2017.03.025
SUN J, WANG Y H, LIU Y, GUO J L, WU L T, LI D M. Research advances in the identification methods of antigen epitope. Foreign Medical Sciences(Section of Medgeography), 2017, 38(3): 291-295. doi: 10.3969/j.issn.1001-8883.2017.03.025. (in Chinese)
doi: 10.3969/j.issn.1001-8883.2017.03.025
[29] HARVEY B R, GEORGIOU G, HAYHURST A, JEONG K J, IVERSON B L, ROGERS G K. Anchored periplasmic expression, a versatile technology for the isolation of high-affinity antibodies from Escherichia coli-expressed libraries. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(25): 9193-9198. doi: 10.1073/pnas.0400187101.
doi: 10.1073/pnas.0400187101
[30] LING M M, ROBINSON B H. Approaches to DNA mutagenesis: An overview. Analytical Biochemistry, 1997, 254(2): 157-178. doi: 10.1006/abio.1997.2428.
doi: 10.1006/abio.1997.2428
[31] 李雪美, 王富强, 沈飞, 赵益明, 江淼. 免疫亲和质谱技术鉴定抗血管性血友病因子单克隆抗体SZ-125的抗原表位. 细胞与分子免疫学杂志, 2013, 29(3): 284-286, 291. doi: 10.13423/j.cnki.cjcmi.006742.
doi: 10.13423/j.cnki.cjcmi.006742
LI X M, WANG F Q, SHEN F, ZHAO Y M, JIANG M. Identification of the epitope of von Willebrand factor recognized by monoclonal antibody SZ-125 with immune-affinity mass spectrometry. Chinese Journal of Cellular and Molecular Immunology, 2013, 29(3): 284-286, 291. doi: 10.13423/j.cnki.cjcmi.006742. (in Chinese)
doi: 10.13423/j.cnki.cjcmi.006742
[32] 吴竞, 王西西, 吴映彤, 任肖, 郭晓宇. 非洲猪瘟病毒p30基因的原核表达及间接ELISA抗体检测方法的建立. 中国畜牧兽医, 2018, 45(12): 3555-3562. doi: 10.16431/j.cnki.1671-7236.2018.12.029.
doi: 10.16431/j.cnki.1671-7236.2018.12.029
WU J, WANG X X, WU Y T, REN X, GUO X Y.Prokaryotic expression of p 30 gene of African swine fever virus and establishment of indirect ELISA antibody detection method. China Animal Husbandry & Veterinary Medicine, 2018, 45(12): 3555-3562. doi: 10.16431/j.cnki.1671-7236.2018.12.029. (in Chinese)
doi: 10.16431/j.cnki.1671-7236.2018.12.029
[1] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[2] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[3] YuXin LIANG,JianXiang WU,XiaoYu LI,ChunYu ZHANG,JiChao HOU,XuePing ZHOU,YongZhi WANG. Mapping of Epitopes and Establishment of Rapid DAS-ELISA for Potato Virus Y Coat Protein [J]. Scientia Agricultura Sinica, 2021, 54(6): 1154-1162.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] LI MinXue,LI JianNan,ZHOU Hong,XIAO Ning,LIN HuiXing,MA Zhe,FAN HongJie. Establishment and Preliminary Application of Lawsonia intracellularis IPMA Antigen Detection Method Based on SodC Monoclonal Antibody [J]. Scientia Agricultura Sinica, 2021, 54(20): 4478-4486.
[6] HU XiaoFei,LI QingMei,YAO JingJing,HU SiYu,SUN YaNing,XING YunRui,DENG RuiGuang,ZHANG GaiPing. Development of High Sensitive Zeranol Monoclonal Antibody Based on the Cross Reactivity of Structural Analogs [J]. Scientia Agricultura Sinica, 2020, 53(5): 1071-1080.
[7] GUO YaLu, MA XiaoFei, SHI JiaNan, ZHANG Liu, ZHANG JianShuo, HUANG Teng, WU PengCheng, KANG HaoXiang, GENG GuangHui, CHEN Hao, WEI Jian, DOU ShiJuan, LI LiYun, YIN ChangCheng, LIU GuoZhen . Western Blot Detection of CAS9 Protein in Transgenic Rice [J]. Scientia Agricultura Sinica, 2017, 50(19): 3631-3639.
[8] CHEN Zhe, SONG Ge, ZHOU Xue-ping, WU Jian-xiang. Preparation and Application of Monoclonal Antibodies Against Watermelon mosaic virus (WMV) [J]. Scientia Agricultura Sinica, 2016, 49(14): 2711-2724.
[9] ZHAO Dan-dan, YANG Guo-ping, DIAO You-xiang, CHEN Hao, TI Jin-feng, ZHANG Lu, ZHANG Ying, LI Chuan-chuan. Preparation of Monoclonal Antibodies Against DPV and Development of Colloidal Gold Strip for DPV Detection [J]. Scientia Agricultura Sinica, 2016, 49(14): 2796-2804.
[10] ZHAO Xin, GAO Mei-xu, MOU Hui, SHEN Yue, WANG Zhi-dong. Effect on Immunogenicity of Pen a 1 and Its Epitopes Digested by Simulated Gastric Fluid [J]. Scientia Agricultura Sinica, 2015, 48(4): 769-777.
[11] MOU Hui-1, GAO Mei-Xu-1, PAN Jia-Rong-2, ZHI Yu-Xiang-3, ZHAO Jie-1, LIU Chao-Chao-1, LI Shu-Jin-1, ZHAO Xin-1. Selection and Identification of Critical Amino Acids in Epitope 187-202 of Pen a1 [J]. Scientia Agricultura Sinica, 2014, 47(9): 1793-1801.
[12] WANG Ling-Ling, ZHI Ai-Min, YANG Yan-Yan, SONG Chun-Mei, WANG Kun, CHAI Shu-Jun, HOU Yu-Ze, DENG Rui-Guang, ZHANG Gai-Ping. Preparation and Identification of the Monoclonal Antibody Against Chlorothalonil [J]. Scientia Agricultura Sinica, 2013, 46(7): 1509-1515.
[13] GONG Fang, ZHI Ai-Min, LI Qing-Mei, HU Xiao-Fei, ZHAO Qi-Fa, ZHANG Xiao-Hui, LU Qi-Yu, ZHANG Gai-Ping. Establishment of Hybridoma Cell Lines Secreting Anti-Kasugamycin Monoclonal Antibody and Identification of Their Immunological Properties [J]. Scientia Agricultura Sinica, 2013, 46(2): 417-423.
[14] XING Guang-Xu-12, WANG Guo-Dong-3, HU Xiao-Fei-2, WANG Fang-Yu-2, DENG Rui-Guang-2, ZHANG Gai-Ping-2. Development and Identification of ELISA Kit for Norfloxacin Determination [J]. Scientia Agricultura Sinica, 2013, 46(16): 3470-3477.
[15] ZHAO Jie-1, GAO Mei-Xu-1, PAN Jia-Rong-2, WANG Zhi-Dong-1, LAN Li-Ping-1, SUI Ke-1, XU Shu-Ting-1, LIU Chao-Chao-1, MOU Hui-1. Preparation and Identification of Polyclonal Antibody of One Pen a1 Epitope Peptide [J]. Scientia Agricultura Sinica, 2013, 46(15): 3191-3198.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!