Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1772-1786.doi: 10.3864/j.issn.0578-1752.2021.08.016
• FOOD SCIENCE AND ENGINEERING • Previous Articles Next Articles
ZHANG QingAn1,2(),XU BoWen1,CHEN BoYu1,ZHANG BaoShan1,CHENG Shuang2
[1] | GARCÍA MARTÍN J F, SUN D W. Ultrasound and electric fields as novel techniques for assisting the wine ageing process: The state-of- the-art research. Trends in Food Science and Technology, 2013,33(1):40-53. |
[2] | CLODOVEO M L, DIPALMO T, RIZZELLO C G, CORBO F, CRUPI P. Emerging technology to develop novel red winemaking practices: An overview. Innovative Food Science and Emerging Technologies, 2016,38:41-56. |
[3] |
TAO Y, GARCÍA MARTÍN J F, SUN D W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Critical Reviews in Food Science and Nutrition, 2014,54(6):817-835.
pmid: 24345051 |
[4] |
FU X Z, ZHANG Q A, ZHANG B S, LIU P. Effect of ultrasound on the production of xanthylium cation pigments in a model wine. Food Chemistry, 2018,268:431-440.
doi: 10.1016/j.foodchem.2018.06.120 pmid: 30064780 |
[5] | ZHANG Q A, WANG T T. Effect of ultrasound irradiation on the evolution of color properties and major phenolic compounds in wine during storage. Food Chemistry, 2017,234(1):372-380. |
[6] | ZHANG Q A, XU B W, CHEN B Y, ZHAO W Q, XUE C H. Ultrasound as an effective technique to reduce higher alcohols of wines and its influencing mechanism investigation by employing a model wine. Ultrasonics Sonochemistry, 2020,61:104813. |
[7] |
CAMELWEYRE M, LYTRA G, TEMPERE S, BARBE J C. Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. Journal of Agricultural and Food Chemistry, 2015,63(44):9777-9788.
doi: 10.1021/acs.jafc.5b03489 pmid: 26529563 |
[8] |
CAMELEYRE M, LYTRA G, BARBE J C. Static headspace analysis using low-pressure gas chromatography and mass spectrometry, application to determining multiple partition coefficients: A practical tool for understanding red wine fruity volatile perception and the sensory impact of higher alcohols. Analytical Chemistry, 2018,90(18):10812-10818.
doi: 10.1021/acs.analchem.8b01896 pmid: 30148602 |
[9] |
ZHANG C Y, QI Y N, MA H X, LI W, DAI L H, XIAO D G. Decreased production of higher alcohols by Saccharomyces cerevisiae for Chinese rice wine fermentation by deletion of BAT aminotransferases. Journal of Industrial Microbiology and Biotechnology, 2015,42(4):617-625.
pmid: 25616436 |
[10] |
MA L J, HUANG S Y, DU L P, TANG P, XIAO D G. Reduced production of higher alcohols by Saccharomyces cerevisiae in red wine fermentation by simultaneously overexpressing BAT1 and deleting BAT2. Journal of Agricultural and Food Chemistry, 2017,65(32):6936-6942.
doi: 10.1021/acs.jafc.7b01974 pmid: 28721728 |
[11] |
SUN Z G, WANG M Q, WANG Y P, XING S, HONG K Q, CHEN Y F, GUO X W, XIAO D G. Identification by comparative transcriptomics of core regulatory genes for higher alcohol production in a top-fermenting yeast at different temperatures in beer fermentation. Applied Microbiology and Biotechnology, 2019,103(12):4917-4929.
doi: 10.1007/s00253-019-09807-x pmid: 31073877 |
[12] | 刘芳志, 张翠英, 李维, 刘学强, 肖冬光. BAT基因改造对酿酒酵母高级醇生成量的影响. 现代食品科技, 2016,32(6):142-147. |
LIU F Z, ZHANG C Y, LI W, LIU X Q, XIAO D G. Effects of BAT genetic modification on the yield of higher alcohols from Saccharomyces cerevisiae. Modern Food Science and Technology, 2016,32(6):142-147. (in Chinese) | |
[13] | LIU L, LOIRA I, MORATA A, SUAREZ-LEPE J A, GONZALEZ M C, RAUHUT D. Shortening the ageing on lees process in wines by using ultrasound and microwave treatments both combined with stirring and abrasion techniques. European Food Research and Food Technology, 2016,242(2):559-569. |
[14] |
ZHANG Q A, FU X Z, GARCÍA MARTÍN J F. Effect of ultrasound on the interaction between (-)-epicatechin gallate and bovine serum albumin in a model wine. Ultrasonics Sonochemistry, 2017,37:405-413.
pmid: 28427650 |
[15] |
ZHANG Q A, SHEN Y, FAN X H, GARCÍA MARTÍN J F, WANG X, SONG Y. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study. Ultrasonics Sonochemistry, 2015,27:96-101.
doi: 10.1016/j.ultsonch.2015.05.003 pmid: 26186825 |
[16] | 向英, 丘泰球. 低频超声对豉香型白酒催陈效果研究. 酿酒, 2005,32(3):33-35. |
XIANG Y, QIU T Q. Study on aging of chi-xiang style white wine with low-frequency ultrasonic. Liquor Making, 2005,32(3):33-35. (in Chinese) | |
[17] | 闫春明. 降低新酿黄酒中高级醇含量研究[D]. 合肥: 合肥工业大学, 2017. |
YAN C M. Study on reducing the content of higher alcohols in new yellow rice wine[D]. Hefei: Hefei University of Technology, 2017. (in Chinese) | |
[18] | 黄桂东, 吴子蓥, 唐素婷, 冯结铧, 钟先锋. 黄酒中高级醇含量控制与检测研究进展. 中国酿造, 2018,37(1):7-11. |
HUANG G D, WU Z Y, TANG S T, FENG J H, ZHONG X F. Research progress on control and detection of higher alcohols contents from Chinese rice wine. China Brewing, 2018,37(1):7-11. (in Chinese) | |
[19] | 程军, 秦伟帅, 赵新节. 葡萄酒酿造中高级醇的形成机制与调节. 中国酿造, 2011(12):9-11. |
CHENG J, QIN W S, ZHAO X J. Formation and regulation of higher alcohols in wine fermentation. China Brewing, 2011(12):9-11. (in Chinese) | |
[20] |
ZHENG N, JIANG S, HE Y H, CHEN Y F, ZHANG C Y, GUO X W, MA L J, XIAO D G. Production of low-alcohol Huangjiu with improved acidity and reduced levels of higher alcohols by fermentation with scarless ALD6 overexpression yeast. Food Chemistry, 2020,321:126691.
doi: 10.1016/j.foodchem.2020.126691 pmid: 32251922 |
[21] |
BUIJS N A, SIEWERS V, NIELSEN J. Advanced biofuel production by the yeast Saccharomyces cerevisiae. Current Opinion in Chemical Biology, 2013,17(3):480-488.
doi: 10.1016/j.cbpa.2013.03.036 pmid: 23628723 |
[22] |
LI W, WANG J H, ZHANG C Y, MA H X, XIAO D G. Regulation of Saccharomyces cerevisiae genetic engineering on the production of acetate esters and higher alcohols during Chinese Baijiu fermentation. Journal of Industrial Microbiology and Biotechnology, 2017,44(6):949-960.
pmid: 28176138 |
[23] | 张清安, 姚建莉. 苦杏仁资源加工与综合利用研究进展. 中国农业科学, 2019,52(19):3430-3447. |
ZHANG Q A, YAO J L. State-of-the-Art on the processing and comprehensive utilization of the apricot kernels. Scientia Agricultura Sinica, 2019,52(19):3430-3447. (in Chinese) | |
[24] | 张清安, 陈博宇. 葡萄酒中与风味相关4类含硫化合物的研究进展. 中国农业科学, 2020,53(5):1029-1045. |
ZHANG Q A, CHEN B Y. Research progress of four sulfur compounds related to red wine flavor. Scientia Agricultura Sinica, 2020,53(5):1029-1045. (in Chinese) | |
[25] | GRANT-PREECE P, BARRIL C, SCHMIDTKE L M, SCOLLARY G R, CLARK A C. Photodegradation of organic acids in a model wine system containing Iron. Advances in Wine Research. Washington, D.C.: American Chemical Society, 2015: 303-324. |
[26] | 马冲. 红枣酒发酵过程中杂醇油变化规律研究[D]. 西安: 陕西师范大学, 2017. |
MA C. Study on the higher alcohols in jujube wine during fermentation[D]. Xi’an: Shaanxi Normal University, 2017. (in Chinese) | |
[27] | 张一冰, 祈献芳, 王佳佳, 陈龙, 许启泰, 康文艺. HS-SPME/GC- MS法分析黑莓干红酒中挥发性成分. 河南大学学报(医学版), 2012,31(1):32-34. |
ZHANG Y B, QI X F, WANG J J, CHEN L, XU Q T, KANG W Y. Analysis of volatile components in BlackBerry dry red wine by HS-SPME/ GC-MS. Journal of Henan University (Medical Edition), 2012,31(1):32-34. (in Chinese) | |
[28] | 张德莉, 田洪磊, 詹萍, 耿秋月, 张芳, 席嘉佩, 牛文婧. 基于HS-SPME-GC-MS技术的香葱油挥发性成分解析. 食品研究与开发, 2018,39(17):111-116. |
ZHANG D L, TIAN H L, ZHAN P, GENG Q Y, ZHANG F, XI J P, NIU W J. Analysis of volatile components of chive oil based on HS-SPME-GC-MS. Food Research and Development, 2018,39(17):111-116. (in Chinese) | |
[29] |
ZHANG M X, WANG X C, LIU Y, XU X L, ZHOU G H. Species discrimination among three kinds of puffer fish using an electronic nose combined with olfactory sensory evaluation. Sensors, 2012,12(9):12562-12571.
pmid: 23112731 |
[30] | LOUTFI A, CORADESCHI S, MANI G K, SHANKAR P, RAYAPPAN J B B. Electronic noses for food quality: A review. Journal of Food Engineering, 2015,144:103-111. |
[31] | 徐博文. 超声波处理对红酒中高级醇及相关风味的影响研究[D]. 西安: 陕西师范大学, 2020. |
XU B W. Effects of ultrasound irradiation on the higher alcohols and flavors of red wine[D]. Xi’an: Shaanxi Normal University, 2020. (in Chinese) | |
[32] |
ANTONELLI A, CASTELLARI L, ZAMBONELLI C, CARNACINI A. Yeast influence on volatile composition of wines. Journal of Agricultural and Food Chemistry, 1999,47(3):1139-1144.
pmid: 10552428 |
[33] |
JIANG B, ZHANG Z W. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the Loess Plateau Region of China. Molecules, 2010,15(12):9184-9196.
doi: 10.3390/molecules15129184 pmid: 21150828 |
[34] |
SANTOS J P, LOZANO J, ALEIXANDRE M, ARROYO T, CABELLOS J M, GIL M, HORRILLO M D C. Threshold detection of aromatic compounds in wine with an electronic nose and a human sensory panel. Talanta, 2010,80(5):1899-1906.
doi: 10.1016/j.talanta.2009.10.041 pmid: 20152430 |
[35] | 陈娜, 陈小娥, 方旭波, 王明月, 袁高峰. 基于电子鼻和气质联用技术分析鱼油挥发性成分. 中国粮油学报, 2017, (10):179-184. |
CHEN N, CHEN X E, FANG X B, WANG M Y, YUAN G F. Analysis of volatile compounds of fish oil based on electronic nose and GC-MS. Journal of China Grain and Oil, 2017,32(10):179-184. (in Chinese) | |
[36] | TAN J Z, XU J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 2020,4:104-115. |
[37] | 李培, 牛智有, 朱明, 邵恺怿, 耿婕, 李洪成. 基于SPME-GC-MS和电子鼻的鱼粉挥发性物质分析. 农业机械学报, 2020,51(7):397-405. |
LI P, NIU Z Y, ZHU M, SHAO K Y, GENG J, LI H C. Analysis of volatile compounds in fish meal based on SPME-GC-MS and electronic nose. Transactions of the Chinese Society for Agricultural Machinery, 2020,51(7):397-405. (in Chinese) | |
[38] |
ISMAIL I, HWANG Y H, JOO S T. Low-temperature and long-time heating regimes on non-volatile compound and taste traits of beef assessed by the electronic tongue system. Food Chemistry, 2020,320:126656.
doi: 10.1016/j.foodchem.2020.126656 pmid: 32224424 |
[39] | 樊艳, 李浩丽, 郝怡宁. 基于电子舌与SPME-GC-MS技术检测腐乳风味物质. 食品科学, 2020,41(10):222-229. |
FAN Y, LI H L, HAO Y N. Analysis of characteristic flavor compounds of fermented bean curd using electronic tongue and solid-phase microextraction combined with gas chromatography-mass spectrometry. Food Science, 2020,41(10):222-229. (in Chinese) | |
[40] | DANILEWICZ J C. Role of tartaric and malic acids in wine oxidation. Journal of Agricultural and Food Chemistry, 2014,62(22):5149-5155. |
[41] | 李华. 葡萄酒品尝学. 北京: 中国青年出版社, 1992. |
LI H. The Taste of Wine. Beijing: China Youth Press, 1992: 29-92. (in Chinese) | |
[42] | 刘迪, 张也, 兰义宾, 杨黛默, 潘秋红. 干白葡萄酒瓶储过程香气物质变化及其与感官品质演变的相关性. 中国食品学报, 2017,17(4):228-240. |
LIU D, ZHANG Y, LAN Y B, YANG D M, PAN Q H. Evolution of volatile compounds and sensory in bottled white wines and their correspondence. Journal of Chinese Institute of Food Science and Technology, 2017,17(4):228-240. (in Chinese) | |
[43] | 李博斌, 李祖光, 刘兴泉, 周牡艳, 劳民玓, 宋海燕. 黄酒风味物质与黄酒香气感官评分的定量关系. 酿酒科技, 2008(11):90-92. |
LI B B, LI Z G, LIU X Q, ZHOU M Y, LIAO M D, SONG H Y. Quantitative relationships between flavoring substances of yellow rice wine and the sensory evaluation of yellow rice wine. Liquor-Making Science and Technology, 2008(11):90-92. (in Chinese) |
[1] | ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164. |
[2] | WANG YiDan,YANG FaLong,CHEN DiShi,XIANG Hua,REN YuPeng. One-Step Multiple TaqMan Real-time RT-PCR for Simultaneous Detection of Swine Diarrhea Viruses [J]. Scientia Agricultura Sinica, 2023, 56(1): 179-192. |
[3] | YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824. |
[4] | MA GaoXing,TAO TianYi,PEI Fei,FANG DongLu,ZHAO LiYan,HU QiuHui. Effects of Different Stir-Fry Conditions on the Flavor of Agaricus bisporus in Ready-to-Eat Dishes [J]. Scientia Agricultura Sinica, 2022, 55(3): 575-588. |
[5] | QIANG Yu, JIANG Wei, LIU ChengJiang, HUANG Feng, HAN Dong, ZHANG ChunHui. Flavor Escape Behavior of Stewed Beef with Soy Sauce During Air-Cooling and Refrigeration [J]. Scientia Agricultura Sinica, 2022, 55(16): 3224-3241. |
[6] | ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266. |
[7] | WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070. |
[8] | HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025. |
[9] | DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183. |
[10] | ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207. |
[11] | SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016. |
[12] | Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080. |
[13] | LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803. |
[14] | LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391. |
[15] | GU MingHui,YANG ZeSha,MA Ping,GE XinYu,LIU YongFeng. Application of Ultrasound-Assisted Thawing in the Role of Maintaining Physicochemical Properties and Reducing Protein Loss in Mutton During Multiple Freeze-Thaw Cycles [J]. Scientia Agricultura Sinica, 2021, 54(18): 3970-3983. |
|