Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (1): 197-207.doi: 10.3864/j.issn.0578-1752.2022.01.016

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles     Next Articles

Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever

ZHANG JingYuan1,2(),MIAO FaMing2,CHEN Teng2,LI Min1(),HU RongLiang2()   

  1. 1School of Life Sciences, Ningxia University, Yinchuan 750021
    2Veterinary Research Institute, Institute of Military Medical Sciences, Academy of Military Sciences, Changchun 130122
  • Received:2020-11-16 Accepted:2021-02-03 Online:2022-01-01 Published:2022-01-07
  • Contact: Min LI,RongLiang HU E-mail:zjyuanff27@163.com;lim@nxu.edu.cn;ronglianghu@hotmail.com

Abstract:

【Objective】 After the first outbreak of African Swine Fever (ASF) in Shenyang, China in 2018, it has rapidly spread to the whole country, severely hitting the pig industry. This study aimed to establish an optimized nucleic acid testing technique for African Swine Fever Virus (ASFV), so as to provide a fast and accurate method for early diagnosis and accurate treatment of ASF outbreaks. 【Method】 Appropriate primers and probes were designed and screened for the conserved gene B646L (p72) of ASFV, and a real-time fluorescent RPA assay based on recombinase polymerase amplification (RPA) was established. The reaction system, reaction conditions and sample treatment steps were optimized. Specificity and sensitivity of the optimized detection method were evaluated by using quality controls. In addition, 1 009 clinical samples were tested by the optimized real-time RPA, after which the results were further confirmed by the real time PCR recommended by OIE and through virus isolation. 【Result】 A pair of primers-probe combinations was successfully screened, and a real-time fluorescence RPA for detection of ASFV p72 gene was developed. The total volume of optimized reaction system was 25 μL. The reaction conditions were set as 39℃ 10 s, 39℃ 20 s, 40 cycles on the fluorescence quantitative PCR instrument, and the whole amplification reaction needs about 20 min. The analysis method at room temperature could replace the traditional nucleic acid extraction method, thus the whole process of sample treatment, nucleic acid amplification and result reading could be completed in 30 min. Specific evaluation showed that the real-time RPA was negative for porcine parvovirus (PPV), pseudorabies virus (PRV), circovirus type1/2 (PCV1/2), classical swine fever virus (CSFV) and porcine reproductive and respiratory syndrome virus (PRRSV); the sensitivity evaluation showed that the assay could detect type I/II/IX ASFV samples, and could detect 10 copies/μL of ASFV positive simulated blood samples and 1﹕103.0 dilution of positive clinical samples, which was as sensitive as the OIE-recommended qPCR method. Seventeen out of 1 009 clinical samples were tested positive using the real-time RPA, with the same results as by qPCR, 17 positive cultures were obtained from virus isolation. 【Conclusion】 A real-time RPA diagnostic method for ASF was developed, which was proved to be simple, less time consuming with high sensitivity and specificity, providing a new, simple, specific and rapid diagnostic method for ASF.

Key words: African swine fever virus, recombinase polymerase amplification, real-time fluorescent RPA, nucleic acid detection, diagnosis

Table 1

Amplification system for real-time RPA"

序号
Number
组分
Components
体积
Volume (μL)
1 Primer F 2.1
2 Primer R 2.1
3 Exo Probe 0.6
4 Rehydration buffer 29.5
5 Water 11.2
6 Template 1 1
7 MgOAc(280 mmol·L-1 1.25 1.25
合计Total 25 25

Table 2

Optimization of Real-time RPA amplification system"

体系A System A 体系B System B
组分 Components 体积 Volume(μL) 组分 Components 体积 Volume(μL)
Primer F 2.1 Rehydration Mix 40(2 reactions)
Primer R 2.1
Exo Probe 0.6
Rehydration buffer 29.5
Water 11.2
将溶解后的反应体系等分至两个反应管 Equal distribution of the dissolved amplification system into two tubes
Template 1 1 Template 1 1
MgOAc(280 mmol·L-1 1.25 1.25 MgOAc-B 4 4
合计 Total 25 25 合计 Total 25 25

Fig. 1

Screening of primers-probe combination for real-time RPA Pa: Set a; Pb: Set b; Pc: Set c; 1: Strong positive control; 2: Weak positive control; 3: Negative control"

Table 3

Primers and probe of Real-time fluorescent RPA"

名称 Name 序列(5′-3′)Sequence (5′-3′)
EXO-F TAATAGCAGATGCCGATACCACAA
EXO-R TTACATACCCTTCCACTACGGAGGC
EXO-P GTCCCAACTAATATAAAATTCTCTTGCTC/i6FAMdT/G/idSp/A/iBHQ1dT/ACGTTAATATGACCAC-P

Fig. 2

Optimization of reaction temperature and time for real-time RPA 1: Strong positive control; 2: Weak positive control; 3: Negative control"

Fig. 3

Optimization of the amplification system"

Table 4

Comparison of different sample treatment methods"

处理方法
Treatment
所需温度
Temperature
操作步骤
Operation Steps
处理时间
Time costs
Ct值Ct Value (2Ct≈1min)
N WP SP
无处理Untreatment / / 0 min / 33.92 19.39
磁珠法
Magnetic beads extraction
RT 结合,清洗,洗脱
Combination, Wash, Elution
10 min / 22.23 17.76
柱提取法
Column extraction
RT 裂解,沉淀,离心,洗脱
Lysis, Precipitation, Centrifugation, Elution
30 min / 23.54 14.02
裂解法
Lysis
RT 裂解,离心
Lysis, Centrifugation
5 min / 24.07 14.25
煮沸法
Boiling
100℃,4℃ 煮沸,冷藏,离心
Boiling, Refrigeration, Centrifugation
10 min / 22.05 16.96

Fig. 4

Results of specific samples tested by real-time RPA and qPCR"

Fig. 5

Results of sensitivity samples detected by real-time RPA and qPCR"

Table 5

Results of clinical samples with different dilutions tested by real-time RPA and qPCR"

样品种类
Samples
稀释倍数
Dilutions
检测结果Results
实时RPA Real-time RPA 荧光定量PCR rt-PCR
Ct值Ct value 判定Read Ct值Ct value 判定Read
脾脏
Spleen
1:101.0 30.49 + 28.00 +
1:102.0 35.55 + 30.23 +
1:103.0 38.35 + 34.71 +
1:104.0 / - / -
淋巴结
Lymph node
1:101.0 28.58 + 29.44 +
1:102.0 34.61 + 30.11 +
1:103.0 39.33 + 37.21 +
1:104.0 / - / -
血清
Serum
1:101.0 24.76 + 27.32 +
1:102.0 29.68 + 32.33 +
1:103.0 32.12 + 35.56 +
1:104.0 / - / -

Fig. 6

Virus isolation and immunofluorescent staining of positive samples"

Table 6

Summary of positive clinical sample test results"

编号
Number
样品种类
Sample type
检测结果Results
实时RPA Real-time PRA qPCR 病毒分离Virus isolation
Ct值Ct Value 判定Read Ct值Ct Value 判定Read 判定Read
34 脾脏Spleen 20.60 + 19.37 + +
35 脾脏Spleen 12.50 + 22.60 + +
36 脾脏Spleen 20.74 + 18.71 + +
37 脾脏Spleen 32.82 + 29.28 + +
38 脾脏Spleen 14.72 + 20.17 + +
117 淋巴结Lymph node 12.83 + 19.77 + +
246 脾脏Spleen 17.48 + 27.07 + +
356 淋巴结Lymph node 19.92 + 18.72 + +
766 脾脏Spleen 25.27 + 19.17 + +
767 脾脏Spleen 26.85 + 23.47 + +
770 血清Serum 14.85 + 20.01 + +
771 血清Serum 17.23 + 26.61 + +
841 淋巴结Lymph node 16.40 + 26.57 + +
900 血清Serum 14.55 + 21.09 + +
913 血清Serum 35.46 + 38.45 + +
943 脾脏Spleen 15.31 + 22.72 + +
968 淋巴结Lymph node 20.16 + 26.22 + +

Table 7

Comparison of operation process between real-time RPA and qPCR"

检测方法
Methods
扩增温度
Temperature
扩增设备
Instrument
扩增时间
Time (min)
Real-time RPA 37℃ 等温扩增仪或实时荧光PCR仪
Isothermal amplification instrument real time
fluorescence PCR instrument
20
qPCR 95℃,
60℃
实时荧光PCR仪
Real time fluorescence PCR instrument
>60
[1] DIXON L K, STAHL K, JORI F, VIAL L, PFEIFFER D U. African swine fever epidemiology and control. Annual Review of Animal Biosciences, 2020, 8: 221-246. doi: 10.1146/annurev-animal-021419-083741.
doi: 10.1146/annurev-animal-021419-083741
[2] DIXON L, SUN H, ROBERTS H. African swine fever. Antiviral Research, 2019, 165: 34-41. doi: 10.1016/j.antiviral.2019.02.018.
doi: 10.1016/j.antiviral.2019.02.018
[3] QUEMBO C J, JORI F, VOSLOO W, HEATH L. Genetic characterization of African swine fever virus isolates from soft ticks at the wildlife/domestic interface in Mozambique and identification of a novel genotype. Transboundary and Emerging Diseases, 2018, 65(2): 420-431. doi: 10.1111/tbed.12700.
doi: 10.1111/tbed.12700
[4] BASTOS A D S, PENRITH M L, CRUCIÈRE C, EDRICH J L, HUTCHINGS G, ROGER F, COUACY-HYMANN E, R THOMSON G. Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Archives of Virology, 2003, 148(4): 693-706. doi: 10.1007/s00705-002-0946-8.
doi: 10.1007/s00705-002-0946-8
[5] GARIGLIANY M, DESMECHT D, TIGNON M, CASSART D, LESENFANT C, PATERNOSTRE J, VOLPE R, CAY A B, VAN DEN BERG T, LINDEN A. Phylogeographic analysis of African swine fever virus, western Europe, 2018. Emerging Infectious Diseases, 2019, 25(1): 184-186. doi: 10.3201/eid2501.181535.
doi: 10.3201/eid2501.181535
[6] PEJSAK Z, TRUSZCZYŃSKI M, NIEMCZUK K, KOZAK E, MARKOWSKA-DANIEL I. Epidemiology of African Swine Fever in Poland since the detection of the first case. Polish Journal of Veterinary Sciences, 2014, 17(4): 665-672. DOI: 10.2478/pjvs-2014-0097.
doi: 10.2478/pjvs-2014-0097
[7] ZHOU X, LI N, LUO Y, LIU Y, MIAO F, CHEN T, ZHANG S, CAO P, LI X, TIAN K, QIU H J, HU R. Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018, 65(6): 1482-1484. doi: 10.1111/tbed.12989.
doi: 10.1111/tbed.12989
[8] GE S, LI J, FAN X, LIU F, LI L, WANG Q, REN W, BAO J, LIU C, WANG H, LIU Y, ZHANG Y, XU T, WU X, WANG Z. Molecular characterization of African swine fever virus, China, 2018. Emerging Infectious Diseases, 2018, 24(11): 2131-2133. doi: 10.3201/eid2411.181274.
doi: 10.3201/eid2411.181274
[9] LE V P, JEONG D G, YOON S W, KWON H M, TRINH T B N, NGUYEN T L, BUI T T N, OH J, KIM J B, CHEONG K M, VAN TUYEN N, BAE E, VU T T H, YEOM M, NA W, SONG D. Outbreak of African swine fever, Vietnam, 2019. Emerging Infectious Diseases, 2019, 25(7): 1433-1435. doi: 10.3201/eid2507.190303.
doi: 10.3201/eid2507.190303
[10] KIM H J, CHO K H, LEE S K, KIM D Y, NAH J J, KIM H J, KIM H J, HWANG J Y, SOHN H J, CHOI J G, KANG H E, KIM Y J. Outbreak of African swine fever in South Korea, 2019. Transboundary and Emerging Diseases, 2020, 67(2): 473-475. doi: 10.1111/tbed.13483.
doi: 10.1111/tbed.13483
[11] ENJUANES L, CARRASCOSA A, MORENO M, VIñUELA E. Titration of African swine fever (ASF) virus. The Journal of General virology, 1976, 32(3): 471-477.DOI: 10.1099/0022-1317-32-3-471.
doi: 10.1099/0022-1317-32-3-471
[12] PéREZ J, RODRíGUEZ F, FERNáNDEZ A, MARTíN DE LAS MULAS J, GóMEZ-VILLAMANDOS J, SIERRA M. Detection of African swine fever virus protein VP73 in tissues of experimentally and naturally infected pigs. Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 1994, 6(3): 360-365. doi: 10.1177/104063879400600314.
doi: 10.1177/104063879400600314
[13] VIDAL M I, STIENE M, HENKEL J, BILITEWSKI U, COSTA J V, OLIVA A G. A solid-phase enzyme linked immunosorbent assay using monoclonal antibodies, for the detection of African swine fever virus antigens and antibodies. Journal of Virological Methods, 1997, 66(2): 211-218. doi: 10.1016/s0166-0934(97)00059-1.
doi: 10.1016/s0166-0934(97)00059-1
[14] 孙书华, 孙淑芳, 蒋正军, 吴时友. 多聚酶链反应技术检测非洲猪瘟. 中国兽医科技, 1995, 11(25): 29. doi: 10.16656/j.issn.1673-4696.1995.11.016.
doi: 10.16656/j.issn.1673-4696.1995.11.016
SUN S H, SUN S F, JIANG Z J, WU S Y. Detection of African swine fever by polymerase chain reaction. Chinese Journal of Veterinary Science and Technology, 1995, 11(25): 29. doi: 10.16656/j.issn.1673-4696.1995.11.016. (in Chinese)
doi: 10.16656/j.issn.1673-4696.1995.11.016
[15] LUO Y Z, ATIM S A, SHAO L N, AYEBAZIBWE C, SUN Y, LIU Y, JI S W, MENG X Y, LI S, LI Y F, MASEMBE C, STÅHL K, WIDÉN F, LIU L H, QIU H J. Development of an updated PCR assay for detection of African swine fever virus. Archives of Virology, 2017, 162(1): 191-199. doi: 10.1007/s00705-016-3069-3.
doi: 10.1007/s00705-016-3069-3
[16] KING D P, REID S M, HUTCHINGS G H, GRIERSON S S, WILKINSON P J, DIXON L K, BASTOS A D, DREW T W. Development of a TaqMan PCR assay with internal amplification control for the detection of African swine fever virus. Journal of Virological Methods, 2003, 107(1): 53-61. doi: 10.1016/s0166-0934(02)00189-1.
doi: 10.1016/s0166-0934(02)00189-1
[17] FERNÁNDEZ-PINERO J, GALLARDO C, ELIZALDE M, ROBLES A, GÓMEZ C, BISHOP R, HEATH L, COUACY-HYMANN E, FASINA F O, PELAYO V, SOLER A, ARIAS M. Molecular diagnosis of African Swine Fever by a new real-time PCR using universal probe library. Veterinary Medicine and Science, 2013, 60(1): 48-58. doi: 10.1111/j.1865-1682.2012.01317.x.
doi: 10.1111/j.1865-1682.2012.01317.x
[18] JAMES H E, EBERT K, MCGONIGLE R, REID S M, BOONHAM N, TOMLINSON J A, HUTCHINGS G H, DENYER M, OURA C A, DUKES J P, KING D P. Detection of African swine fever virus by loop-mediated isothermal amplification. Journal of Virological Methods, 2010, 164(1/2): 68-74. doi: 10.1016/j.jviromet.2009.11.034.
doi: 10.1016/j.jviromet.2009.11.034
[19] WANG D, YU J, WANG Y, ZHANG M, LI P, LIU M, LIU Y. Development of a real-time loop-mediated isothermal amplification (LAMP) assay and visual LAMP assay for detection of African swine fever virus (ASFV). Journal of Virological Methods, 2020, 276: 13775. DOI: 10.1016/j.jviromet.2019.113775
doi: 10.1016/j.jviromet.2019.113775
[20] 全国动物卫生标准化技术委员会. 2019, 伪狂犬病诊断方法GB/T 18641-2018.
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL HEALTH. 2019, Diagnostic method for pseudorabies GB/T 18641-2018. (in Chinese)
[21] 全国动物防疫标准化技术委员会. 2011, 猪瘟病毒实时荧光RT-PCR检测方法GB/T 27540-2011.
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL EPIDEMIC PREVENTION. 2011, Method of the real-time QPCR for the detection of classical swine fever virus GB/T 27540-2011. (in Chinese)
[22] 全国动物防疫标准化技术委员会. 2008, 猪圆环病毒聚合酶链反应试验方法GB/T 21674-2008.
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL EPIDEMIC PREVENTION. 2008, Detecting porcine circovirus with polymerase chain reaction GB/T 21674-2008. (in Chinese)
[23] 全国动物防疫标准化技术委员会. 2011, 鉴别猪繁殖与呼吸综合征病毒高致病性与经典毒株复合RT-PCR方法 GB/T 27517-2011.
NATIONAL TECHNICAL STANDARDIZATION COMMITTEE OF ANIMAL EPIDEMIC PREVENTION. 2011, A multiplex QPCR method to differentiate the highly pathogenic and classical porcine reproductive and respiratory syndrome virus GB/T 27517-2011. (in Chinese)
[24] 国家认证认可监督委员会. 2007, 猪细小病毒病聚合酶链反应操作规程SN/T 1874-2007.
CERTIFICATION AND ACCREDITATION ADMINISTRATION OF THE P.R.C. 2007, Protocol of polymerase chain reaction for porcine parvovirus SN/T 1874-2007. (in Chinese)
[25] COSTARD S, WIELAND B, DE GLANVILLE W, JORI F, ROWLANDS R, VOSLOO W, ROGER F, PFEIFFER D, DIXON L. African swine fever: How can global spread be prevented? Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2009, 364(1530): 2683-2696.DOI: 10.1098/rstb.2009.0098.
doi: 10.1098/rstb.2009.0098
[26] PIEPENBURG O, WILLIAMS C H, STEMPLE D L, ARMES N A. DNA detection using recombination proteins. PLoS Biology, 2006, 4(7): e204. doi: 10.1371/journal.pbio.0040204.
doi: 10.1371/journal.pbio.0040204
[27] CHAO C C, BELINSKAYA T, ZHANG Z, CHING W M. Development of recombinase polymerase amplification assays for detection of Orientia tsutsugamushi or Rickettsia typhi. PLoS Neglected Tropical Diseases, 2015, 9(7): e0003884. doi: 10.1371/journal.pntd.0003884.
doi: 10.1371/journal.pntd.0003884
[28] LI Y, LI L, FAN X, ZOU Y, ZHANG Y, WANG Q, SUN C, PAN S, WU X, WANG Z. Development of real-time reverse transcription recombinase polymerase amplification (RPA) for rapid detection of peste des petits ruminants virus in clinical samples and its comparison with real-time PCR test. Scientific Reports, 2018, 8(1): 17760. doi: 10.1038/s41598-018-35636-5.
doi: 10.1038/s41598-018-35636-5
[29] JAMES A, MACDONALD J. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Review of Molecular Diagnostics, 2015, 15(11): 1475-1489. doi: 10.1586/14737159.2015.1090877.
doi: 10.1586/14737159.2015.1090877
[30] LIU X Q, YAN Q Y, HUANG J F, CHEN J, GUO Z Y, LIU Z D, CAI L, LI R S, WANG Y, YANG G W, LAN Q X. Influence of design probe and sequence mismatches on the efficiency of fluorescent RPA. World Journal of Microbiology and Biotechnology, 2019, 35(6): 95. doi: 10.1007/s11274-019-2620-2.
doi: 10.1007/s11274-019-2620-2
[31] WU L, YE L, WANG Z, CUI Y, WANG J. Utilization of recombinase polymerase amplification combined with a lateral flow strip for detection of Perkinsus beihaiensis in the oyster Crassostrea hongkongensis. Parasites & Vectors, 2019, 12(1): 360. doi: 10.1186/s13071-019-3624-3.
doi: 10.1186/s13071-019-3624-3
[32] MIAO F, ZHANG J, LI N, CHEN T, WANG L, ZHANG F, MI L, ZHANG J, WANG S, WANG Y, ZHOU X, ZHANG Y, LI M, ZHANG S, HU R. Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting African swine fever virus. Frontiers in Microbiology, 2019, 10: 1004. doi: 10.3389/fmicb.2019.01004.
doi: 10.3389/fmicb.2019.01004
[1] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[2] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[3] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[4] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[5] LI QiFeng,LI JiaWei,MA WeiHong,GAO RongHua,YU LiGen,DING LuYu,YU QinYang. Research Progress of Intelligent Sensing Technology for Diagnosis of Livestock and Poultry Diseases [J]. Scientia Agricultura Sinica, 2021, 54(11): 2445-2463.
[6] LIU QiuXia, REN Tao, ZHANG YaWei, LIAO ShiPeng, LI XiaoKun, CONG RiHuan, LU JianWei. Determination and Application of a Critical Nitrogen Dilution Curve for Direct-Sowing Winter Oilseed Rape in Central China [J]. Scientia Agricultura Sinica, 2019, 52(16): 2835-2844.
[7] CHEN PengFei, LIANG Fei. Cotton Nitrogen Nutrition Diagnosis Based on Spectrum and Texture Feature of Images from Low Altitude Unmanned Aerial Vehicle [J]. Scientia Agricultura Sinica, 2019, 52(13): 2220-2229.
[8] ZHENG YongQiang, WANG Ya, YANG Qiong, JIA XueMei, HE ShaoLan, DENG Lie, XIE RangJin, YI ShiLai, Lü Qiang, MA YanYan . Leaf Nutritional Diagnosis of Powell Navel Orange at Flowering Stage in Chongqing Three Gorges Reservoir Area [J]. Scientia Agricultura Sinica, 2018, 51(12): 2378-2390.
[9] LING QiHong, WANG ShaoHua, DING YanFeng, LI GangHua. Re-Evaluation of Using the Color Difference Between the Top 3rd Leaf and the 4th Leaf as a Unified Indicator for High-Yielding Rice [J]. Scientia Agricultura Sinica, 2017, 50(24): 4705-4713.
[10] JIA Hui-ru, WU Yan-yan, WANG Qiang, DAI Ping-li, ZHOU Ting. Epidemiological Survey and Molecular Phylogenetic Analysis of Chronic bee paralysis virus in China from 2014 to 2015 [J]. Scientia Agricultura Sinica, 2016, 49(10): 2017-2026.
[11] WEI Quan-quan, LI Lan-tao, REN Tao, WANG Zhen, WANG Shao-hua, LI Xiao-kun, CONG Ri-huan, LU Jian-wei. Diagnosing Nitrogen Nutrition Status of Winter Rapeseed via Digital Image Processing Technique [J]. Scientia Agricultura Sinica, 2015, 48(19): 3877-3886.
[12] BAI You-lu. Review on Research in Plant Nutrition and Fertilizers [J]. Scientia Agricultura Sinica, 2015, 48(17): 3477-3492.
[13] LI Ying-1, XUE Li-Hong-2, PAN Fu-Yan-1, YANG Lin-Zhang-2. Effects of Interaction of N and P on Rice Canopy Spectral Reflectance and Its PNN Identification [J]. Scientia Agricultura Sinica, 2014, 47(14): 2742-2750.
[14] WU Yu-Lu-1, CHENG Qun-1, YU Ling-Xue-1, HOU Yi-Xuan-2, WANG Kang-1, LIU Guang-Qing-1, TONG Guang-Zhi-1, ZHOU Yan-Jun-1. Development of a RT-PCR Method for Differentiation of the Wild-Type PEDVs and the Attenuated PEDVs [J]. Scientia Agricultura Sinica, 2013, 46(20): 4370-4377.
[15] WANG Fu-Lin, MEN Yong-Ge, GE Shun-Feng, CHEN Ru, DING Ning, PENG Fu-Tian, WEI Shao-Chong, JIANG Yuan-Mao. Research on Soil and Leaf Nutrient Diagnosis of ‘Red Fuji’ Apple Orchard in Two-Dominant Producing Areas [J]. Scientia Agricultura Sinica, 2013, 46(14): 2970-2978.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!