Scientia Agricultura Sinica ›› 2022, Vol. 55 ›› Issue (16): 3224-3241.doi: 10.3864/j.issn.0578-1752.2022.16.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Flavor Escape Behavior of Stewed Beef with Soy Sauce During Air-Cooling and Refrigeration

QIANG Yu1(),JIANG Wei1,LIU ChengJiang2,HUANG Feng1,HAN Dong1(),ZHANG ChunHui1,2()   

  1. 1Comprehensive Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193
    2Institute of Food Science and Technology, Xinjiang Academy of Agricultural and Reclamation Sciences, Xinjiang Uygur Autonomous Region, Shihezi 832061, Xinjiang
  • Received:2021-12-08 Accepted:2022-03-23 Online:2022-08-16 Published:2022-08-11
  • Contact: Dong HAN,ChunHui ZHANG E-mail:qiangyu_1996@163.com;orange_1101@126.com;dr_zch@163.com

Abstract:

【Objective】This study clarified the escape behavior of key volatile compounds in stewed beef with soy sauce during air-cooling process and refrigeration, aiming to provide the theoretical basis for the flavor preservation and conformity of stewed beef with soy sauce. 【Method】 The volatile flavors in stewed beef with soy sauce were identified by the electronic nose (E-nose) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS) combined with odor activity value (OAV) and principal component analysis (PCA), which defined the dynamic change of flavors during cold air-cooling process (the central temperature was reduced from 50℃ to 10℃, the wind speed was 2 m∙s-1, and the cooling time was 90 minutes) and refrigeration (0, 6, 18, 30, 42 and 54 h at 4℃). Then the escape behavior of key flavor active compounds in stewed beef with soy sauce were revealed. 【Result】According to the E-nose analysis, the flavor profiles of stewed beef with soy sauce exhibited significant differences among the three stages (“out of the pot”, before air-cooling and after air-cooling). Nitrogen oxides, alcohols, aldehydes, ketones, aromatics and organic sulfides were considered the main compounds for the discrepancy. On the other side, the stewed beef with soy sauce after 0, 42 and 54 h refrigeration showed differential flavor profiles, which mainly caused by the variety in nitrogen compounds, alcohols, aldehydes and ketones. However, there was no significant difference in the flavor profiles among 6, 18 and 30 h refrigeration. The HS-SPME-GC-MS results showed that 39, 31 and 33 volatile compounds were identified in three cold air-cooling stages, and the contents were 13 636.18, 9 799.21 and 8 213.86 μg∙kg-1, respectively, with total amounts reducing by 39.8%. Morever, 36, 36, 34, 34, 31 and 29 volatile compounds were identified on different refrigeration periods, the contents were 7 712.65, 6 196.00, 5 319.42, 4 732.69, 5 295.05 and 4 281.82 μg∙kg-1, respectively, and the total contents decreased by 44.5%. Therefore, the flavor escape of stewed beef with soy sauce mainly occurred in the refrigeration stage. Besides, OAV analysis showed stewed beef with soy sauce in the cold air-cooling stage had 18 key active compounds, while eucalyptol, lauryl alcohol, valeraldehyde, and L-carvone were all lost before cold air-cooling, and acetoin, phenethyl alcohol, geranyl acetone, as well as linalool escaped severely, with their OAV values reducing by 81.3%, 64.0%, 63.7% and 55.1%, respectively. 15 key active volatile compounds were identified during refrigeration. Among them, isobutyl acetate and ethyl heptanoate were lost after 6 h. Anethole, eugenol, 4-allylanisole, and linalool were severely escaped, and the OAV values decreased by 63.9%, 63.8%, 58.1% and 53.9%, respectively. Refrigeration was the main stage for the loss and dissipation of flavor compounds in stewed beef with soy sauce; alcohols, ketones, esters and phenolic ethers were more susceptible to lose and escape during air-cooling and refrigeration; the loss and dissipation of flavor compounds were mainly derived from spices. 【Conclusion】This study revealed the escape behavior of flavor active compounds in stewed beef with soy sauce during air-cooling process and refrigeration, and provide the theoretical basis for stewed beef's flavor retention and regulation with soy sauce.

Key words: stewed beef with soy sauce, cold air-cooling, refrigeration, flavor escape

Table 1

Sensor arrays and performance descriptions of portable electronic nose"

序列号
Order number
传感器名称
Sensor name
敏感化合物
Sensitive compound
灵敏度
Sensitivity
R1 W1C 芳香类化合物 Aromatic components 10 mg∙L-1
R2 W5S 氮氧类化合物 Oxynitride 1 mg∙L-1
R3 W3C 氨类,芳香类化合物 Ammonia, aromatic components 10 mg∙L-1
R4 W6S 氢化物 Hydrogen 100 mg∙L-1
R5 W5C 短链烷烃,芳香化合物 Short chain alkanes, aromatic components 1 mg∙L-1
R6 W1S 甲基类化合物 Methane 100 mg∙L-1
R7 W2S 醇类,醛酮类化合物 Alcohol, aldehyde ketone 1 mg∙L-1
R8 W1W 无机硫化物 Sulphur compound 100 mg∙L-1
R9 W2W 芳香成分、有机硫化物Organic sulfur compounds, aromatic components 1 mg∙L-1
R10 W3S 长链烷烃 Long chain alkanes 100 mg∙L-1

Fig. 1

Principal component analysis of volatile flavor compounds of stewed beef with soy sauce during air-cooling and refrigeration A, B, and C represent after air-cooling, before air-cooling, and out of the pot respectively in figure 1-a"

Fig. 2

Radar chart of electronic nose response value of stewed beef with soy sauce during air-cooling and refrigeration"

Table 2

Identification of volatile flavor compounds in stewed beef with soy sauce during air-cooling and refrigeration by GC-MS"

序号
Number
化合物名称
Compound name
计算
保留指数
Calculate retention index
文献
保留指数
Reference retention index
匹配度
Suitability
定性方式
Qualitative method
冷藏 Refrigeration 风冷 Air-cooling
0 h 6 h 18 h 30 h 42 h 54 h 刚出罐
Out of
the pot
风冷前
Before air-cooling
风冷后After air-cooling
烃类化合物 Hydrocarbons (6)
1 十四烯 Tetradecane 1451 ND 89 MS + + + + + + - - -
2 十五烷 n-Pentadecane 1498 1500 91 MS, RI - - - + - - - + +
3 十六烷 n-Hexadecane 1600 1600 95 MS, RI - - - - - - - + +
4 十七烷 n-Heptadecane 1703 1700 90 MS, RI + + - + - - - + +
5 十八烷 Octadecane 1801 1800 96 MS, RI - - - - - - + - +
6 新植二烯 Neophytadiene 1987 ND 89 MS - + + - - + - + +
醇类化合物 Alcohols (10)
7 桉叶油醇 1,8-Cineole 1211 1213 93 MS, RI - - - - - - + - -
8 芳樟醇 Linalool 1546 1537 97 MS, RI + + + + + + + + +
9 4-萜烯醇 Terpinen-4-ol 1611 1602 99 MS, RI + + + + + + + + +
10 α-松油醇 α-Terpineol 1701 1688 98 MS, RI + + + + + + + + +
11 香叶醇 Geraniol 1820 1847 95 MS, RI + - + - - - + + +
12 苯乙醇 Phenethyl alcohol 1871 1875 92 MS, RI + + + + + + + + +
13 肉豆蔻醇 1-Tetradecanol 1978 ND 88 MS + + + + + + + + -
14 肉桂醇 Cinnamyl alcohol 2284 2306 93 MS, RI + + - - - - + - +
15 4-甲氧基苯甲醇 4-Methoxybenzyl alcohol 2290 2296 91 MS, RI + + - - - - + - -
16 月桂醇 1-Dodecanol 2557 2570 83 MS, RI - - + - - + - - -
醛类化合物 Aldehydes (10)
17 戊醛 Valeraldehyde 950 935 89 MS, RI - - - - - - + - -
18 壬醛 Nonanal 1402 1385 91 MS, RI - - - + + - - - +
19 苯甲醛 Benzaldehyde 1500 1494 92 MS, RI - + - + + - + + +
20 茴香醛 p-Anisaldehyde 1739 ND 97 MS + + + + + + + + +
21 十三醛 Tridecanal 1854 ND 86 MS - - + + + - - - -
22 月桂醛 Dodecyl aldehyde 1890 ND 84 MS - - + + + - + + +
序号
Number
化合物名称
Compound name
计算
保留指数
Calculate retention index
文献
保留指数
Reference retention index
匹配度
Suitability
定性方式
Qualitative method
冷藏 Refrigeration 风冷 Air-cooling
0 h 6 h 18 h 30 h 42 h 54 h 刚出罐
Out of
the pot
风冷前
Before air-cooling
风冷后After air-cooling
23 肉豆蔻醛 Nutmeg aldehyde 1961 1940 90 MS, RI + + + + + + + + +
24 反式肉桂醛 cis-Cinnamaldehyde 2058 2040 97 MS, RI + + + - + + + + +
25 棕榈醛 Palmitaldehyde 2109 2132 93 MS, RI + + + - - - - - -
26 十八烷醛 Stearaldehyde 2319 2343 91 MS, RI + + + + + + - + +
酮类化合物 Ketones (8)
27 3-羟基-2-丁酮 Acetoin 1297 1298 93 MS, RI + + + + + + + + +
28 4-羟基-2.5-二甲基-3(2H)-呋喃酮 Furaneol 1379 1399 88 MS, RI + + + + + + + - +
29 2,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮
Hydroxydihydromaltol
1455 ND 85 MS + + + - - + + + +
30 左旋香芹酮 L(-)-Carvone 1711 1721 93 MS, RI + - - - - - + - -
31 胡椒酮 Piperitone 1730 1737 98 MS, RI + + + + + + + + +
32 4-甲氧基苯丁酮 4'-Methoxybutyrophenone 1782 ND 97 MS + + + + + +
33 香叶基丙酮 Geranyl acetone 1841 1852 87 MS, RI - - - + + + + + +
34 2-十三烷酮 2-Tridecanone 1852 ND 84 MS + + + + + + - + -
酯类化合物 Esters (14)
35 乙酸异丁酯 Isobutyl acetate 1028 1002 96 MS, RI + + - - - - + + +
36 庚酸乙酯 Ethyl heptanoate 1322 1336 95 MS, RI + + - - - - - - -
37 辛酸甲酯 Caprylic acid methyl ester 1382 1385 88 MS, RI - - - - - - + - -
38 对茴香酸甲酯 Methyl anisate 1384 ND 86 MS - - - - - - + + +
39 琥珀酸二乙酯 Diethyl succinate 1674 ND 87 MS - - - - - - + - -
40 对甲氧基苯甲酸甲酯 Methyl 4-methoxybenzoate 1725 ND 93 MS + + - - - - - - -
41 苯乙酸乙酯 Ethyl phenylacetate 1757 1785 95 MS, RI - + - - - - - - -
42 乙酸肉桂酯 Cinnamyl acetate 1760 ND 97 MS + + - - - - - - -
43 乙酸丁香酚酯 Eugenol acetate 1821 ND 83 MS + + + + + + + + +
44 月桂酸甲酯 Methyl laurate 1930 ND 97 MS - - + + + - - - -
45 月桂酸乙酯 Ethyl laurate 1956 ND 93 MS - - + + - - - - -
序号
Number
化合物名称
Compound name
计算
保留指数
Calculate retention index
文献
保留指数
Reference retention index
匹配度
Suitability
定性方式
Qualitative method
冷藏 Refrigeration 风冷 Air-cooling
0 h 6 h 18 h 30 h 42 h 54 h 刚出罐
Out of
the pot
风冷前
Before air-cooling
风冷后After air-cooling
46 肉豆蔻酸甲酯 Methyl myristate 2028 ND 97 MS + + + + + + - - -
47 肉豆蔻酸乙酯 Ethyl myristate 2059 2055 80 MS, RI + + + + + + + - -
48 棕榈酸甲酯 Methyl palmitate 2221 ND 88 MS - - + + - - - - -
酸类化合物 Acids (3)
49 异戊酸 Isovaleric acid 834 827 90 MS, RI + + + - - - + - -
50 辛酸 Octanoic acid 1184 1186 87 MS, RI + + + + + + + + +
51 癸酸 Decanoic acid 1457 ND 89 MS - - - - - - - - +
酚类化合物 Phenols (3)
52 丁香酚 Eugenol 1355 1356 90 MS, RI + + + + + + + + +
53 对烯丙基苯酚 4-Allylphenol 1581 ND 87 MS - - - - - - + + +
54 香芹酚 Carvacrol 2079 ND 93 MS + - - - - - + - -
醚类化合物 Ethers (2)
55 草蒿脑 4-Allylanisole 1684 1655 98 MS, RI + + + + + + + + +
56 茴香脑 Anethol 1809 1815 97 MS, RI + + + + + + + + +
杂环化合物 Heterocyclics (8)
57 四氢呋喃 Tetrahydrofuran 1285 ND 87 MS - - + - - - - - -
58 2-乙酰基吡咯 2-Acetyl pyrrole 1391 1393 85 MS, RI + + + + + + + + +
59 2,3,5-三甲基吡嗪 Trimethyl-pyrazine 1394 1399 91 MS, RI - - - - - - + - -
60 2,3,5,6-四甲基吡嗪 Tetramethylpyrazine 1448 1459 88 MS, RI - - - - + - + + -
61 α-甲基萘 1-Methylnaphthalene 1872 1875 93 MS, RI - - - - - + - - -
62 β-甲基萘 2-Methylnaphthalene 1898 ND 94 MS - - - + + + - - -
63 1,2-环氧十六烷 1,2-Epoxyhexadecane 1986 ND 95 MS - - - + - - - - -
64 3,3'-二甲氧基苯偶酰 3,3'-Dimethoxybenzil 2351 ND 84 MS - - - - - - + - -

Fig. 3

The concentration of volatile flavor compounds in stewed beef with soy sauce during air-cooling and refrigeration"

Table 3

OAVs of volatile flavor compounds in stewed beef with soy sauce during air-cooling and refrigeration"

序号
Number
化合物名称
Compound name
阈值
Threshold
(μg∙kg-1)
冷藏 Refrigeration 风冷 Air-cooling 气味描述
Odor description
0 h 6 h 18 h 30 h 42 h 54 h 刚出罐
Out of the pot
风冷前
Before air-cooling
风冷后
After air-cooling
1 桉叶油醇 1,8-Cineole 1.3[10] - - - - - - 73.64 - - 草药味Herbal[10]
2 芳樟醇 Linalool 6[10] 17.40 12.92 10.97 3.03 4.58 8.03 33.28 16.24 14.94 花香、甜香Floral, sweet [10]
3 4-萜烯醇 Terpinen-4-ol 340[10] 0.24 0.16 0.12 0.07 0.09 0.07 0.41 0.32 0.33 蜡味Waxy[10]
4 α-松油醇α-Terpineol 4.6[11] 18.72 13.67 8.50 4.35 6.68 5.58 0.46 0.32 0.32 水果香、薄荷味Fruity、minty[10]
5 香叶醇 Geraniol 1[11] 28.87 - 6.67 - - - 28.35 30.93 27.80 甜香、玫瑰花香Sweety、rosey[11]
6 苯乙醇 Phenethyl alcohol 3.17[12] 9.95 7.38 5.84 2.73 5.98 5.01 21.85 8.92 7.20 玫瑰花香Rosey[11]
7 月桂醇 1-Dodecanol 7.1[13] 0.24 0.16 0.12 0.07 0.09 0.07 4.82 - - ND
8 戊醛 Valeraldehyde 12[13] - - - - - - 2.64 - - 辛辣味、杏仁味Spicy、almond[10]
9 壬醛 Nonanal 1[14] - - - 23.30 21.66 - - - 45.39 青草味、脂肪味Grassy、fatty[14]
10 苯甲醛 Benzaldehyde 350[14] - 0.05 - 0.09 0.08 - 0.07 0.13 0.18 苦杏仁味Bitter almond[14]
11 4-甲氧基苯甲醛 p-Anisaldehyde 27[15] 1.37 1.78 0.80 1.33 1.48 0.68 5.76 9.05 13.82 薄荷味、甜味Mint、sweet [15]
12 十三醛 Tridecanal 10[15] - - 1.67 1.45 0.83 - - - - 花香、甜香Flower、sweet [15]
13 月桂醛 Dodecyl aldehyde 2[15] - - 8.35 50.25 4.13 - 6.92 81.34 106.02 脂肪味Fatty[15]
14 肉豆蔻醛 Nutmeg aldehyde 53[15] 10.73 13.86 18.75 21.23 15.24 21.34 6.23 14.95 16.93 脂肪香、蜡香Fatty、waxy[13]
15 反式肉桂醛 cis-Cinnamaldehyde 50[15] 0.51 0.41 0.19 - 0.23 0.20 1.17 0.82 0.71 桂皮油香Cassia oil[15]
16 棕榈醛 Palmitaldehyde 100[15] 0.55 0.68 0.72 - - - - - - 花香、蜡香Flower、waxy[15]
17 3-羟基-2-丁酮 Acetoin 55[15] 24.34 22.90 16.56 13.99 26.17 21.21 61.51 34.66 11.49 奶油香味Creamy[16]
18 2,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮
2,3-Dihydro-3,5-dihydroxy-6-methyl-4(H)-pyran-4-one
200[16] 0.09 0.10 0.07 - - 0.05 0.08 0.06 0.06 ND
19 左旋香芹酮 L(-)-Carvone 6.7[16] - - - - - - 5.71 - - 薄荷香味Minty[16]
20 胡椒酮 Piperitone 680[15] 0.05 0.03 0.02 0.01 0.02 0.01 0.10 0.05 0.06 樟脑味Camphor[15]
序号
Number
化合物名称
Compound name
阈值
Threshold
(μg∙kg-1)
冷藏 Refrigeration 风冷 Air-cooling 气味描述
Odor description
0 h 6 h 18 h 30 h 42 h 54 h 刚出罐
Out of the pot
风冷前
Before air-cooling
风冷后
After air-cooling
21 香叶基丙酮 Geranyl acetone 60[11] - - - 0.12 0.10 0.09 2.73 1.01 0.99 果香、木香Fruity、woody[12]
22 2-十三烷酮 2-Tridecanone 216[15] 0.07 0.05 0.15 0.05 0.05 0.07 - 0.05 - 青草香Grassy[15]
23 乙酸异丁酯 Isobutyl acetate 0.15[17] 70.27 48.20 - - - - 80 120.80 122.60 水果香Fruity[17]
24 琥珀酸二乙酯 Diethyl succinate 137[17] - - - - - - 0.11 -- - 酒香、水果香Wine、fruity[17]
25 庚酸乙酯 Ethyl heptanoate 1.9[17] 17.92 25.95 - - - - - - - 水果香Fruity[17]
26 苯乙酸乙酯 Ethyl phenylacetate 137[17] - 0.08 - - - - - - - 甜香、水果香Sweety、fruity[17]
27 月桂酸乙酯 Ethyl laurate 79[17] - - 0.23 0.18 - - - - - 树叶香Leaf[15]
28 棕榈酸甲酯 Methyl myristate 361[17] - - - 0.02 - - - - - ND
29 异戊酸 Isovaleric acid 128[17] 0.58 0.53 0.93 - - - - - - 汗味、酸味、馊味Sweat, acid, rancid[16]
30 辛酸 Octanoic acid 148[17] 0.46 0.34 0.72 0.10 0.14 0.24 0.46 0.16 0.12 汗味、奶酪味Sweat、cheese[15]
31 丁香酚 Eugenol 5[16] 445.00 347.52 205.83 190.84 183.71 161.00 676.30 529.92 502.69 辛辣、丁香味Spicy、clove[16]
32 香芹酚 Carvacrol 351[17] 0.04 - - - - - 0.07 - - 青草味Grassy[16]
33 草蒿脑 4-Allylanisole 16[17] 11.39 8.72 6.54 5.19 5.69 4.77 19.33 14.77 13.86 甘草、茴香Licorice、fennel[15]
34 茴香脑 Anethol 15[17] 153.76 92.10 85.29 70.24 61.32 55.45 271.84 192.06 156.47 甘草味Licorice[11]
35 2,3,5-三甲基吡嗪 Trimethyl-pyrazine 290[17] - - - - - - 0.23 - - 烧烤、土豆味Roast、potato[15]
36 2,3,5,6-四甲基吡嗪 Tetramethylpyrazine 100[16] - - - - 0.19 - 0.49 0.26 - 坚果味Nutty[15]
37 α-甲基萘 1-Methylnaphthalene 58.1[17] - - - - - 0.19 - - - 樟脑味Camphor[17]
38 β-甲基萘 2-Methylnaphthalene 362[17] - - - 0.03 0.02 0.03 - - - 樟脑味Camphor[17]
39 2-乙酰基吡咯 1,2-Epoxyhexadecane 1000[17] 0.04 0.03 0.02 0.01 0.01 0.01 0.43 0.17 0.18 烧烤、杏仁Roast、almond[17]
40 3,3'-二甲氧基苯偶酰 3,3'-Dimethoxybenzil 362[17] - - - - - - 0.03 - - ND

Fig. 4

OAVs of flavor active substances in stewed beef with soy sauce during air-cooling and refrigeration"

Fig. 5

The heat map of volatile flavor compounds in stewed beef with soy sauce during air-cooling and refrigeration"

[1] SUN Z, HAN D, ZHANG C H, LI H, LI X, LIU Z B, XU S M. Profile analysis of the volatile flavor compounds of quantitative marinated chicken during processing. Scientia Agricultura Sinica, 2016, 49(15): 3030-3045. (in Chinese)
[2] ZOU Y H, KANG D C, LIU R, QI J, ZHOU G H, ZHANG W G. Effects of ultrasonic assisted cooking on the chemical profiles of taste and flavor of spiced beef. Ultrasonics Sonochemistry, 2018, 46: 36-45. doi: 10.1016/j.ultsonch.2018.04.005.
doi: 10.1016/j.ultsonch.2018.04.005
[3] ZHANG J, KANG D, ZHANG W, LORENZO J M. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors. Trends in Food Science & Technology, 2021, 111: 405-425.
[4] 李娟, 韩东, 米思, 李侠, 张春晖. 北京地区酱卤牛肉中挥发性风味物质剖面分析. 核农学报, 2020, 34(1): 94-103. doi: 10.11869/j. issn.100-8551.2020.01.0094.
doi: 10.11869/j.issn.100-8551.2020.01.0094
LI J, HAN D, MI S, LI X, ZHANG C H. Profile analysis of the volatile flavor compounds from Beijing area of marinated beef. Journal of Nuclear Agricultural Sciences, 2020, 34(1): 94-103. doi: 10.11869/j.issn.100-8551.2020.01.0094. (in Chinese)
doi: 10.11869/j.issn.100-8551.2020.01.0094
[5] ANANTHARAMKRISHNAN V, REINECCIUS G A. Method to characterize and monitor covalent interactions of flavor compounds with β-lactoglobulin using mass spectrometry and proteomics. Journal of Agricultural and Food Chemistry, 2020, 68(46): 13121-13130. doi: 10.1021/acs.jafc.9b07978.
doi: 10.1021/acs.jafc.9b07978
[6] 李素, 周慧敏, 赵冰, 潘晓倩, 朱宁, 吴倩蓉, 刘梦, 张顺亮. 卤汤牛肉贮藏过程中挥发性风味物质分析. 食品科学, 2020, 41(18): 203-209.
LI S, ZHOU H M, ZHAO B, PAN X Q, ZHU N, WU Q R, LIU M, ZHANG S L. Analysis of volatile flavor compounds in stewed beef with broth during storage. Food Science, 2020, 41(18): 203-209. (in Chinese)
[7] SUN Y, ZHANG Y, SONG H. Variation of aroma components during frozen storage of cooked beef balls by SPME and SAFE coupled with GC-O-MS. Journal of Food Processing and Preservation, 2021, 45(1): e15036.
[8] 崔方超, 李婷婷, 杨兵, 刘滢, 励建荣, 李洪军, 李敏镇. 电子鼻结合GC-MS分析草鱼脱腥前后风味变化. 食品科学, 2014, 35(20): 126-130. doi: 10.7506/spkx1002-6630-201420025.
doi: 10.7506/spkx1002-6630-201420025
CUI F C, LI T T, YANG B, LIU Y, LI J R, LI H J, LI M Z. Flavor compounds of fresh and deodorized grass carps as determined by electronic nose combined with GC-MS. Food Science, 2014, 35(20): 126-130. doi: 10.7506/spkx1002-6630-201420025. (in Chinese)
doi: 10.7506/spkx1002-6630-201420025
[9] 张清安, 徐博文, 陈博宇, 张宝善, 程爽. 超声降低红酒中高级醇含量对酒体风味特性的影响. 中国农业科学, 2021, 54(8): 1772-1786.
[1] 孙圳, 韩东, 张春晖, 李海, 李侠, 刘志斌, 徐世明. 定量卤制鸡肉挥发性风味物质剖面分析. 中国农业科学, 2016, 49(15): 3030-3045.
[9] ZHANG Q A, XU B W, CHEN B Y, ZHANG B S, CHENG S. Changes of wine flavor properties from the decreased higher alcohols induced by ultrasound irradiation. Scientia Agricultura Sinica, 2021, 54(8): 1772-1786. (in Chinese)
[10] TIAN P, ZHAN P, TIAN H L, WANG P, LU C, ZHAO Y, NI R J, ZHANG Y Y. Analysis of volatile compound changes in fried shallot (Allium cepa L. var. aggregatum) oil at different frying temperatures by GC-MS, OAV, and multivariate analysis. Food Chemistry, 2021, 345: 128748.
doi: 10.1016/j.foodchem.2020.128748
[11] VAN GEMERT L J. Compilations of Odor Threshold Values in Air, Water and Other Media. 2th ed. Zeist: Oliemans Punter & Partners BV, 2011: 242-342.
[12] CHOI H S, MIN K C. Aroma-active compounds of Elsholtzia splendens using AEDA and HS-SPME-GC-O dilution analysis. Flavour & Fragrance Journal, 2010, 23(1): 58-64.
[13] ZHU J C, NIU Y W, XIAO Z B. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-qMS). Food Chemistry, 2021, 339: 128136. doi: 10.1016/j.foodchem.2020.128136.
doi: 10.1016/j.foodchem.2020.128136
[14] WANG M Q, MA W J, SHI J, ZHU Y, LIN Z, LV H P. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography- mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination. Food Research International, 2020, 130: 108908.
doi: 10.1016/j.foodres.2019.108908
[15] AL-DALALI S, ZHENG F P, SUN B G, CHEN F. Characterization and comparison of aroma profiles and aroma-active compounds between traditional and modern Sichuan vinegars by molecular sensory science. Journal of Agricultural and Food Chemistry, 2020, 68(18): 5154-5167. doi: 10.1021/acs.jafc.0c00470.
doi: 10.1021/acs.jafc.0c00470
[16] HUANG X H, ZHENG X, CHEN Z H, ZHANG Y Y, DU M, DONG X P, QIN L, ZHU B W. Fresh and grilled eel volatile fingerprinting by e-Nose, GC-O, GC-MS and GC×GC-QTOF combined with purge and trap and solvent-assisted flavor evaporation. Food Research International, 2019, 115: 32-43. doi: 10.1016/j.foodres.2018.07.056.
doi: 10.1016/j.foodres.2018.07.056
[17] HUI G, ZHEN Y, MENG L, ZHIJIA S, JIAPENG L, WENHUA C, XIAOLING Q. Time-dependent categorization of volatile aroma compound formation in stewed Chinese spicy beef using electron nose profile coupled with thermal desorption GC-MS detection. Food Science and Human Wellness, 2017, 6(3): 137-146.
doi: 10.1016/j.fshw.2017.07.001
[18] HAN D, ZHANG C H, FAUCONNIER M L, JIA W, WANG J F, HU F F, XIE D W. Characterization and comparison of flavor compounds in stewed pork with different processing methods. LWT-Food Science & Technology, 2021, 144: 111229.
[19] TAN J Z, XU J. Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 2020(1): 104-115.
[20] NOHD ALI M, HASHIM N, ABD AZIZ S, LASEKAN O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 2020, 99: 1-10.
[21] 张淼, 何江红, 贾洪锋, 张振宇, 贾冬英. 电子鼻在调理牦牛肉新鲜度识别中的应用. 食品研究与开发, 2014, 35(21): 89-92.
ZHANG M, HE J H, JIA H F, ZHANG Z Y, JIA D Y. Application in freshness analysis of yak meat by electronic nose. Food Research and Development, 2014, 35(21): 89-92. (in Chinese)
[22] SHEN H, STEPHEN ELMORE J, ZHAO M M, SUN W Z. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds. Food Chemistry, 2020, 329: 127032. doi: 10.1016/j.foodchem.2020.127032.
doi: 10.1016/j.foodchem.2020.127032
[23] 赵萍, 陈小华, 刘俊霞, 王景华, 金文刚, 陈德经, 姜鹏飞. 大鲵肉冷藏过程中理化指标及挥发性成分的变化. 食品工业科技, 2022, 43(9): 259-267. doi: 10.13386/j.issn1002-0306.2021080108.
doi: 10.13386/j.issn1002-0306.2021080108
ZHAO P, CHEN X H, LIU J X, WANG J H, JIN W G, CHEN D J, JIANG P F. Analysis of physicochemical indexes and volatile components of giant salamander meat during cold storage. Science and Technology of Food Industry, 2022, 43(9): 259-267. doi: 10.13386/j.issn1002-0306.2021080108. (in Chinese)
doi: 10.13386/j.issn1002-0306.2021080108
[24] VAN HECKE T, HO P L, GOETHALS S, DE SMET S. The potential of herbs and spices to reduce lipid oxidation during heating and gastrointestinal digestion of a beef product. Food Research International, 2017, 102: 785-792.
doi: 10.1016/j.foodres.2017.09.090
[25] BUENO M, RESCONI V C, CAMPO M M, FERREIRA V, ESCUDERO A. Development of a robust HS-SPME-GC-MS method for the analysis of solid food samples. Analysis of volatile compounds in fresh raw beef of differing lipid oxidation degrees. Food Chemistry, 2019, 281: 49-56.
doi: 10.1016/j.foodchem.2018.12.082
[26] TRABELSI I, BEN SLIMA S, KTARI N, TRIKI M, ABDEHEDI R, ABAZA W, MOUSSA H, ABDESLAM A, BEN SALAH R. Incorporation of probiotic strain in raw minced beef meat: study of textural modification, lipid and protein oxidation and color parameters during refrigerated storage. Meat Science, 2019, 154: 29-36. doi: 10.1016/j.meatsci.2019.04.005.
doi: 10.1016/j.meatsci.2019.04.005
[27] FOURATI M, SMAOUI S, BEN H H, ENNOURI K, MTIBAA C A, SELLEM I, ELHADEF K, MELLOULI L. Synchronised interrelationship between lipid/protein oxidation analysis and sensory attributes in refrigerated minced beef meat formulated with Punica granatum peel extract. International Journal of Food Science & Technology, 2020, 55(3): 1080-1087.
[28] 刘珊, 吴香, 黄俊逸, 李聪, 徐宝才. 杀菌和贮藏方式对酱牛肉的微生物和品质的影响. 食品科技, 2020, 45(3): 151-158. doi: 10.13684/j.cnki.spkj.2020.03.028.
doi: 10.13684/j.cnki.spkj.2020.03.028
LIU S, WU X, HUANG J Y, LI C, XU B C. Effects of sterilization and storage methods on microbes and quality of sauced beef. Food Science and Technology, 2020, 45(3): 151-158. doi: 10.13684/j.cnki. spkj.2020.03.028. (in Chinese)
doi: 10.13684/j.cnki.spkj.2020.03.028
[29] 潘晓倩, 周慧敏, 李素, 张顺亮, 赵冰, 刘梦, 朱宁, 吴倩蓉, 王守伟, 乔晓玲, 臧明伍, 刘博文. 卤牛肉贮藏过程中气味活性化合物变化及异味分析. 食品科学, 2021, 42(22): 240-248. doi: 10.7506/ spkx1002-6630-20201217-208.
doi: 10.7506/ spkx1002-6630-20201217-208
PAN X Q, ZHOU H M, LI S, ZHANG S L, ZHAO B, LIU M, ZHU N, WU Q R, WANG S W, QIAO X L, ZANG M W, LIU B W. Changes in odor-active compounds during storage and analysis of off-flavor substances in stewed marinated beef. Food Science, 2021, 42(22): 240-248. doi: 10.7506/spkx1002-6630-20201217-208. (in Chinese)
doi: 10.7506/ spkx1002-6630-20201217-208
[30] WANG K, ARNTFILED S D. Effect of salts and pH on selected ketone flavors binding to salt-extracted pea proteins: The role of non-covalent forces. Food Research International, 2015, 77: 1-9.
doi: 10.1016/j.foodres.2015.03.017
[31] WANG K, ARNTFIELD S D. Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach. Food Chemistry, 2014, 157: 364-372. doi: 10.1016/j.foodchem.2014.02.042.
doi: 10.1016/j.foodchem.2014.02.042
[32] DUPUIS J H, WANG S, SONG C, YADA R, MILLET O. The role of disulfide bonds in a Solanum tuberosum saposin-like protein investigated using molecular dynamics. PLoS ONE, 2020, 15(8): e0237884.
doi: 10.1371/journal.pone.0237884
[33] 王永华, 戚穂坚. 食品风味化学. 北京: 中国轻工业出版社, 2015.
WANG Y H, QI S J. Food Flavor Chemistry. Beijing: China Light Industry Press, 2015. (in Chinese)
[34] RIZZI G P. The strecker degradation of amino acids: Newer avenues for flavor formation. Food Reviews International, 2008, 24(4): 416-435.
doi: 10.1080/87559120802306058
[35] KOUZNETSOY V V, GALVIS C E P. Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 2018, 74(8): 773-810.
[36] YANG W Q, CHEN X, LI Y L, GUO S F, WANG Z, YU X L. Advances in pharmacological activities of terpenoids. Natural Product Communications, 2020, 15(3): 1934578X20903555.
[37] TETALI S D. Terpenes and isoprenoids: a wealth of compounds for global use. Planta, 2019, 249(1): 1-8. doi: 10.1007/s00425-018-3056-x.
doi: 10.1007/s00425-018-3056-x
[38] 孙玉亮, 王颉. HS-SPME/GC-MS分析发酵前后扇贝豆酱中的香气成分. 中国酿造, 2010, 29(11): 156-159. doi: 10.3969/j.issn.0254- 5071.2010.11.046.
doi: 10.3969/j.issn.0254- 5071.2010.11.046
SUN Y L, WANG J. HS-SPME GC-MS analysis of aroma components in scallop miso before and after fermentation. China Brewing, 2010, 29(11): 156-159. doi: 10.3969/j.issn.0254-5071.2010. 11.046. (in Chinese)
doi: 10.3969/j.issn.0254- 5071.2010.11.046
[39] 王柏文, 李贺贺, 张锋国, 信春晖, 孙金沅, 黄明泉, 孙宝国. 应用液-液萃取结合GC-MS与GC-NPD技术对国井芝麻香型白酒中含氮化合物的分析. 食品科学, 2014, 35(10): 126-131. doi: 10.7506/ spkx1002-6630-201410023.
doi: 10.7506/ spkx1002-6630-201410023
WANG B W, LI H H, ZHANG F G, XIN C H, SUN J Y, HUANG M Q, SUN B G. Analysis of nitrogen-containing compounds of guojing sesame-flavour liquor by liquid-liquid extraction coupled with G-C-MS and GC-NPD. Food Science, 2014, 35(10): 126-131. doi: 10.7506/spkx1002-6630-201410023. (in Chinese)
doi: 10.7506/ spkx1002-6630-201410023
[40] YU H, ZHANG R Y, YANG F W, XIE Y F, GUO Y H, YAO W R, ZHOU W B. Control strategies of pyrazines generation from Maillard reaction. Trends in Food Science & Technology, 2021, 112: 795-807.
[41] STAROWICZ M, ZIELIŃSKI H. How Maillard reaction influences sensorial properties (color, flavor and texture) of food products? Food Reviews International, 2019, 35(8): 707-725. doi: 10.1080/87559129. 2019.1600538.
doi: 10.1080/87559129. 2019.1600538
[42] AASLYNG M D, MEINERT L. Meat flavour in pork and beef-From animal to meal. Meat Science, 2017, 132: 112-117. doi: 10.1016/j.meatsci.2017.04.012.
doi: 10.1016/j.meatsci.2017.04.012
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!