Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1772-1786.doi: 10.3864/j.issn.0578-1752.2021.08.016

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Changes of Wine Flavor Properties from the Decreased Higher Alcohols Induced by Ultrasound Irradiation

ZHANG QingAn1,2(),XU BoWen1,CHEN BoYu1,ZHANG BaoShan1,CHENG Shuang2   

  1. 1School of Food Engineering and Nutrition Sciences, Shaanxi Normal University, Xi’an 710119
    2Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang 473000
  • Received:2020-08-14 Accepted:2021-01-25 Online:2021-04-16 Published:2021-04-25

Abstract:

【Objective】 This research was conducted in order to investigate the effects of the decreased higher alcohols by ultrasound irradiation on the changes of wine flavor properties, so as to provide a theoretical basis for the application of ultrasound technology in decreasing the higher alcohols and improving the flavor properties of red wine. 【Method】 Firstly, the electronic tongue and electronic nose were employed to identify the wine samples treated by ultrasound irradiation, and the data about the flavor changes were analyzed by the principal component analysis (PCA) and discriminant function analysis (DFA), respectively. Thereafter, the gas chromatography mass spectrometer (GC-MS) was used to detect the changes of the volatile compounds in red wine induced by ultrasound irradiation with the optimum conditions being proved to effectively degrade the higher alcohols of red wine. Finally, the effects of the decreased higher alcohols from ultrasound irradiation on the volatile compounds and wine flavors, and the detailed mechanism were investigated by constructing the model wine solutions with the addition of the standards of N-propyl alcohol, isobutanol, isopentanol and n-pentanol. 【Result】The results of single factor experiments from the electronic tongue and electronic nose indicated that no significant influence could be identified on the sensory properties of red wine exposed to ultrasound irradiation, while the varieties of the volatile compounds in red wine tentatively identified by GC-MS could be increased by the optimum ultrasonic treatment. Moreover, the content of esters increased, and the aldehydes and alcohols decreased correspondingly, which was in accordance with the results from the model wine. 【Conclusion】In conclusion, ultrasound treatment could not only degrade the content of higher alcohols, but also had a positive effect on the modification of taste, aroma and flavor properties of red wine by decreasing the higher alcohols, and all the results could provide a theoretical basis for the application of ultrasonic technology in improving the wine quality.

Key words: wine, model wine, higher alcohols, ultrasound, flavor

Table 1

Parameters of the electronic nose test"

分析参数 Parameter 参考值 Reference value
载气流量 Carrier gas flow rate 0.6 L?min-1
传感器清洗时间 Sensors cleaning time 60 s
气体进样流量 Gas flow rate 0.6 L?min-1
获取时间 Acquisition time 120 s

Table 2

Sensors descriptions of the electronic nose"

传感器名称
Sensor name
性能描述
Performance description
S1 氨气、胺类 Ammonia, amines
S2 硫化氢、硫化物 Hydrogen sulfide, sulfide
S3 氢气 Hydrogen
S4 酒精、有机溶剂 Alcohol, organic solvent
S5 醇类、酮类、醛类、芳香族化合物
Alcohols, ketones, aldehydes, aromatic compounds
S6 甲烷、沼气、天然气
Methane, marsh gas, natural gas
S7 可燃性气体 Combustible gas
S8 挥发性有机物 Volatile organic compounds
S9 液化气、天然气、煤气 Liquefied gas, natural gas, gas
S10 液化气、可燃气体 Liquefied gas, combustible gas
S11 烷烃、酒精、天然气、烟雾
Alkane, alcohol, natural gas, smoke
S12 酒精、有机溶剂 Alcohol, organic solvent
S13 烟气、烹调臭味 Smoke, cooking odor
S14 甲烷、燃气 Methane, gas

Fig. 1

Results of PCA (a) and DFA (b) by electronic nose for wine samples treated with different ultrasound conditions"

Fig. 2

Radar images of response value by electronic nose for wine samples treated with different ultrasound conditions"

Fig. 3

Electronic nose identification based on SIMCA for red wine without ultrasound irradiation"

Table 3

Results of electronic nose and tongue identification based on PCA for red wine without ultrasound irradiation"

样品名称
Sample name
电子鼻结果
Result of electronic nose
电子舌结果
Result of electronic tongue
00-1 是 Yes 是 Yes
00-2 是 Yes 是 Yes
00-3 是 Yes 否 No
00-1、00-2和00-3分别为未处理红酒样品的3个平行测定
00-1, 00-2 and 00-3 represent the three replicates

Fig. 4

Results of PCA (a) and DFA (b) by electronic tongue for wine samples with different ultrasound conditions"

Fig. 5

Electronic tongue identification by DFA (a) and SIMCA (b) for red wine without ultrasound irradiation"

Table 4

The volatile components in the wine samples before and after ultrasound irradiation"

类别
Variety
化合物
Compound
相对百分含量Relative content (%)
处理前Before 处理后After
酸类
Acids
L-乳酸 L-Lactic acid 26.18 18.47
胞壁酸 Parietal acid 0.24 0.25
正癸酸 Decanoic acid 0.76 0.82
己酸 Caproic acid 0.51 -
二十二碳六烯酸 Docosahexaenoic acid 0.04 -
辛酸 Caprylic acid 2.10 -
壬酸 Nonylic acid 0.21 0.26
癸醛 Decyl aldehyde - 0.28
油酸 Oleic acid - 0.19
4-氨基-1,5-戊二酸 4-amino-1,5-glutaric acid - 0.22
酯类
Esters
2-羟基丙酸乙酯 Ethyl 2-hydroxypropionate 17.57 28.25
乳酸异戊酯 Isoamyl lactate 0.48 0.17
己酸乙酯 Ethyl hexanoate 1.76 1.23
丁二酸二乙酯 Diethyl succinate 7.26 8.37
辛酸乙酯 Ethyl caprylate 2.32 1.82
异胆酸乙酯 Ethyl isocholate 0.55 1.23
十六烷酸乙酯 Ethyl hexadecane 1.18 1.35
十八酸乙酯 Ethyl octadecanoate 0.48 0.31
7-甲基-Z-四癸烯-1-醇乙酸酯 7-methyl-z-tetradecene-1-ol acetate 0.25 0.61
1,2-苯二甲酸正辛酯 1,2-noctyl-phthalate 0.11 0.23
癸酸乙酯 Ethyl decanoate 0.21 0.25
丁二酸3-甲基丁基酯 Succinic acid 3-methyl butyl ester 0.37 0.37
Z-(13,14-环氧)四聚-11-烯-1-醇乙酸酯 Z-(13,14-epoxy) tetra-11-ene-1-ol acetate 0.12 0.27
2-苯基-戊酸乙酯 Ethyl 2-phenyl-valerate 0.13 -
11,13-二甲基-12-十四烯-1-醇乙酸酯 11,13-dimethyl-12-tetradecene-1-ol acetate 0.05 -
1-甲基乙酸盐(酯) 1-methyl acetate (ester) 0.08 -
1,2-苯二甲酸,双(2-甲基丙基)酯 1,2-phthalic acid, bis (2-methylpropyl) ester 0.08 -
9-十八烯酸(2-苯基-1,3-二氧戊环-4-基)甲酯
9-octadecaenoic acid (2-phenyl-1,3-dioxopenyl-4-yl) methyl ester
- 0.03
壬酸乙酯Ethyl nonanoate - 0.05
十四烷酸乙酯 Ethyl Myristate - 0.12
邻苯二甲酸正丁酯 N-butyl phthalate - 0.12
邻苯二甲酸二正辛酯 Di-n-octyl phthalate - 0.06
1-丁醇,3-甲基乙酸酯 1-butanol, 3-methylacetate - 0.07
醇类
Alcohols
1-庚三醇 1-heptanol 0.21 0.21
β-苯乙醇 β-phenylethanol 21.81 19.73
2,3-丁二醇 2,3- butane diol 0.36 -
3-甲基-2-己醇 3-methyl-2-hexanol - 0.09
类别
Variety
化合物
Compound
相对百分含量Relative content (%)
处理前Before 处理后After
酮类
Ketones
1-(2-羧基-4,4-二甲基环丁烯基)-1-丁烯-3-酮 1-(2-carboxyl-4,4-dimethylcyclobutanenol)-1-butene-3-one 0.16 0.05
2,4,5,6,7,7a-六氢-3-(1-甲基乙基)-7a-甲基,1H-2-茚酮 2,4,5,6,7,7a-hexahydro-3-(1-methylethyl)-7a-methyl, 1h-2-indenone 0.98 0.59
4-(5,5-二甲基-1-氧螺环[2.5]辛-4-基)-3-丁烯-2-酮
4-(5,5-dimethyl-1-oxyspiro [2.5] oct-4-yl)-3-butene-2-one
0.33 -
1-(2,6,6-三甲基-1-环己烯-1-基)-1-戊烯-3-酮 1-(2,6,6-trimethyl-1-cyclohexene-1-yl)-1-pentene-3-one 0.13 -
1,8-二甲基-8,9-环氧-4-异丙基-螺环[4.5]癸-7-酮 1,8-dimethyl-8,9-epoxy-4-isopropyl-spiro [4.5] decyl-7-one - 0.13
醛类 Aldehyde 苯甲醛 Benzaldehyde 1.84 1.87
2,5-二甲基苯甲醛 2,5-dimethylbenzaldehyde 0.27 0.37
3-(2,6,6-三甲基-1-环己烯-1-基)-2-丙烯醛 3-(2,6,6-trimethyl-1-cyclohexene-1-yl)-2-acrolein 0.36 0.32
2-[4-甲基-6-(2,6,6-三甲基环己-1-烯基)六-1,3,5-三烯基]环己-1-烯-1-甲醛
2-[4-methyl-6-(2,6,6-trimethylcyclohex-1-enyl) hexa-1,3,5-trienyl]cyclohex-1-ene-1-formaldehyde
0.08 0.04
烷类
Alkanes
3-乙基-5-(2-乙基丁基)-十八烷 3-ethyl-5-(2-ethyl butyl)-octadecane 0.38 0.79
二甲基-2-辛烷-环丁烷 Dimethyl-2-octane-cyclobutane 0.67 0.40
十七烷 Heptadecane - 0.18
二十一烷 Decane - 0.19
酚类 Phenols 3,5-双(1,1-二甲基乙基)-苯酚 3,5-bis (1,1-dimethylethyl)-phenol - 0.16
含硫化合物
Sulfur compounds
3-巯基-L-缬氨酸 3-mercapto-l-valine 8.48 8.48
叔十六烷硫醇 Tertiary cetane mercaptan - 0.04
其他类 Others 十二烯基丁二酸酐 2-dodecenylsuccinic anhydride 0.03 0.05
苄基-N-(1-苄基-2-羟乙基)-N-甲基氨基甲酸酯 Benzyl-n-(1-benzyl-2-hydroxyethyl)-N-methylcarbamate 0.04 -
2,5,8-三甲基-1,2-二氢萘 2,5,8-trimethyl-1,2-dihydronaphthalene 0.07 -
2-2-肉豆醇酰基,泛酰巯基乙胺 2-2-crotonoyl, pan acyl Mercaptoethylamine - 0.03
1-甲基-3-(1-甲基乙基)-苯 1-methyl-3-(1-methylethyl)-benzene - 0.03
4-苄氧基-6-羟基甲基-四氢吡喃-2,3,5-三醇 4-benzyloxy-6-hydroxymethyl-tetrahydropyran-2,3,5-triol - 0.05
4-烯丙基-2-甲氧基苯基乙酸盐 4-allyl-2-methoxyphenyl acetate - 0.05
1,2-二氢-2,5,8-三甲基萘 1,2-dihydro-2,5,8-trimethylnaphthalene - 0.07
2,6-二十六酸,L-(+)-抗坏血酸 2,6-hexanoic acid, L-(+)-ascorbic acid - 0.08
(1-羟基-4-氧代-1-苯基对羟基喹啉-3-基)氨基甲酸苄酯
N-Benzyln-(1-hydroxy-4-oxo-1-phenylp-hydroxyquinoline-3-yl) carbamate
- 0.15

Fig. 6

Total ion chromatograms of the volatile components in the wine samples before and after ultrasound irradiation"

Fig. 7

Effects of ultrasound irradiation on the volatile components of red wine"

Table 5

The volatile components in the model wine before and after ultrasound irradiation"

种类
Type
化合物
Compound
相对百分含量Relative content (%)
处理前 Before 处理后After
酯类
Esters
己酸乙酯 Ethyl hexanoate 1.26 0.83
丁酸-3-甲基丁酯 Butyrate-3-methyl-butyl 4.45 3.26
甲酸辛酯 Octyl formate 1.79 0.93
2-甲基丁酸戊酯 Amyl 2-methyl butyrate 26.06 12.66
3-戊酸-甲基丁酯 3-methyl-butyl valerate 3.17 0.83
1-甲基乙酸丁酯 1-Buty-methylacetate 2.24 1.13
3-甲基己基丁酸酯 3-methylhexylbutyrate 1.32 0.99
己酸异戊酯 Isopentyl hexanoate 7.83 4.69
己酸-2-甲基丁酯 2-methyl-butyl hexanoate 0.93 0.60
壬酸乙酯 Ethyl nonanoate 1.02 0.76
庚酸-3-甲基丁酯 3-methyl-butyl heptanate 1.00 0.75
辛酸-3-甲基丁酯 Octanoic acid-3-methyl butyl ester 1.33 1.30
丙二酸二乙酯 Diethyl malonate 0.92 0.38
2-甲基-3-甲基丙酸丁酯 2-methyl-3-methyl-butyl propionate 0.78 0.61
戊酸戊酯 Amyl valerate - 1.08
辛酸乙酯 Ethyl caproate - 2.57
十五烷酸-3-甲基丁酯 Pentadecanoic acid-3-methyl butyl ester - 4.40
月桂酸异戊酯 Isoamyl Laurate - 12.57
十六酸乙酯 Ethyl palmitate - 1.58
3-甲基丁酸丁酯 3-methyl-butyl butyrate - 0.37
辛酸乙酯 Ethyl caproate - 1.74
癸酸乙酯 Ethyl decanoate - 0.37
己酸-2-乙氧基乙酯 2-ethoxyethyl hexanoate - 1.01
壬酸-3-甲基丁酯 3-methyl-n-butyl nonanoate - 0.88
甲酸-2-甲基丁酯 Formic acid-2-methyl butyl ester - 1.22
醛类
Aldehyde
3-甲基丁醛 3-Methylbutyraldehyde 0.70 0.83
苯甲醛 Benzaldehyde - 0.71
2,4-二甲基苯甲醛 2,4-dimethylbenzaldehyde 3.08 -
醇类
Alcohols
苯乙醇 Phenylethanol 0.75 1.01
1-壬醇 1-Nonanol 2.87 4.30
1-癸醇 1-Decanol 1.35 1.61
3-甲基-苯甲酸-丁醇 3-Methyl-benzoic acid-butanol 15.92 17.25
5-甲基-2-(1-甲基乙基)-1-己醇 5-methyl-2-(1-methylethyl)-1-hexanol - 1.07
3-甲基-甲酸-丁醇 3-methyl-formic acid-butanol 6.28 -
3-乙酸-甲基-1-丁醇 3-Acetic acid-methyl-1-butanol 1.82 -
2-丁基-辛醇 2-butyl-octanol 0.65 -
2,2,4,4-四甲基-3-(四氢呋喃基) 3-戊醇 2,2,4,4-tetramethyl-3-(tetrahydrofuran group) 3-pentanol 1.58 -
烷类
Alkanes
戊烷 Pentane 2.54 4.20
十二甲基-环己烷 Dodecyl cyclohexane 1.06 2.12
十四甲基-环庚烷 Tetramethyl cycloheptane 2.15 3.21
十四烷 Tetradecane 1.04 -
十六烷 Cetane 0.84 -
十七烷 Heptadecane 0.54 -
苯类
Benzene
1,2,4-三甲基-苯 1,2,4-trimethyl-benzene 1.69 2.49
1,2,3,5-四甲基-苯 1,2,3,5-tetramethyl-benzene 0.39 -
酚类 Phenols 2,4-二(1,1-二甲基乙基)-苯酚 2,4-bis (1,1-dimethylethyl)-phenol - 3.46
其他类
Others
萘 Naphthalene 0.42 -
2-丁基-萘 2-butyl-naphthalene 0.47 -

Fig. 8

Total ion chromatograms of the volatile components in the model wine before and after ultrasound irradiation"

Fig. 9

Effects of ultrasound irradiation on the volatile components of model wine"

[1] GARCÍA MARTÍN J F, SUN D W. Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of- the-art research. Trends in Food Science and Technology, 2013,33(1):40-53.
[2] CLODOVEO M L, DIPALMO T, RIZZELLO C G, CORBO F, CRUPI P. Emerging technology to develop novel red winemaking practices: An overview. Innovative Food Science and Emerging Technologies, 2016,38:41-56.
[3] TAO Y, GARCÍA MARTÍN J F, SUN D W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 2014,54(6):817-835.
pmid: 24345051
[4] FU X Z, ZHANG Q A, ZHANG B S, LIU P. Effect of ultrasound on the production of xanthylium cation pigments in a model wine. Food Chemistry, 2018,268:431-440.
doi: 10.1016/j.foodchem.2018.06.120 pmid: 30064780
[5] ZHANG Q A, WANG T T. Effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage. Food Chemistry, 2017,234(1):372-380.
[6] ZHANG Q A, XU B W, CHEN B Y, ZHAO W Q, XUE C H. Ultrasound as an effective technique to reduce higher alcohols of wines and its influencing mechanism investigation by employing a model wine. Ultrasonics Sonochemistry, 2020,61:104813.
[7] CAMELWEYRE M, LYTRA G, TEMPERE S, BARBE J C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. Journal of Agricultural and Food Chemistry, 2015,63(44):9777-9788.
doi: 10.1021/acs.jafc.5b03489 pmid: 26529563
[8] CAMELEYRE M, LYTRA G, BARBE J C. Static headspace analysis using low-pressure gas chromatography and mass spectrometry, application to determining multiple partition coefficients: A practical tool for understanding red wine fruity volatile perception and the sensory impact of higher alcohols. Analytical Chemistry, 2018,90(18):10812-10818.
doi: 10.1021/acs.analchem.8b01896 pmid: 30148602
[9] ZHANG C Y, QI Y N, MA H X, LI W, DAI L H, XIAO D G. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of BAT aminotransferases. Journal of Industrial Microbiology and Biotechnology, 2015,42(4):617-625.
pmid: 25616436
[10] MA L J, HUANG S Y, DU L P, TANG P, XIAO D G. Reduced production of higher alcohols by Saccharomyces cerevisiae in red wine fermentation by simultaneously overexpressing BAT1 and deleting BAT2. Journal of Agricultural and Food Chemistry, 2017,65(32):6936-6942.
doi: 10.1021/acs.jafc.7b01974 pmid: 28721728
[11] SUN Z G, WANG M Q, WANG Y P, XING S, HONG K Q, CHEN Y F, GUO X W, XIAO D G. Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Applied Microbiology and Biotechnology, 2019,103(12):4917-4929.
doi: 10.1007/s00253-019-09807-x pmid: 31073877
[12] 刘芳志, 张翠英, 李维, 刘学强, 肖冬光. BAT基因改造对酿酒酵母高级醇生成量的影响. 现代食品科技, 2016,32(6):142-147.
LIU F Z, ZHANG C Y, LI W, LIU X Q, XIAO D G. Effects of BAT genetic modification on the yield of higher alcohols from Saccharomyces cerevisiae. Modern Food Science and Technology, 2016,32(6):142-147. (in Chinese)
[13] LIU L, LOIRA I, MORATA A, SUAREZ-LEPE J A, GONZALEZ M C, RAUHUT D. Shortening the ageing on lees process in wines by using ultrasound and microwave treatments both combined with stirring and abrasion techniques. European Food Research and Food Technology, 2016,242(2):559-569.
[14] ZHANG Q A, FU X Z, GARCÍA MARTÍN J F. Effect of ultrasound on the interaction between (-)-epicatechin gallate and bovine serum albumin in a model wine. Ultrasonics Sonochemistry, 2017,37:405-413.
pmid: 28427650
[15] ZHANG Q A, SHEN Y, FAN X H, GARCÍA MARTÍN J F, WANG X, SONG Y. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study. Ultrasonics Sonochemistry, 2015,27:96-101.
doi: 10.1016/j.ultsonch.2015.05.003 pmid: 26186825
[16] 向英, 丘泰球. 低频超声对豉香型白酒催陈效果研究. 酿酒, 2005,32(3):33-35.
XIANG Y, QIU T Q. Study on aging of chi-xiang style white wine with low-frequency ultrasonic. Liquor Making, 2005,32(3):33-35. (in Chinese)
[17] 闫春明. 降低新酿黄酒中高级醇含量研究[D]. 合肥: 合肥工业大学, 2017.
YAN C M. Study on reducing the content of higher alcohols in new yellow rice wine[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
[18] 黄桂东, 吴子蓥, 唐素婷, 冯结铧, 钟先锋. 黄酒中高级醇含量控制与检测研究进展. 中国酿造, 2018,37(1):7-11.
HUANG G D, WU Z Y, TANG S T, FENG J H, ZHONG X F. Research progress on control and detection of higher alcohols contents from Chinese rice wine. China Brewing, 2018,37(1):7-11. (in Chinese)
[19] 程军, 秦伟帅, 赵新节. 葡萄酒酿造中高级醇的形成机制与调节. 中国酿造, 2011(12):9-11.
CHENG J, QIN W S, ZHAO X J. Formation and regulation of higher alcohols in wine fermentation. China Brewing, 2011(12):9-11. (in Chinese)
[20] ZHENG N, JIANG S, HE Y H, CHEN Y F, ZHANG C Y, GUO X W, MA L J, XIAO D G. Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast. Food Chemistry, 2020,321:126691.
doi: 10.1016/j.foodchem.2020.126691 pmid: 32251922
[21] BUIJS N A, SIEWERS V, NIELSEN J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2013,17(3):480-488.
doi: 10.1016/j.cbpa.2013.03.036 pmid: 23628723
[22] LI W, WANG J H, ZHANG C Y, MA H X, XIAO D G. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation. Journal of Industrial Microbiology and Biotechnology, 2017,44(6):949-960.
pmid: 28176138
[23] 张清安, 姚建莉. 苦杏仁资源加工与综合利用研究进展. 中国农业科学, 2019,52(19):3430-3447.
ZHANG Q A, YAO J L. State-of-the-Art on the processing and comprehensive utilization of the apricot kernels. Scientia Agricultura Sinica, 2019,52(19):3430-3447. (in Chinese)
[24] 张清安, 陈博宇. 葡萄酒中与风味相关4类含硫化合物的研究进展. 中国农业科学, 2020,53(5):1029-1045.
ZHANG Q A, CHEN B Y. Research progress of four sulfur compounds related to red wine flavor. Scientia Agricultura Sinica, 2020,53(5):1029-1045. (in Chinese)
[25] GRANT-PREECE P, BARRIL C, SCHMIDTKE L M, SCOLLARY G R, CLARK A C. Photodegradation of organic acids in a model wine system containing Iron. Advances in Wine Research. Washington, D.C.: American Chemical Society, 2015: 303-324.
[26] 马冲. 红枣酒发酵过程中杂醇油变化规律研究[D]. 西安: 陕西师范大学, 2017.
MA C. Study on the higher alcohols in jujube wine during fermentation[D]. Xi’an: Shaanxi Normal University, 2017. (in Chinese)
[27] 张一冰, 祈献芳, 王佳佳, 陈龙, 许启泰, 康文艺. HS-SPME/GC- MS法分析黑莓干红酒中挥发性成分. 河南大学学报(医学版), 2012,31(1):32-34.
ZHANG Y B, QI X F, WANG J J, CHEN L, XU Q T, KANG W Y. Analysis of volatile components in BlackBerry dry red wine by HS-SPME/ GC-MS. Journal of Henan University (Medical Edition), 2012,31(1):32-34. (in Chinese)
[28] 张德莉, 田洪磊, 詹萍, 耿秋月, 张芳, 席嘉佩, 牛文婧. 基于HS-SPME-GC-MS技术的香葱油挥发性成分解析. 食品研究与开发, 2018,39(17):111-116.
ZHANG D L, TIAN H L, ZHAN P, GENG Q Y, ZHANG F, XI J P, NIU W J. Analysis of volatile components of chive oil based on HS-SPME-GC-MS. Food Research and Development, 2018,39(17):111-116. (in Chinese)
[29] ZHANG M X, WANG X C, LIU Y, XU X L, ZHOU G H. Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation. Sensors, 2012,12(9):12562-12571.
pmid: 23112731
[30] LOUTFI A, CORADESCHI S, MANI G K, SHANKAR P, RAYAPPAN J B B. Electronic noses for food quality: A review. Journal of Food Engineering, 2015,144:103-111.
[31] 徐博文. 超声波处理对红酒中高级醇及相关风味的影响研究[D]. 西安: 陕西师范大学, 2020.
XU B W. Effects of ultrasound irradiation on the higher alcohols and flavors of red wine[D]. Xi’an: Shaanxi Normal University, 2020. (in Chinese)
[32] ANTONELLI A, CASTELLARI L, ZAMBONELLI C, CARNACINI A. Yeast influence on volatile composition of wines. Journal of Agricultural and Food Chemistry, 1999,47(3):1139-1144.
pmid: 10552428
[33] JIANG B, ZHANG Z W. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the Loess Plateau Region of China. Molecules, 2010,15(12):9184-9196.
doi: 10.3390/molecules15129184 pmid: 21150828
[34] SANTOS J P, LOZANO J, ALEIXANDRE M, ARROYO T, CABELLOS J M, GIL M, HORRILLO M D C. Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta, 2010,80(5):1899-1906.
doi: 10.1016/j.talanta.2009.10.041 pmid: 20152430
[35] 陈娜, 陈小娥, 方旭波, 王明月, 袁高峰. 基于电子鼻和气质联用技术分析鱼油挥发性成分. 中国粮油学报, 2017, (10):179-184.
CHEN N, CHEN X E, FANG X B, WANG M Y, YUAN G F. Analysis of volatile compounds of fish oil based on electronic nose and GC-MS. Journal of China Grain and Oil, 2017,32(10):179-184. (in Chinese)
[36] TAN J Z, XU J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 2020,4:104-115.
[37] 李培, 牛智有, 朱明, 邵恺怿, 耿婕, 李洪成. 基于SPME-GC-MS和电子鼻的鱼粉挥发性物质分析. 农业机械学报, 2020,51(7):397-405.
LI P, NIU Z Y, ZHU M, SHAO K Y, GENG J, LI H C. Analysis of volatile compounds in fish meal based on SPME-GC-MS and electronic nose. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(7):397-405. (in Chinese)
[38] ISMAIL I, HWANG Y H, JOO S T. Low-temperature and long-time heating regimes on non-volatile compound and taste traits of beef assessed by the electronic tongue system. Food Chemistry, 2020,320:126656.
doi: 10.1016/j.foodchem.2020.126656 pmid: 32224424
[39] 樊艳, 李浩丽, 郝怡宁. 基于电子舌与SPME-GC-MS技术检测腐乳风味物质. 食品科学, 2020,41(10):222-229.
FAN Y, LI H L, HAO Y N. Analysis of characteristic flavor compounds of fermented bean curd using electronic tongue and solid-phase microextraction combined with gas chromatography-mass spectrometry. Food Science, 2020,41(10):222-229. (in Chinese)
[40] DANILEWICZ J C. Role of tartaric and malic acids in wine oxidation. Journal of Agricultural and Food Chemistry, 2014,62(22):5149-5155.
[41] 李华. 葡萄酒品尝学. 北京: 中国青年出版社, 1992.
LI H. The Taste of Wine. Beijing: China Youth Press, 1992: 29-92. (in Chinese)
[42] 刘迪, 张也, 兰义宾, 杨黛默, 潘秋红. 干白葡萄酒瓶储过程香气物质变化及其与感官品质演变的相关性. 中国食品学报, 2017,17(4):228-240.
LIU D, ZHANG Y, LAN Y B, YANG D M, PAN Q H. Evolution of volatile compounds and sensory in bottled white wines and their correspondence. Journal of Chinese Institute of Food Science and Technology, 2017,17(4):228-240. (in Chinese)
[43] 李博斌, 李祖光, 刘兴泉, 周牡艳, 劳民玓, 宋海燕. 黄酒风味物质与黄酒香气感官评分的定量关系. 酿酒科技, 2008(11):90-92.
LI B B, LI Z G, LIU X Q, ZHOU M Y, LIAO M D, SONG H Y. Quantitative relationships between flavoring substances of yellow rice wine and the sensory evaluation of yellow rice wine. Liquor-Making Science and Technology, 2008(11):90-92. (in Chinese)
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192.
[3] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[4] MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588.
[5] QIANG Yu, JIANG Wei, LIU ChengJiang, HUANG Feng, HAN Dong, ZHANG ChunHui. Flavor Escape Behavior of Stewed Beef with Soy Sauce During Air-Cooling and Refrigeration [J]. Scientia Agricultura Sinica, 2022, 55(16): 3224-3241.
[6] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[7] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[8] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[9] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[10] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[11] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[12] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[13] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[14] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[15] GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!