Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (24): 5039-5049.doi: 10.3864/j.issn.0578-1752.2020.24.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of Long-Term Cultivation on Contents of Organic Carbon and Total Nitrogen in Soil Particulate Fraction in Oasis Farmland of Xinjiang

TANG GuangMu1,2(),ZHANG YunShu2,XU WanLi2,MA HaiGang2,HU KeLin1()   

  1. 1College of Land Science and Technology, China Agricultural University, Beijing 100193
    2Soil Fertilizer and Agricultural Water Saving Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 890091
  • Received:2020-04-02 Accepted:2020-05-08 Online:2020-12-16 Published:2020-12-28
  • Contact: KeLin HU E-mail:tangjunhui5120@126.com;hukel@cau.edu.cn

Abstract:

【Objective】Particulate organic carbon and total nitrogen are the important components of soil organic carbon (SOC) and total nitrogen (TN), which has an effect on SOC and TN turnover and sequestration. Therefore, studies exploring the changes in soil particulate organic carbon and total nitrogen under different tillage years could aid the understanding of the mechanism of regional soil carbon and nitrogen fixation, so as to provide a scientific basis for improving land productivity. 【Method】In this study, soil samples from the farmlands with different tillage years (0, 5, 10, 15, and 20 years) in the three typical oases (Lanzhouwan, 31 corps, and Puhui farms) of Tianshan were collected, and the SOC and TN contents of different particle components were determined. And then, the effects of long-term tillage on SOC and TN contents of different particle components were analyzed. 【Result】Results indicated that long-term tillage practices increased SOC and TN accumulation. SOC and TN contents increased rapidly during the first five years of tillage and then tended to be stable after five years of tillage. SOC contents increased to 76.4% (Lanzhouwan), 286.2% (31 corps), and 145.6% (Puhui farms) of the SOC contents in uncultivated land. Similarly, TN contents increased to 14.7%, 58.9%, and 75.0%, respectively. The effects of long-term tillage practices on OC contents in different particles components were different. The organic carbon (OC) contents in sand showed a downward trend after reaching a maximum value (10-15 years tillage), and then showed a increasing trend, but it remained higher than that of an uncultivated land. After 20 years of tillage, OC contents in sand were increased by 0.63 g·kg-1 (Lanzhouwan), 0.89 g·kg-1 (31 corps), and 1.56 g·kg-1 (Puhui farms). While, the contents of OC in silt and clay showed a continuous increasing trend with tillage time, After 20 years of tillage, OC contents in silt and clay were increased by 0.42-2.39 g·kg-1 (Lanzhouwan), 2.64-3.39 g·kg-1 (31 corps), and 1.36-2.72 g·kg-1 (Puhui farms). However, the effect of long-term tillage practices on TN in different particles components was complex. The OC contents in sand showed a continuous increasing trend, After 20 years of tillage, TN contents in sand were increased by 0.24 g·kg-1 (Lanzhouwan), 0.40 g·kg-1 (31 corps), 0.29 g·kg-1 (Puhui farms).. The content of TN in silt decreased (0-10 years of tillage) initially and then increased (10-20 years). TN in clay increased by 67.6% in Lanzhouwan, 306.3% in 31 corps, and 91.3% in Puhui farms during 0-10 years of tillage and decreased after 10 years of tillage. With regard to particle components, OC and TN in silt had the largest proportions, accounted for 43.3%-56.1% and 30.2%-72.2% of SOC and TN, respectively. Tillage affected the distribution proportions of OC and TN in different components. The distribution proportion of OC in sand increased during the first 10 years and decreased in the subsequent 10 years. The distribution proportion of TN in sand was increased by 14.8% in Lanzhouwan, 19.8% in 31 corps, and 29.0% in Puhui farms after 20 years of tillage. Soil C/N was increased by 40.3%-142.9% during 0-5 years of tillage, and no significant change was observed after 5 years of tillage. Tillage changed C/N ratio in different particles components, and the largest C/N ratio was obtained in sand during 0-10 years of tillage. During the subsequent 10 years, the largest C/N ratio was obtained in silt. 【Conclusion】The SOC and TN contents and their stocks increased over tillage years in the oasis farmland of Xinjiang. The contents and its distribution proportions of OC and TN in different particles components were also changed. We found that the contents of OC and TN in silt fraction were the largest components of the fixed SOC and TN in the study area.

Key words: tillage, particulate component, carbon-nitrogen ratio, Oasis farmland

Table 1

Basic physical-chemical properties of surface soil"

采样点
Sampling site
pH 容重
Bulk density
(g·cm-3)
碱解氮
Available N (mg·kg-1)
速效磷
Available P (mg·kg-1)
速效钾
Available K (mg·kg-1)
电导率
EC
(mS·cm-1)
阳离子交换量
CEC
(cmol·kg-1)
兰州湾 Lanzhouwan 8.18±0.19 1.41±0.18 53.33±45.97 14.07±21.43 380.00±144.00 1.66±0.69 11.31±9.11
31团 31 corps 8.03±0.09 1.41±0.19 50.25±6.32 28.72±8.21 135.00±9.40 0.58±0.09 10.56±1.26
普惠农场 Puhui farm 7.92±0.13 1.47±0.13 47.35±10.32 60.09±28.17 128.40±23.84 1.21±0.51 9.37±1.86

Fig. 1

Change of the content of SOC and TN in different tillage years"

Table 2

Organic carbon and total nitrogen content of soil particles components in different tillage years"

采样区
Sampling site
耕作年限
Tillage year
(a)
砂粒 Sand(>50 μm) 粉粒 Silt(2-50 μm) 黏粒 Clay(<2 μm)
有机碳
Organic carbon
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
有机碳
Organic carbon
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
有机碳
Organic carbon
(g·kg-1)
全氮
Total nitrogen
(g·kg-1)
兰州湾
Lanzhouwan
0 0.40±0.12c 0.07±0.00d 1.57±0.50c 0.56±0.05ab 1.65±0.20d 0.37±0.01d
5 1.10±0.57b 0.09±0.00d 2.95±0.59b 0.52±0.03b 2.34±0.13bc 0.56±0.07ab
10 1.25±0.74a 0.16±0.02c 3.03±0.35b 0.49±0.04b 2.48±0.47ab 0.62±0.05bc
15 1.02±0.38b 0.24±0.01b 3.11±0.86b 0.61±0.07ab 2.88±0.22a 0.48±0.05a
20 1.03±0.58b 0.31±0.07a 3.96±0.49a 0.69±0.10a 2.07±0.21c 0.40±0.04cd
31团
31 corps
0 0.32±0.18d 0.02±0.00d 1.02±0.70d 0.53±0.02a 0.57±0.20c 0.16±0.01c
5 1.34±0.34b 0.14±0.01c 3.39±0.49c 0.42±0.07a 2.61±0.69b 0.59±0.11ab
10 1.52±0.78a 0.21±0.03b 3.72±0.91b 0.38±0.01a 2.54±0.37b 0.65±0.09a
15 1.31±0.50bc 0.25±0.01ab 4.15±0.58a 0.47±0.06a 2.77±0.18b 0.54±0.03b
20 1.21±0.96c 0.31±0.05a 4.41±0.47a 0.54±0.03a 3.21±0.32a 0.49±0.07b
普惠农场
Puhui farm
0 0.42±0.44c 0.04±0.00d 1.04±0.17d 0.32±0.00b 0.77±0.29c 0.23±0.01d
5 1.51±0.96b 0.19±0.01c 2.39±0.51c 0.41±0.05b 1.59±0.29b 0.39±0.04b
10 1.72±0.11ab 0.36±0.03b 2.41±0.50c 0.43±0.03b 1.75±0.24ab 0.44±0.03a
15 2.05±0.79a 0.42±0.02ab 3.41±0.70b 0.58±0.09a 2.00±0.23ab 0.36±0.01c
20 1.98±0.17a 0.51±0.06a 3.76±0.76a 0.64±0.11a 2.13±0.47a 0.25±0.00d

Fig. 2

Distribution of SOC and TN in different particle fractions in different tillage years"

Fig. 3

Relationship between SOC or TN and carbon or nitrogen in different particle fractions"

Table 3

C﹕N ratio of soil its fractions in different tillage years"

采样区
Sampling site
耕作年限
Tillage year (a)
土壤碳氮比
C/N
颗粒组分碳氮比C/N in particle fractions
砂粒Sand (>50 μm) 粉粒Silt (2-50 μm) 黏粒Clay (<2 μm)
兰州湾
Lanzhouwan
0 3.55±0.97b 6.14±0.12bc 2.82±0.55b 4.41±0.21bc
5 5.46±0.70a 12.22±0.57a 5.72±0.62a 4.16±0.20c
10 5.24±0.78a 7.81±0.76b 6.16±0.39a 4.00±0.52c
15 5.23±0.86a 4.32±0.39cd 5.08±0.93a 6.00±0.27a
20 4.77±0.95ab 3.28±0.65d 5.71±0.59a 5.16±0.25ab
31团
31 corps
0 2.61±0.36b 18.16±0.18a 1.94±0.72c 3.46±0.21d
5 6.34±0.62a 9.43±0.35b 8.16±0.56b 4.46±0.80c
10 6.14±0.73a 7.12±0.81c 9.71±0.92ab 3.88±0.46cd
15 6.10±0.40a 5.23±0.51cd 8.77±0.64ab 5.17±0.21b
20 6.31±0.38a 3.89±1.01d 8.12±0.50b 6.53±0.35a
普惠农场
Puhui farm
0 3.72±0.48c 10.14±0.44a 3.28±0.17b 3.38±0.30d
5 5.22±0.32ab 8.07±0.97b 5.85±0.56a 4.07±0.33c
10 4.78±0.46b 4.78±0.14c 5.60±0.53a 3.96±0.27c
15 5.43±0.58ab 4.88±0.81c 5.86±0.79a 5.59±0.24b
20 5.54±0.73a 3.88±0.23b 5.84±0.87a 8.41±0.47a
[1] 戴尔阜, 黄宇, 赵东升. 草地土壤固碳潜力研究进展. 生态学报, 2015,35(12):3908-3918.
doi: 10.5846/stxb201310212541
DAI E F, HUANG Y, ZHAO D S. Review on soil carbon sequestration potential in grassland ecosystems. Acta Ecologica Sinica, 2015,35(12):3908-3918. (in Chinese)
doi: 10.5846/stxb201310212541
[2] 龚伟, 颜晓元, 蔡祖聪, 王景燕, 胡庭兴, 宫渊波, 冉华. 长期施肥对小麦-玉米作物系统土壤颗粒有机碳和氮的影响. 应用生态学报, 2008,19(11):2375-2381.
GONG W, YAN X Y, CAI Z C, WANG J Y, HU T X, GONG Y B, RAN H. Effect of long-term fertilization on soil particulate organic and nitrogen in a wheat-maize cropping system. Chinese Journal of Applied Ecology, 2008,19(11):2375-2381. (in Chinese)
[3] 王娜, 朱小叶, 方晰, 辜翔, 陈金磊. 中亚热带退化林地土壤有机碳及不同粒径土壤颗粒有机碳的变化. 水土保持学报, 2018,32(3):218-225.
WANG N, ZHU X Y, FANG X, GU X, CHEN J L. The variation of soil organic carbon and soil particle-sizes in different degraded forests in the subtropical region. Journal of Soil and Water Conservation, 2018,32(3):218-225. (in Chinese)
[4] 黄雅楠, 黄丽, 薛斌, 成莉娟, 李小坤, 鲁剑巍. 保护性耕作对水-旱轮作土壤有机碳组分的影响—基于密度分组法. 土壤通报, 2019,50(1):109-114.
HUANG Y N, HUANG L, XUE B, CHENG L J, LI X K, LU J W. Effect of conservation tillage on soil carbon fractions in paddy-upland rotation: Based on density grouping method. Chinese Journal of Soil Science, 2019,50(1):109-114. (in Chinese)
[5] 武天云, SCHOENAU J J, 李凤民, 钱佩源, 王方, MALHI S S. 利用离心法进行土壤颗粒分级. 应用生态学报, 2004,15(3):477-481.
pmid: 15228001
WU T Y, SCHOENAU J J, LI F M, QIAN P Y, WANG F, MALHI S S. Soil particle size fractionation with centrifugation method. Chinese Journal of Applied Ecology, 2004,15(3):477-481. (in Chinese)
pmid: 15228001
[6] CHRISTENSEN B T. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Soil Science New York, 1992,20.
[7] MANDAL N, DWIVEDI B S, MEENA M C, SINGH D, DATTA S P, TOMAR P K, SHARMA B M. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea-wheat cropping system. Field Crops Research, 2013,154(6):178-187.
doi: 10.1016/j.fcr.2013.08.007
[8] FALLOON P D, SMITH P. Modelling refractory soil organic matter. Biology and Fertility of Soils, 2000,30:388-398.
doi: 10.1007/s003740050019
[9] 王建林, 钟志明, 王忠红, 陈宝雄, 余成群, 胡兴祥, 沈振西, 大次卓嘎, 张宪洲. 青藏高原高寒草原生态系统土壤碳氮比的分布特征. 生态学报, 2014,34(22):6678-6691.
doi: 10.5846/stxb201302130263
WANG J L, ZHONG Z M, WANG Z H, CHEN B X, YU C Q, HU X X, SHEN Z X, DACIZHUOGA, ZHANG X Z. Soil C/N distribution characteristics of alpine steppe ecosystem in Qinhai-Tibetan Plateau. Acta Ecologica Sinica, 2014,34(22):6678-6691. (in Chinese)
doi: 10.5846/stxb201302130263
[10] 谢钧宇, 孟会生, 焦欢, 洪坚平, 张杰, 李丽娜, 黄晓磊, 栗丽, 赵林婷, 李廷亮. 施肥对复垦土壤中活性和难降解碳氮组分的影响. 应用与环境生物学报, 2019,25(5):1113-1121.
XIE J Y, MENG H S, JIAO H, HONG J P, ZHANG J, LI L N, HUANG X L, LI L, ZHAO L T, LI T L. Effects of fertilization regimes on organic carbon and total nitrogen in labile and recalcitrant fractions in reclaimed soils. Chinese Journal of Applied and Environmental Biology, 2019,25(5):1113-1121. (in Chinese)
[11] 胡乃娟, 韩新忠, 杨敏芳, 张政文, 卞新民, 朱利群. 秸秆还田对稻麦轮作农田活性有机碳组分含量、酶活性及产量的短期效应. 植物营养与肥料学报, 2015,21(2):371-377.
doi: 10.11674/zwyf.2015.0211
HU N J, HAN X Z, YANG M F, ZHANG Z W, BIAN X M, ZHU L Q. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice-wheat rotation farmland. Journal of Plant Nutrition and Fertilizer, 2015,21(2):371-377. (in Chinese)
doi: 10.11674/zwyf.2015.0211
[12] LENKA N K, LAL R. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil & Tillage Research, 2013,126:78-89.
[13] BURNS R G, DEFOREST J L, MARXSEN J, SINSABAUGH R L, STROMBERGER M E, WALLENSEIN M D, WEINRAUB M N, ZOPPINI A. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology & Biochemistry, 2013,58:216-234.
doi: 10.1016/j.soilbio.2012.11.009
[14] ZUBER S M, VILLAMIL M B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biology & Biochemistry, 2016,97:176-187.
doi: 10.1016/j.soilbio.2016.03.011
[15] 李彤, 王梓廷, 刘露, 廖允成, 刘杨, 韩娟. 保护性耕作对西北旱区土壤微生物空间分布及土壤理化性质的影响. 中国农业科学, 2017,50(5):859-870.
doi: 10.3864/j.issn.0578-1752.2017.05.009
LI T, WANG Z T, LIU L, LIAO Y C, LIU Y, HAN J. Effect of conservation tillage practices on soil microbial spatial distribution and soil physico-chemical properties of the Northwest Dryland. Scientia Agricultura Sinica, 2017,50(5):859-870. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.05.009
[16] 徐梦, 李晓亮, 蔡晓布, 李晓林, 张旭博, 张俊伶. 藏东南地区不同土地利用方式下土壤有机碳组分及周转变化特征. 中国农业科学, 2018,51(19):3714-3725.
doi: 10.3864/j.issn.0578-1752.2018.19.009
XU M, LI X L, CAI X B, LI X L, ZHANG X B, ZHANG J L. Impact of land use type on soil organic carbon fractionation and turnover in southeastern Tibet. Scientia Agricultura Sinica, 2018,51(19):3714-3725. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.19.009
[17] 佟小刚, 徐明岗, 张文菊, 卢昌艾. 长期施肥对红壤和潮土颗粒有机碳含量与分布的影响. 中国农业科学, 2008,41(11):3664-3671.
TONG X G, XU M G, ZHANG W J, LU C A. Influence of long-term fertilization on content and distribution of organic carbon in particle-size fractions of red soil and fluvo-aquic soil in China. Scientia Agricultura Sinica, 2008,41(11):3664-3671. (in Chinese)
[18] WU T Y, SCHOENAU J J, LI F M, QIAN P Y, MALHI S S, SHI Y C. Influence of fertilization and organic amendments on organic-carbon fractions in Heilu soil on the loess plateau of China. Journal of Plant Nutrition and Soil Science, 2005,168:100-107.
doi: 10.1002/(ISSN)1522-2624
[19] 陈洁, 梁国庆, 周卫, 王秀斌, 孙静文, 刘东海, 胡诚. 长期施用有机肥对稻麦轮作体系土壤有机碳氮组分的影响. 植物营养与肥料学报, 2019,25(1):36-44.
CHEN J, LIANG G Q, ZHOU W, WANG X B, SUN J W, LIU D H, HU C. Responses of soil organic carbon and nitrogen fraction to long-term organic fertilization under rice-wheat rotation. Journal of Plant Nutrition and Fertilizer, 2019,25(1):36-44. (in Chinese)
[20] SCHULTEN H R, LEINWEBER P. Influence of long-term fertilization with farmyard manure on soil organic matter: characteristics of particle-size fractions. Biology and Fertility of Soils. 1991,12:81-88.
doi: 10.1007/BF00341480
[21] 中国土壤学会农业化学专业委员会编. 土壤农业化学常规分析方法. 北京: 科学出版社, 1983: 105-107.
Professional Committee of Chinese Soil Science Society of Agricultural Chemistry. Conventional Methods for Soil and Agricultural Chemistry Analysis. Beijing: Science Press, 1983: 105-107. (in Chinese)
[22] 张电学, 韩志卿, 吴素霞, 范海荣, 谢新宇, 常连生, 王秋兵. 不同施肥制度对褐土有机氮及其组分的影响. 华北农学报, 2017,32(3):201-206.
ZHANG D X, HAN Z Q, WU S X, FAN H R, XIE X Y, CHANG L S, WANG Q B. Effect of different fertilization regimes on organic nitrogen and its fractions in Cinnamon soil. Acta Agriculturae Boreali-Sinica, 2017,32(3):201-206. (in Chinese)
[23] 任书杰, 曹明奎, 陶波, 李克让. 陆地生态系统氮状态对碳循环的限制作用研究进展. 地理科学进展, 2006,25(4):58-67.
doi: 10.11820/dlkxjz.2006.04.007
REN S J, CAO M K, TAO B, LI K R. The effects of nitrogen limitation on terrestrial ecosystem carbon cycle: a review. Progress in Geography, 2006,25(4):58-67. (in Chinese)
doi: 10.11820/dlkxjz.2006.04.007
[24] 刘洪来, 张卫华, 王堃. 开垦对农牧交错地带性和非地带性草地土壤性质的影响. 农业工程学报, 2009,25(10):272-277.
LIU H L, ZHANG W H, WANG K. Effect of reclamation on soil properties of zonal and intrazonal grasslands in agro-pastoral, ecotone. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(10):272-277. (in Chinese)
[25] HOUGHTON R A, HACKLERL J L. Continential scale estimates of the biotic carbon flux from land cover change: 1850-1980. Oak Ridge National Laboratory, USA, 1995,144.
[26] 吴乐知, 蔡祖聪. 农业开垦对中国土壤有机碳的影响. 水土保持学报, 2007,21(6):118-134.
WU L Z, CAI Z C. Effect of agricultural cultivation on soil organic carbon in china. Journal of Soil and Water Conservation, 2007,21(6):118-134. (in Chinese)
[27] WRIGHT A L, HONS F M. Soil aggregation and carbon and nitrogen storage under soybean cropping sequence. Soil Science Society of America Journal, 2004,68:507-513.
doi: 10.2136/sssaj2004.5070
[28] MARTÍNEZ J M, GALANTINI J A, DUVAL M E, LÓPEZ F M. Tillage effects on labile pools of soil organic nitrogen in a semi-humid climate of Argentina: A long-term field study. Soil and Tillage Research, 2017,169:71-80.
doi: 10.1016/j.still.2017.02.001
[29] FRANZLUEBBERS A J, HONS F M, ZUBERER D A. Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biology and Biochemistry, 1994,26(11):1469-1475.
doi: 10.1016/0038-0717(94)90086-8
[30] 贺美, 王迎春, 王立刚, 李成全, 王利民, 李玉红, 刘平奇. 深松施肥对黑土活性有机碳氮组分及酶活性的影响. 土壤学报, http://kns.cnki.net/kcms/detail/32.1119.P.20190218.1008.006.html.
HE M, WANG Y C, WANG L G, LI C Q, WANG L M, LI Y H, LIU P Q. Effects of subsoiling combined with fertilization on the fractions of soil active organic carbon and soil active nitrogen, and enzyme activities in black soil in Northeast china. Acta Pedologica Sinica, http://kns.cnki.net/kcms/detail/32.1119.P.20190218.1008.006.html.(in Chinese)
[31] 于维水, 卢昌艾, 李桂花, 武红亮, 赵雅雯, 王碧胜, 孟繁华. 不同施肥制度下中国东部典型土壤易分解与耐分解氮的组分特征. 中国农业科学, 2015,48(15):3005-3014.
doi: 10.3864/j.issn.0578-1752.2015.15.010
YU W S, LU C A, LI G H, WU H L, ZHAO Y W, WANG B S, MENG F H. Compinent characteristics of soil labile and recalcitrant nitrogen under different long-term fertilization Systems in East China. Scientia Agricultura Sinica, 2015,48(15):3005-3014. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.15.010
[32] 刘军, 唐志敏, 刘建国, 张东升, 刘萍, 蒋桂英. 长期连作及秸秆还田对棉田土壤微生物量及种群结构的影响. 生态环境学报, 2012,21(8):1418-1422.
LIU J, TANG Z M, LIU J G, ZHANG D S, LIU P, JIANG G Y. Effect of cotton continuous cropping and returning stalks to soil on the quantities and community structure of soil microbes. Ecology and Environmental Sciences, 2012,21(8):1418-1422. (in Chinese)
[33] 徐万里, 唐光木, 盛建东, 梁智, 周勃, 朱敏. 垦殖对新疆绿洲农田土壤有机碳组分及团聚体稳定性的影响. 生态学报, 2010,30(7):1773-1779.
XU W L, TANG G M, SHENG J D, LIANG Z, ZHOU B, ZHU M. Effects of cultivation on organic carbon fractionation and aggregate stability in Xinjiang oasis soils. Acta Ecologica Sinica, 2010,30(7):1773-1779. (in Chinese)
[34] 唐光木, 徐万里, 周勃, 梁智, 葛春辉. 耕作年限对棉田土壤颗粒及矿物结合态有机碳的影响. 水土保持学报, 2013,27(3):237-241.
TANG G M, XU W L, ZHOU B, LIANG Z, GE C H. Effects of cultivation Years on particulate organic carbon and mineral-associated organic carbon in cotton soil. Journal of Soil and Water Conservation, 2013,27(3):237-241. (in Chinese)
[35] GOLCHIN A, OADES J M, SKJEMSTD J O. Soil structure and carbon cycling. Australian Journal of Soil Research, 1994,32:1043-1068
[36] 雷军, 张凤华, 林海荣, 韩春丽, 赵瑞海. 干旱区盐渍化荒地不同开垦年限土壤碳氮储量研究. 干旱地区农业研究, 2017,35(3):266-271.
LEI J, ZHANG F H, LIN H R, HAN C L, ZHAO R H. Soil carbon and nitrogen storage of different reclamation years in salinized wasteland in arid region. Agricultural Research in the Arid Areas, 2017,35(3):266-271. (in Chinese)
[37] 黄彩变, 曾凡江, 雷加强, 刘镇, 安桂香. 开垦对绿洲农田碳氮累积及其与作物产量关系的影响. 生态学报, 2011,31(18):5113-5120.
HUANG C B, ZENG F J, LEI J Q, LIU Z, AN G X. Effect of cultivation on soil organic carbon and total nitrogen accumulation in Cele oasis croplands and their relation to crop yield. Acta Ecologica Sinica, 2011,31(18):5113-5120. (in Chinese)
[1] ZHAO LiMing,HUANG AnQi,WANG YaXin,JIANG WenXin,ZHOU Hang,SHEN XueFeng,FENG NaiJie,ZHENG DianFeng. Effect of Deep Tillage Under Continuous Rotary Tillage on Yield Formation of High-Quality Japonica Rice in Cold Regions [J]. Scientia Agricultura Sinica, 2022, 55(22): 4550-4566.
[2] ZHU ChangWei,MENG WeiWei,SHI Ke,NIU RunZhi,JIANG GuiYing,SHEN FengMin,LIU Fang,LIU ShiLiang. The Characteristics of Soil Nutrients and Soil Enzyme Activities During Wheat Growth Stage Under Different Tillage Patterns [J]. Scientia Agricultura Sinica, 2022, 55(21): 4237-4251.
[3] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[4] BAI Fei,BAI GuiPing,WANG ChunYun,LI Zhen,GONG DePing,HUANG Wei,CHENG YuGui,WANG Bo,WANG Jing,XU ZhengHua,KUAI Jie,ZHOU GuangSheng. Effects of Tillage Depth and Shading on Root Growth and Nutrient Utilization of Rapeseed [J]. Scientia Agricultura Sinica, 2022, 55(14): 2726-2739.
[5] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[6] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[7] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[8] HUANG Ming,WU JinZhi,LI YouJun,FU GuoZhan,ZHAO KaiNan,ZHANG ZhenWang,YANG ZhongShuai,HOU YuanQuan. Effects of Tillage Practices and Nitrogen Fertilizer Application Rates on Grain Yield, Protein Content in Winter Wheat and Soil Nitrate Residue in Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219.
[9] ZHOU YongJie,XIE JunHong,LI LingLing,WANG LinLin,LUO ZhuZhu,WANG JinBin. Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System [J]. Scientia Agricultura Sinica, 2021, 54(23): 5054-5067.
[10] YIN Wen,GUO Yao,FAN Hong,FAN ZhiLong,HU FaLong,YU AiZhong,ZHAO Cai,CHAI Qiang. Effects of Different Plastic Film Mulching and Using Patterns on Soil Water Use of Maize in Arid Irrigated Area of Northwestern China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4750-4760.
[11] ZHANG MengTing, LIU Ping, HUANG DanDan, JIA ShuXia, ZHANG XiaoKe, ZHANG ShiXiu, LIANG WenJu, CHEN XueWen, ZHANG Yan, LIANG AiZhen. Response of Nematode Community to Soil Disturbance After Long-Term No-Tillage Practice in the Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(22): 4840-4850.
[12] YANG FengKe,HE BaoLin,DONG Bo,WANG LiMing. Effects of Black Film Mulched Ridge-Furrow Tillage on Soil Water- Fertilizer Environment and Potato Yield and Benefit Under Different Rainfall Year in Semiarid Region [J]. Scientia Agricultura Sinica, 2021, 54(20): 4312-4325.
[13] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[14] LI Jing,WU HuiJun,WU XuePing,WANG BiSheng,YAO YuQing,LÜ JunJie. Long-Term Conservation Tillage Enhanced Organic Carbon and Nitrogen Contents of Particulate Organic Matter in Soil Aggregates [J]. Scientia Agricultura Sinica, 2021, 54(2): 334-344.
[15] ZHANG ZhanJun,YANG HongWei,FAN ZhiLong,YU AiZhong,HU FaLong,YIN Wen,FAN Hong,GUO Yao,CHAI Qiang,ZHAO Cai. Water-Carrying Potential of No-Tillage with Plastic Film Mulching for 2-Year Coupled with Maize High-Density Planting in Oasis Irrigation Area [J]. Scientia Agricultura Sinica, 2021, 54(16): 3406-3416.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!