Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (5): 1073-1080.doi: 10.3864/j.issn.0578-1752.2021.05.018

• ANIMAL SCIENCE·VETERINARY SCIENCE·RESOURCE INSECT • Previous Articles    

Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus

Tao WANG(),Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU(),Yuan SUN()   

  1. Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Veterinary Biotechnology, Harbin 150069
  • Received:2019-12-31 Accepted:2021-01-11 Online:2021-03-01 Published:2021-03-09
  • Contact: HuaJi QIU,Yuan SUN E-mail:wangtaocaas@163.com;qiuhuaji@caas.cn;sunyuan@caas.cn

Abstract:

【Objective】The objective of this study is to develop a TaqMan real-time PCR for detection of African swine fever virus (ASFV) MGF360-13L gene, providing technical support for diagnosis, virus purification, differential diagnosis of MGF360-13L deletion ASFV strains, and gene function research of ASFV.【Method】In this study, the TaqMan real-time PCR primers and probes were designed based on the ASFV MGF360-13L (GenBank: MK333180.1), and the TaqMan real-time quantitative PCR assay of ASFV was established. A pair of specific primers, 13L-F/13L-R was designed to construct ASFV standard plasmid. The standard curve was generated for quantitative analysis using the ten-fold dilution of the ASFV standard plasmid, and the sensitivity and repeatability of the system were also evaluated. The ten-fold dilution of the ASFV standard was also detected by PCR to determine the sensitivity of the method. Thirty clinical samples collected from an outbreak ASF pig farm in Heilongjiang province were simultaneously tested by this TaqMan real-time PCR, and another one previously established in our laboratory to compare the coincidence rate of these two detection methods. Differential diagnosis of parent ASFV and MGF gene deletion strain after infection with PAM cell【Result】A specific band of about 800 bp was amplified using primer 13L-F/13L-R, and no band was found in the negative control, and the standard plasmid was successfully constructed. The standard curve had a good linear relationship between real-time PCR cycle threshold (Ct) and template copies. The linear regression equation was: y = -3.295 lg(x) + 45.995 with correlation coefficient of 0.997, and the minimum detection limit was 15.6 copies/μL of ASFV nucleic acid. There was no cross-reaction with classical swine fever virus, pseudorabies virus, porcine reproductive and respiratory syndrome virus, porcine transmissible gastroenteritis virus, porcine circovirus type 1, and porcine circovirus type 2. In the clinical sample test, the results of the two methods in McNemar test, P = 0.5>0.05, indicating that there was no statistical difference between the two methods and in Kappa test, Kappa = 0.867>0.75, P<0.001, suggesting it was a good agreement and could effectively identify parent ASFV or MGF gene deletion ASFV infection. 【Conclusion】The TaqMan real-time PCR for detection of ASFV MGF360-13L established in this study had highly specific, sensitive, reproducible, and high coincidence rate. It not only enriched the detection method of ASFV, but also provided technical support for researching the gene function of MGF360-13L, identification of the MGF360-13L gene-deleted ASFV, and differential diagnosis of related gene deletion vaccine strains.

Key words: African swine fever virus, MGF360-13L, TaqMan real-time PCR, detection

Fig. 1

Amplification of target gene M:DL2000 DNA Marker;1:MGF360-13L Gene;2:Negative control"

Fig. 2

Standard curve for TaqMan Real-time PCR of ASFV MGF360-13L"

Fig. 3

TaqMan Real-time PCR specific detection of ASFV MGF360-13L"

Table 1

Intra-assay and inter-assay reproducibility of TaqMan Real-time PCR using a MGF360-13L standard"

标准品(拷贝)
Standard plasmid template (copies/μL)
组内重复性 Intra-assay 组间重复性 Inter-assay
平均值Mean ± SD 变异系数 CV(%) 平均值 Mean ± SD 变异系数CV(%)
1.56 × 109 16.33 ± 0.09 0.54 16.23 ± 0.26 1.63
1.56 × 108 19.96 ± 0.09 0.28 20.0 ± 0.12 0.6
1.56 × 107 22.89 ± 0.08 0.35 22.56 ± 0.23 1.0
1.56 × 106 26.13 ± 0.08 0.85 25.76 ± 0.5 1.93

Fig. 4

Results of MGF360-13L detected by PCR M: 2000 bp 分子量标准M:DL2000 DNA Marker;1-10:质粒标准品1.56×1010-1.56×101拷贝/μL 1.56×1010-1.56×101 copies/μL standard plasmid;11:阴性对照 Negative control;12:阳性对照 Positive control"

Fig. 5

Amplification curve of PAM cells infected with ASFV or ASFV-ΔMGF"

[1] DIXON L K, CHAPMAN D A, NETHERTON C L, UPTON C. African swine fever virus replication and genomics. Virus Research, 2013,173(1):3-14.
pmid: 23142553
[2] GALINDO I, ALONSO C. African swine fever virus: A review. Viruses, 2017,9(5):103.
[3] PENRITH M L, VOSLOO W. Review of African swine fever: transmission, spread and control. Journal of the South African Veterinary Association, 2009,80(2):58-62.
pmid: 19831264
[4] SÁNCHEZ-VIZCAÍNO J M, MUR L, MARTÍNEZ-LÓPEZ B. African swine fever (ASF): five years around Europe. Veterinary Microbiology, 2013,165(1/2):45-50.
[5] ZHOU X T, LI N, LUO Y Z, MIAO F M, CHEN T, ZHANG S F, CAO P, LIN X D, TIAN K G, QIU H J, HU R L. Emergence of African swine fever in China, 2018. Transboundary and Emerging Diseases, 2018,65(6):1482-1484.
doi: 10.1111/tbed.12989 pmid: 30102848
[6] GE S Q, LI J M, FAN X X, LIU F X, LI L, WANG Q H, REN W J, BAO J Y, LIU C J, WANG H, LIU Y T, ZHANG Y Q, XU T G, WU X D, WANG Z L. Molecular characterization of African swine fever virus, China, 2018. Emerging Infectious Diseases, 2018,24(11):2131-2133.
[7] WANG T, SUN Y, QIU H J. African swine fever: an unprecedented disaster and challenge to China. Infectious Diseases of Poverty, 2018,7(1):1-5.
[8] PIKALO J, ZANI L, HÜHR J, BEER M, BLOME S. Pathogenesis of African swine fever in domestic pigs and European wild boar - Lessons learned from recent animal trials. Virus Research, 2019,271:197614.
[9] MAZUR-PANASIUK N, WOŹNIAKOWSKI G, NIEMCZUK K. The first complete genomic sequences of African swine fever virus isolated in Poland. Scientific Reports, 2019,9(1):4556.
[10] BAO J, WANG Q, LIN P, LIU C, LI L, WU X, CHI T, XU T, GE S, LIU Y, LI J, WANG S, QU H, JIN T, WANG Z. Genome comparison of African swine fever virus China/2018/Anhui XCGQ strain and related European p72 genotype II strains. Transboundary and Emerging Diseases, 2019,66(3):1167-1176.
pmid: 30637968
[11] 王涛, 孙元, 罗玉子, 仇华吉. 非洲猪瘟防控及疫苗研发: 挑战与对策. 生物工程学报, 2018,34(12):1931-1942.
WANG T, SUN Y, LUO Y Z, QIU H J. Prevention, control and vaccine development of African swine fever: Challenges and countermeasures. Chinese Journal of Biotechnology, 2018,34(12):1931-1942. (in Chinese)
[12] DIXON L K, ISLAM M, NASH R, REIS A L. African swine fever virus evasion of host defences. Virus Research, 2019,266:25-33.
doi: 10.1016/j.virusres.2019.04.002 pmid: 30959069
[13] O'DONNELL V, HOLINKA L G, GLADUE D P, SANFORD B, KRUG P W, LU X, ARZT J, REESE B, CARRILLO C, RISATTI G R, BORCA M V. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology, 2015,89(11):6048-6056.
[14] NEILAN J G, ZSAK L, LU Z, KUTISH G F, AFONSO C L, ROCK D L. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. Journal of Virology, 2002,76(7):3095-3104.
pmid: 11884534
[15] AFONSO C L, ZSAK L, CARRILLO C, BORCA M V, ROCK D L. African swine fever virus NL gene is not required for virus virulence. Journal of General Virology, 1998,79(10):2543-2547.
[16] 张艳艳, 周鑫韬, 齐宇, 缪发明, 王立冬, 米立娟, 杨金梅, 张静远, 张守峰, 杨金金, 王述超, 蒋依倩, 陈腾, 扈荣良. 非洲猪瘟病毒基因缺失疫苗构建和免疫保护特性研究, 中国兽医学报, 2019,39(8):1421-1427.
ZHANG Y Y, ZHOU X T, QI Y, MU F M, WANG L D, MI L J, YANG J M, ZHANG J Y, ZHANG S F, YANG J J, WANG S C, JIANG Y Q, CHEN T, HU R L. Construction and immune protective characterization of gene deleted African swine fever virus vaccine candidates. Chinese Journal of Veterinary Science, 2019,39(8):1421-1427. (in Chinese)
[17] 步志高, 陈伟业, 赵东明, 何希君, 刘任强, 柳金雄. 基因缺失的减毒非洲猪瘟病毒及其作为疫苗的应用: CN110093324A[P]. 2019-04-26.
BU Z G, CHEN W Y, ZHAO D M, HE X J, LIU R Q, LIU J X. Attenuated African swine fever virus with gene deletion and its application as vaccine: CN110093324A[P]. 2019-04-26. (in Chinese)
[18] ARIAS M, DE LA TORRE A, DIXON L, GALLARDO C, JORI F, LADDOMADA A, MARTINS C, PARKHOUSE R M, REVILLA Y, RODRIGUEZ F A J, SANCHEZ-VIZCAINO . Approaches and perspectives for development of African swine fever virus vaccines. Vaccines (Basel), 2017,5(4):35.
[19] OURA C A, EDWARDS L, BATTEN C A. Virological diagnosis of African swine fever comparative study of available tests. Virus Research, 2013,173(1):150-158.
pmid: 23131492
[20] LUO Y, ATIM S A, SHAO L, AYEBAZIBWE C, SUN Y, LIU Y, JI S, MENG X Y, LI S, LI Y, MASEMBE C, STÅHL K, WIDÉN F, LIU L, QIU H J. Development of an updated PCR assay for detection of African swine fever virus. Archives of Virology, 2017,162(1):191-199.
[21] SÁNCHEZ EG, PÉREZ-NÚÑEZ D, REVILLA Y. Development of vaccines against African swine fever virus. Virus Research, 2019,265:150-155.
pmid: 30922809
[22] BORCA M V, O'DONNELL V, HOLINKA L G, SANFORD B, AZZINARO P A, RISATTI G R, GLADUE D P. Development of a fluorescent ASFV strain that retains the ability to cause disease in swine. Scientific Reports, 2017,7:46747.
pmid: 28436458
[23] 王西西. 非洲猪瘟病毒蛋白对cGAS-STING信号通路抑制作用研究[D]. 北京: 中国农业科学院, 2019.
WANG X X. Inhibition mechanisms of African swine fever virus protein on cGas-STING-mediated signaling pathway[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese)
[24] 仇华吉. 非洲猪瘟对我国养猪业的影响与防控建议. 中国兽药杂志, 2018,52(11):1-4.
QIU H J. Impacts of African swine fever on the Chinese pig industry and suggestions for the prevention and control of the disease. Chinese Journal of Veterinary Drug, 2018,52(11):1-4. (in Chinese)
[25] 张丽, 罗玉子, 王涛, 孙元, 仇华吉. 非洲猪瘟诊断技术发展现状与需求分析. 中国农业科技导报, 2019,21(9):1-11.
ZHANG L, LUO Y Z, WANG T, SUN Y, QIU H J. Current progress and demand analysis of technologies for African swine fever. Journal of Agricultural Science and Technology, 2019,21(9):1-11. (in Chinese)
[26] 姜睿姣, 张鹏飞, 朱光恒, 罗梓丹, 王印, 杨泽晓, 姚学萍, 罗燕. 非洲猪瘟检测技术进展. 病毒学报, 2019,35(3):523-532.
JIANG R J, ZHANG P F, ZHU G H, LUO Z D, WANG Y, YANG Z X, YAO X P, LUO Y. Diagnostic assays for African swine fever. Chinese Journal of Virology, 2019,35(3):523-532. (in Chinese)
[27] 崔贝贝, 李霆, 仇松寅, 梅琳, 韩雪清, 吴绍强, 林祥梅. 非洲猪瘟病毒E184L基因实时荧光定量PCR检测方法的建立. 动物医学进展, 2019,41:1-7.
CUI B B, LI T, QIU S Y, MEI L, HAN X Q, WU S Q, LIN X M. Establishment of a real-time PCR for detection of African swine virus E184L gene. Progress In Veterinary Medicine, 2019,41:1-7. (in Chinese)
[28] 郭少平, 刘建, 吴绍强. 非洲猪瘟病毒实时荧光定量PCR检测技术的研究与评价. 中国畜牧兽医, 2010,37(4):76-80.
GUO S P, LIU J, WU S Q. Research and assessment of real-time quantitative PCR assay for the detection of African swine fever virus. Chinese Animal Husbandry and Veterinary Medicine, 2010,37(4):76-80. (in Chinese)
[29] 王建华, 董志珍, 赵丹, 王玉玲, 肖妍, 张俊哲, 陈小金, 王乃福, 陈本龙, 赵祥平. 一种基于CP530R序列非洲猪瘟病毒TaqMan- MGB探针实时荧光PCR检测方法的建立. 黑龙江畜牧兽医, 2016(3):22-26.
WANG J H, DONG Z Z, ZHAO D, WANG Y L, XIAO Y, ZHANG J Z, CHEN X J, WANG N F, CHEN B L, ZHAO X P. Establishment of a TaqMan-MGB probe real-time fluorescence PCR method for detection of African swine fever virus based on CP530R gene sequences. Heilongjiang Animal Science and Veterinary Medicine, 2016(3):22-26. (in Chinese)
[30] 赵启祖, 王琴. 非洲猪瘟紧急预防控制技术需求. 中国兽药杂志, 2018,52(10):1-4.
ZHAO Q Z, WANG Q. Technical requirements in African swine fever emergency prevention and control. Chinese Journal of Veterinary Drug, 2018,52(10):1-4. (in Chinese)
[31] 聂赟彬, 乔娟. 非洲猪瘟发生对我国生猪产业发展的影响. 中国农业科技导报, 2019,21(1):11-17.
NIE Y B, QIAO J. Impact of African swine fever on the development of pig industry in China. Journal of Agricultural Science and Technology, 2019, 21(1):11-17. (in Chinese)
[1] LI ZhiLing,LI XiangJu,CUI HaiLan,YU HaiYan,CHEN JingChao. Development and Application of ELISA Kit for Detection of EPSPS in Eleusine indica [J]. Scientia Agricultura Sinica, 2022, 55(24): 4851-4862.
[2] XIE LiXue,ZHANG XiaoYan,ZHANG LiJie,ZHENG Shan,LI Tao. Complete Genome Sequence Characteristics and TC-RT-PCR Detection of East Asian Passiflora Virus Infecting Passiflora edulis [J]. Scientia Agricultura Sinica, 2022, 55(22): 4408-4418.
[3] CUI JiangKuan,REN HaoHao,CAO MengYuan,CHEN KunYuan,ZHOU Bo,JIANG ShiJun,TANG JiHua. SCAR-PCR Rapid Molecular Detection Technology of Heterodera zeae [J]. Scientia Agricultura Sinica, 2022, 55(17): 3334-3342.
[4] ZHANG FengXi,XIAO Qi,ZHU JiaPing,YIN LiHong,ZHAO XiaLing,YAN MingShuai,XU JinHua,WEN LiBin,NIU JiaQiang,HE KongWang. Preparation and Identification of Monoclonal Antibodies to P30 Protein and Establishment of Blocking ELISA to Detecting Antibodies Against African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2022, 55(16): 3256-3266.
[5] WEI Tian,WANG ChengYu,WANG FengJie,LI ZhongPeng,ZHANG FangYu,ZHANG ShouFeng,HU RongLiang,LÜ LiLiang,WANG YongZhi. Preparation of Monoclonal Antibodies Against the p30 Protein of African Swine Fever Virus and Its Mapping of Linear Epitopes [J]. Scientia Agricultura Sinica, 2022, 55(15): 3062-3070.
[6] ZHANG JingYuan,MIAO FaMing,CHEN Teng,LI Min,HU RongLiang. Development and Application of a Real-Time Fluorescent RPA Diagnostic Assay for African Swine Fever [J]. Scientia Agricultura Sinica, 2022, 55(1): 197-207.
[7] LI ZhenXi,LI WenTing,HUANG JiaQuan,ZHENG Zheng,XU MeiRong,DENG XiaoLing. Detection of ‘Candidatus Liberibacter asiaticus’ by Membrane Adsorption Method Combined with Visual Loop-Mediated Isothermal Amplification [J]. Scientia Agricultura Sinica, 2022, 55(1): 74-84.
[8] DUAN Yu,XU JianJian,MA ZhiMin,BIN Yu,ZHOU ChangYong,SONG Zhen. Detection of Citrus Leaf Blotch Virus by Reverse Transcription- Recombinase Polymerase Amplification (RT-RPA) [J]. Scientia Agricultura Sinica, 2021, 54(9): 1904-1912.
[9] Xue BAI,Teng HUI,ZhenYu WANG,YunGang CAO,DeQuan ZHANG. Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography- Fluorescence Detection [J]. Scientia Agricultura Sinica, 2021, 54(5): 1055-1062.
[10] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
[11] MA ZhiMin,XU JianJian,DUAN Yu,WANG ChunQing,SU Yue,ZHANG Qi,BIN Yu,ZHOU ChangYong,SONG Zhen. Establishment of RT-RPA for Citrus Yellow Vein Clearing Virus (CYVCV) Detection [J]. Scientia Agricultura Sinica, 2021, 54(15): 3241-3249.
[12] CHEN PengFei,MA Xiao. Research Status and Trends of Automatic Detection of Crop Planting Rows [J]. Scientia Agricultura Sinica, 2021, 54(13): 2737-2745.
[13] HUI YuanYuan,PENG HaiShuai,WANG BiNi,ZHANG FuXin,LIU YuFang,JIA Rong,REN Rong. Research Progress of Food-Borne Pathogen Detection Based on Electrochemical and Optical Aptasensors [J]. Scientia Agricultura Sinica, 2021, 54(11): 2419-2433.
[14] ZHANG QingAn,CHEN BoYu. Research Progress of Four Sulfur Compounds Related to Red Wine Flavor [J]. Scientia Agricultura Sinica, 2020, 53(5): 1029-1045.
[15] MoRan XU,RuiMing LIN,FengTao WANG,Jing FENG,ShiChang XU. Evaluation of Resistance to Stripe Rust and Genetic Diversity and Detection of Resistance Genes in 103 Wheat Cultivars (Lines) [J]. Scientia Agricultura Sinica, 2020, 53(4): 748-760.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!