Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (8): 1684-1701.doi: 10.3864/j.issn.0578-1752.2021.08.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Nitrogen Cycling in the Crop-Soil Continuum in Response to Elevated Atmospheric CO2 Concentration and Temperature -A Review

ZHANG JinYuan1,2(),LI YanSheng1,YU ZhenHua1,XIE ZhiHuang1,2,LIU JunJie1,WANG GuangHua1,LIU XiaoBing1,WU JunJiang3,Stephen J HERBERT4,JIN Jian1()   

  1. 1Northeast Institute of Geography and Agroecology, Chinese Academy of Science/Key Laboratory of Black Soil Agroecology, Harbin 150081, China
    2University of Chinese Academy of Science, Beijing 100049, China
    3Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences/Key Laboratory of Soybean Cultivation, Ministry of Agriculture and Rural Affairs/Key Laboratory of Soybean Cultivation of Heilongjiang Province, Harbin 150086, China
  • Received:2020-06-24 Accepted:2020-07-29 Online:2021-04-16 Published:2021-04-25
  • Contact: Jian JIN E-mail:zhangjinyuan1126@126.com;jinjian@iga.ac.cn

Abstract:

In geochemical element cycling, nitrogen is one of the most important and active nutrient elements, determining grain yield and quality of crop. With the increase of atmospheric CO2 concentration and temperature in global climate change, the changes in crop-soil nitrogen cycle may significantly affect crop production in agro-ecosystem. Therefore, studying the response of crop-soil continuum nitrogen cycle under elevated atmospheric CO2 concentration and temperature could provide a theoretical basis for the scientific and reasonable prediction of crop nitrogen demand in farmland ecosystem and the guarantee of stable supply of crop yield under the future climate conditions. Effects of elevated CO2 and temperature on nitrogen uptake and distribution in crop and soil nitrogen turnover were reviewed in this paper, and the interaction between elevated CO2 and temperature on crop-soil nitrogen cycling processes in previous studies was systematically summarized. Under elevated atmospheric CO2 concentration, although the transpiration of crop decreased, the photosynthetic rate, biomass, root branches and root surface area increased, and the root nodule nitrogen fixation ability of legume crop also increased. Thus, these factors overall promoted crop nitrogen uptake and increased crop yield and grain nitrogen allocation, but the average nitrogen concentration across crop decreased. Furthermore, the high CO2 concentration increased soil enzyme activity, enhanced soil organic nitrogen mineralization, nitrification and denitrification, and accelerated soil nitrogen turnover. Warming and increasing CO2 concentration interactively affected crop-soil nitrogen cycle. Warming and high CO2 concentration synergistically promoted crop biomass, photosynthesis, underground nitrogen distribution and root branching and root surface area. Elevated temperature enhanced the elevated CO2-induced inhibition on crop transpiration and nitrogen concentration. Warming inhibited the positive effect of high CO2 concentration on nitrogen distribution, nitrogen absorption and yield of crop grains. Elevated temperature enhanced soil enzyme activity and mineralization at high CO2 concentration, but molecular mechanisms of their interactive effect on soil nitrification and denitrification were still not clear. Research on soil microbes in relevant to aboveground crop, in particular, nitrogen cycling processes and their feedback mechanisms on global change remained unknown. The 16 S rRNA, DGGE, T-RFLP, qPCR, RT-PCR techniques, proteomics and in situ studies of stable isotope probes could be used to investigate the microbial species composition and physiological functions in complex environments. This review highlighted further investigations on the potential interaction between elevated CO2 and temperature on nitrogen cycle in the crop-soil continuum in farming soils, and the microbial community in the rhizosphere that were involved in soil nitrogen cycle. Thus, the nitrogen cycle in agricultural ecosystem under climate change could be predicted, by which the adaptability of the ecosystems to climate change could be enhanced effectively.

Key words: CO2 concentration, temperature, plant nitrogen, nitrogen uptake, soil nitrogen cycle, microorganism

Table 1

Effects of elevated CO2 and temperature on crop N concentration, N uptake and biomass"

作物类型
Crop species
CO2浓度/温度处理
CO2 concentration/temperature
氮浓度
N concentration
氮吸收
N uptake
生物量
Biomass
文献
Reference
大豆Soybean 390/550 μmol·mol-1 [33]
大豆Soybean 390/550 μmol·mol-1 [41]
大豆Soybean 415/550 μmol·mol-1 [8]
水稻Rice 380/680 μmol·mol-1 [13]
水稻Rice 500 μmol·mol-1 [12]
水稻Rice 390/550 μmol·mol-1 [51]
水稻Rice 370/550 μmol·mol-1 [39]
水稻Rice +200 μmol·mol-1 [11]
小麦Wheat 390/550 μmol·mol-1 [53]
小麦Wheat 360/550 μmol·mol-1 [40]
水稻Rice 500 μmol·mol-1;+2℃ [12]
水稻Rice 380/680 μmol·mol-1;22/32℃ [13]
水稻Rice +60 μmol·mol-1;+2℃ [35]
水稻Rice +60 μmol·mol-1;+2℃ [37]
水稻Rice 390/550 μmol·mol-1;+2℃ [51]
水稻Rice +200 μmol·mol-1;+1℃ [11]

Fig. 1

Interaction between atmospheric CO2 concentration and temperature on crop-soil continuum nitrogen cycle"

[1] URBAN M C. Accelerating extinction risk from climate change. Science, 2015,348:571-573.
doi: 10.1126/science.aaa4984 pmid: 25931559
[2] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 2013: 159-218.
[3] WHITE P J, BROWN P H. Plant nutrition for sustainable development and global health. Annals of Botany, 2010,105:1073-1080.
doi: 10.1093/aob/mcq085 pmid: 20430785
[4] 陆景陵. 植物营养学. 北京: 中国农业大学出版社, 2003: 23.
LU J L. Plant Nutrition. Beijing: China Agricultural University Press, 2003: 23. (in Chinese)
[5] NOYCE G L, KIRWAN M L, RICH R L, MEGONIGAL J P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proceedings of the National Academy of Sciences, 2019,116:21623-21628.
[6] BISHOP K A, BETZELBERGER A M, LONG S P, AINSWORTH E A. Is there potential to adapt soybean (Glycine max Merr.) to future CO2? An analysis of the yield response of 18 genotypes in free-air CO2 enrichment. Plant Cell and Environment, 2015,38:1765-1774.
doi: 10.1111/pce.2015.38.issue-9
[7] 李伏生, 康绍忠, 张富仓. 大气CO2浓度和温度升高对作物生理生态的影响. 应用生态学报, 2002,13(9):1169-1173.
pmid: 12561186
LI F S, KANG S Z, ZHANG F C. Effect of atmospheric CO2 and temperature increment on crop physiology and ecology. Chinese Journal of Applied Ecology, 2002,13(9):1169-1173. (in Chinese)
pmid: 12561186
[8] HAO X Y, LI P, HAN X, NORTON R M, LAM S K, ZONG Y Z, SUN M, LIN E D, GAO Z Q. Effects of free-air CO2 enrichment (FACE) on N, P and K uptake of soybean in northern China. Agricultural and Forest Meteorology, 2016,218/219:261-266.
doi: 10.1016/j.agrformet.2015.12.061
[9] YANG L, HUANG J Y, YANG H J, DONG G C, LIU G, ZHU J G, WANG Y L. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.). Field Crops Research, 2006,98(1):1-19.
doi: 10.1016/j.fcr.2005.09.015
[10] REDDY V R, REDDY K R, HODGES H F. Carbon dioxide enrichment and temperature effects on cotton canopy photosynthesis, transpiration, and water-use efficiency. Field Crops Research, 1995,41(1):13-23.
doi: 10.1016/0378-4290(94)00104-K
[11] LI C H, ZHU J G, SHA L N, ZHANG J S, ZENG Q, LIU G. Rice (Oryza sativa L.) growth and nitrogen distribution under elevated CO2 concentration and air temperature. Ecological Research, 2017,32:405-411.
doi: 10.1007/s11284-017-1450-7
[12] 张立极, 潘根兴, 张旭辉, 李恋卿, 郑经伟, 郑聚峰, 俞欣妍, 王家芳. 大气CO2浓度和温度升高对水稻植株碳氮吸收及分配的影响. 土壤, 2015,47(1):26-32.
ZHANG L J, PAN G X, ZHANG X H, LI L Q, ZHENG J W, ZHENG J F, YU X Y, WANG J F. Effect of experimental CO2 enrichment and warming on uptake and distribution of C and N in rice plant. Soils, 2015,47(1):26-32. (in Chinese)
[13] CHENG W G, SAKAI H, YAGI K, HASEGAWA T. Combined effects of elevated CO2 and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 2010,150:1174-1181.
doi: 10.1016/j.agrformet.2010.05.001
[14] WOLFE K S, HE J S, BAZZAZ F A. Level physiology, biomass, and reproduction of Phytolacca americana under conditions of elevated carbon dioxide and increased nocturnal temperature. International Journal of Plant Sciences, 2006,167(5):1011-1020.
doi: 10.1086/506154
[15] DRAKE B G. More efficient plants: A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Plant Molecular Biology, 1997,48(4):609-639.
doi: 10.1146/annurev.arplant.48.1.609
[16] BHATTACHARYYA P, ROY K S, DASH P K, NEOGI S, SHAHID M, NAYAK A K, RAJA R, KARTHIKEYAN S, BALACHANDAR D, RAO K S. Effect of elevated carbon dioxide and temperature on phosphorus uptake in tropical flooded rice (Oryza sativa L.). European Journal of Agronomy, 2014,53:28-37.
doi: 10.1016/j.eja.2013.10.008
[17] 陈坤. 植物氮素高效吸收研究进展. 安徽农业科学, 2018,46(26):31-33.
CHEN K. Research advances on nitrogen uptake in plant. Journal Anhui Agricultural Sciences, 2018,46(26):31-33. (in Chinese)
[18] 黄高宝, 张恩和, 胡恒觉. 不同玉米品种氮素营养效率差异的生态生理机制. 植物营养与肥料学报, 2001,7(3):293-297.
doi: 10.11674/zwyf.2001.0308
HUANG G B, ZHANG E H, HU H J. Eco-physiological mechanism on nitrogen use efficiency difference of corn varieties. Plant Nutrition and Fertilizer Science, 2001,7(3):293-297. (in Chinese)
doi: 10.11674/zwyf.2001.0308
[19] 霍常富, 孙海龙, 范志强, 王政权. 根系氮吸收过程及其主要调节因子. 应用生态学报, 2007,18(6):1356-1364.
pmid: 17763743
HUO C F, SUN H L, FAN Z Q, WANG Z Q. Physiological processes and major regulating factors of nitrogen uptake by plant root. Chinese Journal of Applied Ecology, 2007,18(6):1356-1364. (in Chinese)
pmid: 17763743
[20] DAEPP M, SUTER D, ALMEIDA J P F, ISOPP H, HARTWIG UA, FREHNER M, BLUM H, NOSBERGER J, LUSCHER A. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biology, 2000,6:805-816.
doi: 10.1046/j.1365-2486.2000.00359.x
[21] KORNER C, ARNONE J A. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science, 1992,257:1672-1675.
doi: 10.1126/science.257.5077.1672 pmid: 17841166
[22] 陈改苹, 朱建国, 谢祖彬, 朱春梧, 程磊, 曾青, 庞静. 开放式空气 CO2浓度升高对水稻根系形态的影响. 生态环境, 2005,14(4):503-507.
CHEN G P, ZHU J G, XIE Z B, ZHU C W, CHENG L, ZENG Q, PANG J. Effects of free-air CO2 enrichment on root morphology of rice. Ecology and Environment, 2005,14(4):503-507. (in Chinese)
[23] PRITCHARD S G, ROGERS H H. Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytologist, 2000,147:55-71.
doi: 10.1046/j.1469-8137.2000.00678.x
[24] STUEFER J F, DEKROON H, DURING H J. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Functional Ecology, 1996,10:328-334.
doi: 10.2307/2390280
[25] WANG Y, DU S T, LI L L, HUANG L D, FANG P, LIN X Y, ZHANG Y S, WANG H L. Effect of CO2 elevation on root growth and its relationship with indole acetic acid and ethylene in tomato seedlings. Pedosphere, 2009,19(5):570-576.
doi: 10.1016/S1002-0160(09)60151-X
[26] WEI W, FAROOQ S, ROBERT W D, BAO L M. Grain yield, root growth habit and lodging of eight oilseed rape genotypes in response to a short period of heat stress during flowering. Agricultural and Forest Meteorology, 2020,287:107954.
doi: 10.1016/j.agrformet.2020.107954
[27] IGNATIOUS M, ANTHONY V G, CRAMER M D. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients. Journal of Experimental Botany, 2014,65(1):159-168.
doi: 10.1093/jxb/ert367
[28] BUNCE J A. Direct and acclimatory responses of stomatal conductance to elevated carbon dioxide in four herbaceous crop species in the field. Global Change Biology, 2010,7(3):323-331.
doi: 10.1046/j.1365-2486.2001.00406.x
[29] KANG S Z, ZHANG F C, HU X T, ZHANG J H. Benefits of CO2 enrichment on crop plants are modified by soil water status. Plant and Soil, 2002,238(1):69-77.
doi: 10.1023/A:1014244413067
[30] 赵鸿, 王润元, 尚艳, 王鹤龄, 张凯, 赵福年, 齐月, 陈斐. 粮食作物对高温干旱胁迫的响应及其阈值研究进展与展望. 干旱气象, 2016,34(1):1-12.
ZHAO H, WANG R Y, SHANG Y, WANG H L, ZHANG K, ZHAO F N, QI Y, CHEN F. Progress and perspectives in studies on responses and thresholds of major food crops to high temperature and drought stress. Journal of Arid Meteorology, 2016,34(1):1-12. (in Chinese)
[31] ROGERS A, AINSWORTH E A, LEAKEY A D. Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiology, 2009,151:1009-1016.
doi: 10.1104/pp.109.144113 pmid: 19755541
[32] BUTTERLY C R, ARMSTRONG R, CHEN D L, TANG C X. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Annals of Botany, 2016,117:177-185.
doi: 10.1093/aob/mcv140 pmid: 26346721
[33] LI Y S, YU Z H, LIU X B, MATHESIUS U, WANG G H, TANG C X, WU J J, LIU J D, ZHANG S Q, JIN J. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars. Frontiers in Plant Science, 2017,8:1546.
doi: 10.3389/fpls.2017.01546 pmid: 28959266
[34] NARENDR K L, SANGEETA L, PRABHAKAR M, NIHARIKA S, SANJEEV K, SATISH B A, DHARMENDRA S Y. The fate of 15N labeled urea in a soybean-wheat cropping sequence under elevated CO2 and/or temperature. Agriculture, Ecosystems and Environment, 2019,282:23-29.
doi: 10.1016/j.agee.2019.04.033
[35] 蔡威威, 艾天成, 万运帆, 李健陵, 郭晨. 环境温度和CO2浓度升高对湖北早稻氮素含量及产量的影响. 中国农业气象, 2016,37(2):231-237.
CAI W W, AI T C, WAN Y F, LI J L, GUO C. Influence of elevated atmospheric temperature and CO2 concentration on plant and soil N concentration and yield of early rice in Hubei. Chinese Journal of Agrometeorology, 2016,37(2):231-237. (in Chinese)
[36] PORTEAUS F, HILL J, BALL A S, PINTER P J, KIMBALL B A, WALL G W, ADAMSEN F J, HUNSAKER D J, LAMORTE R L, LEAVITT S W, THOMPSON T L, MATTHIAS A D, BROOKS T J, MORRIS C F. Effect of Free Air Carbon dioxide Enrichment (FACE) on the chemical composition and nutritive value of wheat grain and straw. Animal Feed Science and Technology, 2009,149:322-332.
doi: 10.1016/j.anifeedsci.2008.07.003
[37] 王斌, 万运帆, 郭晨, 李玉娥, 游松财, 秦晓波, 陈汇林. 模拟大气温度和CO2浓度升高对双季稻氮素利用的影响. 作物学报, 2015,41(8):1295-1303.
doi: 10.3724/SP.J.1006.2015.01295
WANG B, WAN Y F, GUO C, LI Y E, YOU S C, QIN X B, CHEN H L. Effects of elevated air temperature and carbon dioxide concentration on nitrogen use of double rice (Oryza sativa L.) in open-top chambers. Acta Agronomica Sinica, 2015,41(8):1295-1303. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01295
[38] SAKAI H, HASEGAWA T, KOBAYASHI K. Enhancement of rice canopy carbon gain by elevated CO2 is sensitive to growth stage and leaf nitrogen concentration. New Phytologist, 2006,170:321-332.
doi: 10.1111/nph.2006.170.issue-2
[39] YANG L X, HUANG J Y, YANG H J, DONG G C, LIU H J, LIU G, ZHU J G, WANG Y L. Seasonal changes in the effects of free-air CO2 enrichment (FACE) ion nitrogen (N) uptake and utilization of rice at three levels of N fertilization. Field Crops Research, 2007,100:189-199.
doi: 10.1016/j.fcr.2006.07.003
[40] SINCLAIR T R, PINTER P J, KIMBALL B A, ADAMSEN F J, LAMORTE R L, WALL G W, HUNSAKER D J, ADAM N, BROOKS T J, GARCIA R L, THOMPSON T, LEAVITT S, MATTHIAS A. Leaf nitrogen concentration of wheat subjected to elevated CO2 and either water or N deficits. Agriculture Ecosystems and Environment, 2000,79:53-60.
doi: 10.1016/S0167-8809(99)00146-2
[41] LI Y S, YU Z H, YANG S C, WANG G H, LIU X B, WANG C Y, XIE Z H, JIN J. Impact of elevated CO2 on C: N: P ratio among soybean cultivars. Science of the Total Environment, 2019,694:1-7.
[42] COTRUFO M F, INESON P, SCOTT A. Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biology, 1998,4:43-54.
doi: 10.1046/j.1365-2486.1998.00101.x
[43] REICH P B, HUNGATE B A, LUO Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annual Review of Ecology Evolution and Systematics, 2006,37:611-636.
doi: 10.1146/annurev.ecolsys.37.091305.110039
[44] FENG Z Z, RUETTING T, PLEIJEL H, WALLIN G, REICH P B, KAMMANN C I, NEWTON P C D, KOBAYASHI K, LUO Y J, UDDLING J. Constraints to nitrogen acquisition of terrestrial plants under elevated CO2. Global Change Biology, 2015,21:3152-3168.
doi: 10.1111/gcb.12938 pmid: 25846203
[45] ALEJANDRO D P, PILAR P, DIEGO G, AITOR A, ROSA M, RAFAEL M C. Gas exchange acclimation to elevated CO2 in upper-sunlit and lower-shaded canopy leaves in relation to nitrogen acquisition and partitioning in wheat grown in field chambers. Environmental and Experimental Botany, 2006,59(3):371-380.
doi: 10.1016/j.envexpbot.2006.04.009
[46] HOCKING P J, MEYER C P. Effects of CO2 enrichment and nitrogen stress on growth, and partitioning of dry-matter and nitrogen in wheat and maize. Australian Journal of Plant Physiology, 1991,18:339-356.
[47] MAITY P P, CHAKRABARTI B, BHATIA A, PURAKAYASTHA T J, SAHA N D, JATAV R S, SHARMA A, BHOWMIK A, KUMAR V, CHAKRABORTY D. Effect of Elevated CO2 and Temperature on Growth of Rice Crop. International Journal of Current Microbiology and Applied Sciences, 2019,8:1906-1911.
[48] TIAN Y, ZHENG C, CHEN J, CHEN C Q, DENG A X, SONG Z W, ZHANG B M, ZHANG W J. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in east China. Plos One, 2014,9(4):0095108.
[49] TAHIR I S A, NAKATA N. Remobilization of nitrogen and carbohydrate from stems of bread wheat in response to heat stress during grain filling. Journal of Agronomy and Crop Science, 2010,191(2):106-115.
doi: 10.1111/jac.2005.191.issue-2
[50] AN Y A, WAN S Q, ZHOU X H, SUBEDAR A A, WALLACE L L, LUO Y Q. Plant nitrogen concentration, use efficiency, and contents in a tallgrass prairie ecosystem under experimental warming. Global Change Biology, 2005,11:1733-1744.
[51] ROY K S, BHATTACHARYYA P, NEOGI S, RAO K S, ADHYA T K. Combined effect of elevated CO2 and temperature on dry matter production, net assimilation rate, C and N allocations in tropical rice (Oryza sativa L.). Field Crops Research, 2012,139:71-79.
[52] WANG J Q, LIU X Y, ZHANG X H, SMITH P, LI L Q, FILLEY T R, CHENG K, SHEN M X, HE Y B, PAN G X. Size and variability of crop productivity both impacted by CO2 enrichment and warming-A case study of 4 year field experiment in a Chinese paddy. Agriculture, Ecosystems and Environment, 2016,221:40-49.
[53] MACABUHAY A, HOUSHMANDFAR A, NUTTALL J, FITZGERALD G J, TAUSZ M, TAUSZ-POSCH S. Can elevated CO2 buffer the effects of heat waves on wheat in a dryland cropping system? Environmental and Experimental Botany, 2018,155:578-588.
[54] WANG W L, CAI C, HE J, GU J F, ZHU G L, ZHANG W Y, ZHU J G, LIU G. Yield, dry matter distribution and photosynthetic characteristics of rice under elevated CO2 and increased temperature conditions. Field Crops Research, 2020,248:107605.
[55] 赵满兴, 周建斌, 杨绒, 郑险峰, 翟丙年, 李生秀. 不同施氮量对旱地不同品种冬小麦氮素累积、运输和分配的影响. 植物营养与肥料学报, 2006,12(2):143-149.
ZHAO M X, ZHOU J B, YANG R, ZHENG X F, ZHAI B N, LI S X. Characteristics of nitrogen accumulation, distribution and translocation in winter wheat on dryland. Plant Nutrition and Fertilizer Science, 2006,12(2):143-149. (in Chinese)
[56] 史作民, 唐敬超, 程瑞梅, 罗达, 刘世荣. 植物叶片氮分配及其影响因子研究进展. 生态学报, 2015,35(18):5909-5919.
SHI Z M, TANG J C, CHENG R M, LUO D, LIU S R. A review of nitrogen allocation in leaves and factors in its effects. Chinese Journal of Applied Ecology, 2015,35(18):5909-5919. (in Chinese)
[57] 庞静, 朱建国, 谢祖彬, 陈改苹, 刘刚, 张雅丽. 自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响. 中国水稻科学, 2005,19(4):350-354.
PANG J, ZHU J G, XIE Z B, CHEN G P, LIU G, ZHANG Y L. Effects of elevated CO2 on nutrient uptake by rice and nutrient contents in rice grain. Chinese Journal of Rice Science, 2005,19(4):350-354. (in Chinese)
[58] HAN X, HAO X Y, LAM S K, WANG H R, LI Y C, WHEELER T, JU H, LIN E. Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment. Agriculture, Ecosystems and Environment, 2015,209:132-137.
[59] 马红亮, 朱建国, 谢祖彬, 曾青, 刘钢. CO2浓度升高对水稻生物量及C、N吸收分配的影响. 中国生态农业学报, 2005,13(3):38-41.
MA H L, ZHU J G, XIE Z B, ZENG Q, LIU G. Effects of CO2 enrichment on the allocation of biomass and C, N uptake in rice organs. Chinese Journal of Eco-Agriculture, 2005,13(3):38-41. (in Chinese)
[60] 王品, 魏星, 张朝, 陈一, 宋骁, 史培军, 陶福禄. 气候变暖背景下水稻低温冷害和高温热害的研究进展. 资源科学, 2014,36(11):2316-2326.
WANG P, WEI X, ZHANG C, CHEN Y, SONG X, SHI P J, TAO F L. A review of cold injury and heat damage to rice growth under global warming. Resources Science, 2014,36(11):2316-2326. (in Chinese)
[61] KIM H Y, LIM S S, KWAK J H, LEE D S, LEE S M, RO H M, CHOI W J. Dry matter and nitrogen accumulation and partitioning in rice (Oryza sativa L.) exposed to experimental warming with elevated CO2. Plant and Soil, 2011,342:59-71.
[62] JAUREGUI I, AROCA R, GARNICA M, ZAMARRENO A M, GARCIA-MINA J M, SERRET M D, PARRY M, IRIGOYEN J J, ARANJUELO I. Nitrogen assimilation and transpiration: key processes conditioning responsiveness of wheat to elevated CO2 and temperature. Plant Physiology, 2015,155:338-354.
[63] 孟红娜, 王开运, 邹春静, 张远彬. 复合群落土壤微生物和酶活性对大气CO2浓度和温度升高的响应. 广西植物, 2007,27(6):861-866.
MENG H N, WANG K Y, ZOU C J, ZHANG Y B. Responses of soil microbes and enzyme of compound community to elevated atmospheric CO2 concentration and temperature. Guihala, 2007,27(6):861-866. (in Chinese)
[64] GROVER M, MAHESWARI M, DESAI S, GOPINATH K A, VENKATESWARLU B. Elevated CO2: Plant associated microorganisms and carbon sequestration. Applied Soil Ecology, 2015,95:73-85.
[65] BARNARD R, LEADLEY P W, HUNGATE B A. Global change, nitrification, and denitrification: A review. Global Biogeochemical Cycles, 2005,19:1-13.
[66] HU S J, TU C, CHEN X, GRUVER J B. Progressive N limitation of plant response to elevated CO2: a microbiological perspective. Plant and Soil, 2006,289:47-58.
doi: 10.1007/s11104-006-9093-4
[67] RUSTAD L E, CAMPBELL J L, MARION G M, NORBY R J, MITCHELL M J, HARTLEY A E, CORNELISSEN J H C, GUREVITCH J. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001,126:543-562.
doi: 10.1007/s004420000544 pmid: 28547240
[68] BARNARD R, BARTHES L, LEADLEY P W. Short-term uptake of 15N by a grass and soil micro-organisms after long-term exposure to elevated CO2. Plant and Soil, 2006,280:91-99.
[69] 张彭良. 模拟增温对春小麦生长发育、根区土壤呼吸速率及酶活性的影响. 河南农业科学, 2016,45(10):55-59.
ZHANG P L. Effects of simulated enhancement of temperature on growth and root soil respiration rate and enzyme activity of spring wheat. Journal of Henan Agricultural Sciences, 2016,45(10):55-59. (in Chinese)
[70] WEI L, RAZAVI B S, WANG W, ZHU Z K, LIU S L, WU J S, KUZYAKOV Y, GE T D. Labile carbon matters more than temperature for enzyme activity in paddy soil. Soil Biology and Biochemistry, 2019,135:134-143.
[71] 刘远, 王光利, 李恋卿, 潘根兴. 土壤硝化和反硝化微生物群落及活性对大气CO2浓度和温度升高的响应. 环境科学, 2017,38(3):1245-1252.
LIU Y, WANG G L, LI L Q, PAN G X. Response of soil nitrifier and denitrifier community and activity to elevated atmospheric CO2 concentration and temperature. Environment Science, 2017,38(3):1245-1252. (in Chinese)
[72] 周娅. 旱作玉米农田土壤酶活性及微生物量碳氮对施氮、覆膜与大气CO2浓度升高的响应[D]. 杨凌: 西北农林科技大学, 2019.
ZHOU Y. Effects of nitrogen fertilization, film mulching and elevated CO2 on soil enzyme activities and microbial biomass carbon and nitrogen in a spring maize field, loess plateau[D]. Yangling: Northwest Agriculture and Forestry University, 2019. (in Chinese)
[73] 王大力, 林伟宏. CO2 浓度升高对水稻根系分泌物的影响—总有机碳、甲酸和乙酸含量变化. 生态学报, 1999,19(4):570-572.
WANG D L, LIN W H. Effects of CO2 elevation on root exudates in rice. Acta Ecologica Sinica, 1999,19(4):570-572. (in Chinese)
[74] 杨菲, 郭嘉, 户其亮, 朱建国, 张卫建. 稻田水体可溶性有机碳与可溶性氮对大气CO2浓度增高的响应. 环境科学学报, 2009,29(7):1542-1548.
YANG F, GUO J, HU Q L, ZHU J G, ZHANG W J. Responses of dissolved organic C and N in paddy field water to elevated atmospheric CO2. Acta Scientiae Circumstantia, 2009,29(7):1542-1548. (in Chinese)
[75] MONTEALEGRE C M, VAN KESSEL C, RUSSELLE M P, SADOWSKY M J. Changes in microbial activity and composition in a pasture ecosystem exposed to elevated atmospheric carbon dioxide. Plant and Soil, 2002,243:197-207.
[76] MOORHEAD D L, LINKINS A E. Elevated CO2 alters belowground exoenzyme activities in tussock tundra. Plant and Soil, 1997,189:321-329.
[77] SCHNEIDER M K, LUSCHER A, RICHTER M, AESCHLIMANN U, HARTWIG U A, BLUM H, FROSSARD E, NOSBERGER J. Ten years of free-air CO2 enrichment altered the mobilization of N from soil in Lolium perenne L. swards. Global Change Biology, 2004,10:1377-1388.
[78] BARRETT J E, BURKE I C. Potential nitrogen immobilization in grassland soils across a soil organic matter gradient. Soil Biology and Biochemistry, 2000,32:1707-1716.
[79] THORNLEY J H M, CANNELL M G R. Dynamics of mineral N availability in grassland ecosystems under increased CO2: hypotheses evaluated using the Hurley Pasture Model. Plant and Soil, 2000,224:153-170.
[80] LUO Y Q, SU B, WILLIAM S C, CURRIE W S, DUKES J S, FINZI A C, HARTWIG U, HUNGATE B, MCMURTRIE R E, OREN R, PARTON W J, PATAKI D E, SHAW M R, ZAK D R, FIELD C B. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 2004,54:731-739.
[81] TORBERT H A, PRIOR S A, ROGERS H H, WOOD C W. Review of elevated atmospheric CO2 effects on agroecosystems: residue decomposition processes and soil C storage. Plant and Soil, 2000,224:59-73.
[82] COOKSON W R, OSMAN M, MARSCHNER P, ABAYE D A, CLARK I, MURPHY D V, STOCKDALE E A, WATSON C A. Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature. Soil Biology and Biochemistry, 2007,39:744-756.
[83] PENDALL E, BRIDGHAM S, HANSON P J, HUNGATE B, KICKLIGHTER D W, JOHNSON D W, LAW B E, LUO Y Q, MEGONIGAL J P, OLSRUD M, RYAN M G, WAN S Q. Below- ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytologist, 2004,162:311-322.
[84] BAI E, LI S L, XU W H, LI W, DAI W W, JIANG P. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 2013,199:441-451.
[85] HAGHNIA G H, LAKZIAN A, HALAJNIA A, RAMEZANIAN A, GILKES R J, PRAKONGKEP N. Changes of nitrogen forms in a calcareous soil exposed to elevated CO2 with two atmospheric temperature levels. World Congress of Soil Science: Soil Solutions for A Changing World. Brisbane: DVD, 2010.
[86] DAI Z M, YU M J, CHEN H H, ZHAO H C, HUANG Y L, SU W Q, XIA F, CHANG S X, BROOKES P C, DAHLGREN R A, XU J M. Elevated temperature shifts soil N cycling from microbial immobilization to enhanced mineralization, nitrification and denitrification across global terrestrial ecosystems. Global Change Biology, 2020,26(9), 5267-5276.
doi: 10.1111/gcb.15211 pmid: 32614503
[87] 石玉杰. 土壤氮循环主要微生物对全球环境变化及火灾干扰的响应[D]. 哈尔滨: 东北师范大学, 2019.
SHI Y J. Response of soil nitrogen cycling related microbial groups to global environmental change and fire disturbance[D]. Harbin: Northeast Normal University, 2019. (in Chinese)
[88] HORZ H P, BARBROOK A, FIELD C B, BOHANNAN B J M. Ammonia-oxidizing bacteria respond to multifactorial global change. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(42):15136-15141.
[89] BRADY N C, WEIL R R. The nature and properties of soils. Journal of Range Management, 2002,5(6):333.
[90] 张树兰, 杨学云, 吕殿青, 同延安. 温度、水分及不同氮源对土壤硝化作用的影响. 生态学报, 2002,22(12):2147-2153.
ZHANG S L, YANG X Y, LÜ D Q, TONG Y A. Effect of soil moisture, temperature and different nitrogen fertilizers on nitrification. Acta Agronomica Sinica, 2002,22(12):2147-2153. (in Chinese)
[91] MAHENDRAPPA M K, SMITH R L, CHRISTIANSEN A T. Nitrifying organisms affected by climatic region in western united states. Soil Science Society of America Journal, 1966,30(1):60.
[92] LIU Y, LI M, ZHENG J W, LI L Q, ZHANG X H, ZHENG J F, PAN G X, YU X Y, WANG J F. Short-term responses of microbial community and functioning to experimental CO2 enrichment and warming in a Chinese paddy field. Soil Biology and Biochemistry, 2014,77:58-68.
[93] NGUYEN L T T, BROUGHTON K, OSANAI Y, ANDERSON I C, BANGE M P, TISSUE D T, SINGH B K. Effects of elevated temperature and elevated CO2 on soil nitrification and ammonia- oxidizing microbial communities in field-grown crop. Science of the Total Environment, 2019,675:81-89.
[94] INESON P, COWARD P A, HARTWIG U A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant and Soil, 1998,198:89-95.
[95] CHENG Y, ZHANG J B, ZHU J G, LIU G, ZHU C W, WANG S Q. Ten years of elevated atmospheric CO2 doesn't alter soil nitrogen availability in a rice paddy. Soil Biology and Biochemistry, 2016,98:99-108.
[96] 王海涛, 郑天凌, 杨小茹. 土壤反硝化的分子生态学研究进展及其影响因素. 农业环境科学学报, 2013,32(10):1915-1924.
WANG H T, ZHENG T L, YANG X R. Molecular ecology research progress for soil denitrification and research status for its influencing factors. Journal of Agro-Environment Science, 2013,32(10):1915-1924. (in Chinese)
[97] LI L F, ZHENG Z Z, WANG W J, BIEDERMAN J A, XU X L, RAN Q W, QIAN R Y, XU C, ZHANG B, WANG F, ZHOU S T, CUI L Z, CHE R X, HAO Y B, CUI X Y, XU Z H, WANG Y F. Terrestrial N2O emissions and related functional genes under climate change: A global meta-analysis. Global Change Biology, 2019,26(2):931-943.
pmid: 31554024
[98] SMITH K A, BALL T, CONEN F, DOBBIE K E, MASSHEDER J, REY A. Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. European Journal of Soil Science, 2018,69:10-20.
[99] RAKSHIT R, PATRA A K, PAL D, KUMAR M, SINGH R. Effect of elevated CO2 and temperature on nitrogen dynamics and microbial activity during wheat (Triticum aestivum L.) growth on a subtropical inceptisol in India. Journal of Agronomy and Crop Science, 2012,198:452-465.
[100] GANS J, WOLINSKY M, DUNBAR J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science, 2005,309:1387-1390.
pmid: 16123304
[101] LU Y H, CONRAD R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005,309:1088-1090.
doi: 10.1126/science.1113435 pmid: 16099988
[102] DENEF V J, KALNEJAIS L H, MUELLER R S, WILMES P, BAKER B J, THOMAS B C, VERBERKMOES N C, HETTICH R L, BANFIELD J F. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proceedings of the National Academy of Sciences, 107:2383-2390.
[103] BENNDORF D, VOGT C, JEHMLICH N, SCHMIDT Y, THOMAS H, WOFFENDIN G, SHEVCHENKO A, RICHNOW H H, VON B M. Improving protein extraction and separation methods for investigating the metaproteome of anaerobic benzene communities within sediments. Biodegradation, 2009,20(6):737-750.
doi: 10.1007/s10532-009-9261-3 pmid: 19381451
[1] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[5] YU QiLong,HAN YingYan,HAO JingHong,QIN XiaoXiao,LIU ChaoJie,FAN ShuangXi. Effect of Exogenous Spermidine on Nitrogen Metabolism of Lettuce Under High-Temperature Stress [J]. Scientia Agricultura Sinica, 2022, 55(7): 1399-1410.
[6] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[7] HUANG ZhaoFu, LI LuLu, HOU LiangYu, GAO Shang, MING Bo, XIE RuiZhi, HOU Peng, WANG KeRu, XUE Jun, LI ShaoKun. Accumulated Temperature Requirement for Field Stalk Dehydration After Maize Physiological Maturity in Different Planting Regions [J]. Scientia Agricultura Sinica, 2022, 55(4): 680-691.
[8] HU ChaoYue, WANG FengTao, LANG XiaoWei, FENG Jing, LI JunKai, LIN RuiMing, YAO XiaoBo. Resistance Analyses on Wheat Stripe Rust Resistance Genes to the Predominant Races of Puccinia striiformis f. sp. tritici in China [J]. Scientia Agricultura Sinica, 2022, 55(3): 491-502.
[9] LIU ZhenRong,ZHAO WuQi,HU XinZhong,HE LiuCheng,CHEN YueYuan. Optimization of Drying Process in Oat Noodle Production [J]. Scientia Agricultura Sinica, 2022, 55(24): 4927-4942.
[10] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[11] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[12] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[13] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[14] CHEN Yang,XU MengZe,WANG YuHong,BAI YouLu,LU YanLi,WANG Lei. Quantitative Study on Effective Accumulated Temperature and Dry Matter and Nitrogen Accumulation of Summer Maize Under Different Nitrogen Supply Levels [J]. Scientia Agricultura Sinica, 2022, 55(15): 2973-2987.
[15] LAN Qun,XIE YingYu,CAO JiaCheng,XUE LiE,CHEN DeJun,RAO YongYong,LIN RuiYi,FANG ShaoMing,XIAO TianFang. Effect and Mechanism of Caffeic Acid Phenethyl Ester Alleviates Oxidative Stress in Liquid Preservation of Boar Semen Via the AMPK/FOXO3a Signaling Pathway [J]. Scientia Agricultura Sinica, 2022, 55(14): 2850-2861.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!