Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (22): 4787-4799.doi: 10.3864/j.issn.0578-1752.2021.22.007

• PLANT PROTECTION • Previous Articles     Next Articles

Analysis of dsRNA Carried by Alternaria alternata f. sp. mali in China and Identification of a dsRNA Virus

CAO YuHan(),LI ZiTeng(),ZHANG JingYi,ZHANG JingNa,HU TongLe,WANG ShuTong,WANG YaNan(),CAO KeQiang()   

  1. College of Plant Protection, Hebei Agricultural University, Baoding 071001, Hebei
  • Received:2021-04-06 Accepted:2021-05-10 Online:2021-11-16 Published:2021-11-19
  • Contact: YaNan WANG,KeQiang CAO E-mail:c897836047@163.com;lzt304838566@163.com;wyn3215347@163.com;cao_keqiang@163.com

Abstract:

【Objective】Apple Alternaria blotch occurs in all major apple producing areas in China, causing serious economic loss. Apple Alternaria blotch is a worldwide airborne disease caused by Alternaria alternata f. sp. mali. The objective of this study is to investigate the diversity of dsRNA of A. alternata f. sp. mali in China, and to provide new biological control resources for the disease and new understanding of virus diversity and evolutionary.【Method】Tissue samples with typical symptom were collected from eight provinces in China. Pure culture was obtained by tissue isolation and single spore separation. The diversity of dsRNA carried by A. alternata f. sp. mali in China was determined by dsRNA extraction and gel electrophoresis. The biological characteristics of dsRNA-carrying pathogens were determined by evaluation of culture characteristics, mycelial growth rate, and pathogenicity on fruits and leaves. By high throughput sequencing and molecular cloning techniques, the whole genome sequence, genome structure and phylogenetic for the mycovirus carried by QY-2 strain were analyzed.【Result】The pure culture of 102 strains of A. alternata f. sp. mali was obtained and five strains with obvious dsRNA bands were found. The dsRNA virus of A. alternata f. sp. mali in China could be divided into four types, there were about 8, 2.5 and 1.5 kb dsRNA in type I (strain YT-3-7), about 8 kb dsRNA in type II (strain SJZ-4), about 3 and 0.8 kb dsRNA in type III (strain QY-2), and about 2.5 and 1.5 kb dsRNA in type IV (strains CL-2-6 and SQ-1-1). The strains carrying dsRNA had diverse culture characteristics, and there was no significant relationship between the colony characteristics, growth rate and whether dsRNA carrying or not and its type. The strains carrying dsRNA were mostly of low pathogenicity type. It was found that QY-2 strain showed weak pathogenicity on leaves and fruits, so QY-2 was selected for virus identification. The genome of the dsRNA virus carried by the strain QY-2 consists of five dsRNA fragments, dsRNA1-dsRNA5, with the sequence sizes of 3 665, 3 054, 2 824, 2 819 and 831 nt, which were submitted to GenBank. The accession numbers are MK672910, MK672913, MK672912, MK672911, and MK836314. The molecular weights of coding proteins are 124, 83, 84, 83 and 13 kD, respectively. Phylogenetic analysis showed that it was closely related to AaCV1, so it was identified as Alternaria alternata chrysovirus belonging to Chrysoviridae and Betachrysovirus. The tentative designation is Alternaria alternata chrysovirus 2 (AaCV2). 【Conclusion】There are diverse dsRNAs in A. alternata f. sp. mali in China, and there is no significant correlation between dsRNA diversity and host pathogen culture traits. Most of the strains carrying dsRNA showed low pathogenicity. QY-2 strain with the least pathogenicity carries AaCV2. The low pathogenicity characteristic of this strain may have potential application value, which provides a new resource for biological control of apple Alternaria blotch.

Key words: apple Alternaria blotch, Alternaria alternata f. sp. mali, dsRNA, biological characteristic, pathogenicity, biological control

Table 1

The information of apple Alternaria blotch samples in this study"

序号
Number
菌株编号
Strain number
采集地点
Collection location
采集时间
Collection time
品种
Cultivar
树龄
Tree age (a)
1 ND 河北保定Baoding, Hebei 05-10 中秋王Mid-autumn King 10
2-7 WA-3, WA-8, WA-17, WA-20, WA-25, WA-28 河北武安Wuan, Hebei 05-12 富士Fuji 10
8-13 QY-2, QY-3, QY-4, QY-5, QY-6, QY-8 河北保定Baoding, Hebei 05-22 藤木一号Vine Wood One 10
14-16 SMX-1-1, SMX-1-3, SMX-1-9 河南三门峡Sanmeixia, Henan 06-22 金冠Golden Delicious 6
17 SMX-2-1 河南三门峡Sanmeixia, Henan 06-22 嘎啦Gala 6
18 SMX-3-1 河南三门峡Sanmeixia, Henan 06-22 红尾Red Tail 6
19-24 WH-5, WH-8, WH-12, WH-15, WH-17, WH-3-1 山东威海Weihai, Shandong 06-21 威海金Weihai Gold 3
25-31 SQ-1-1, SQ-1-2, SQ-1-5, SQ-1-6, SQ-1-7, SQ- 1-8, SQ-1-9 河南商丘Shangqiu, Henan 06-21 礼泉Liquan 9
32-33 SQ-2-2, SQ-2-3 河南商丘Shangqiu, Henan 06-21 新红星New Red Star 24
34-40 SQ-3-1, SQ-3-6, SQ-3-7, SQ-3-8, SQ-3-11, SQ- 3-13, SQ-3-14 河南商丘Shangqiu, Henan 06-21 长富2号Changfu 2 24
41-44 CL-2-6, CL-2-3, CL-2-9, CL-2-12 河北昌黎Changli, Hebei 06-21 太平洋玫瑰Pacific Rose 4
45-49 CL-3-1-1, CL-3-2-1, CL-3-2-2, CL-3-2-3, CL-3-2-4 河北昌黎Changli, Hebei 06-21 秋香Qiuxiang 3
50-55 CL-4-1, CL-4-2, CL-4-9, CL-4-7, CL-4-6, CL-4-13 河北昌黎Changli, Hebei 06-21 北斗Beidou 4
56 YA 陕西延安Yan’an, Shaanxi 06-23 延丰Yanfeng 8
57-62 LN-2, LN-6, LN-7, LN-8, LN-9, LN-10 辽宁Liaoning 06-29 绿帅Lvshuai 13
63 YT-2-1 山东烟台Yantai, Shandong 07-03 富士Fuji 5
64-66 YT-3-1, YT-3-7, YT-3-9 山东烟台Yantai, Shandong 07-03 岳红Yuehong 13
67-69 YT-4-1, YT-4-2, YT-4-3 山东烟台Yantai, Shandong 07-03 粉红女士Pink Lady 13
70-77 HLJ-1-3, HLJ-1-4, HLJ-1-6, HLJ-1-7, HLJ-1-8, HLJ-1-9, HLJ-1-10, HLJ-1-11 黑龙江牡丹江Mudanjiang, Heilongjiang 07-14 QRZ-1 6
78-85 HLJ-2-1, HLJ-2-2, HLJ-2-3, HLJ2-5, HLJ-2-6, HLJ2-7, HLJ2-8, HLJ-2-9 黑龙江牡丹江Mudanjiang, Heilongjiang 07-14 QRZ-2 5
86-90 GS-1-1, GS-1-2, GS-1-8, GS-1-14, GS-1-17 甘肃天水Tianshui, Gansu 07-17 富士Fuji 未知Unknown
91-95 GS-3-2, GS-3-3, GS-3-7, GS-3-11, GS-3-12 甘肃天水Tianshui, Gansu 07-17 金冠Golden Delicious 未知Unknown
96-100 SJZ-1, SJZ-2, SJZ-3, SJZ-4, SJZ-8 河北石家庄Shijiazhuang, Hebei 07-20 嘎啦Gala 8
101 YN-1-2 云南石林Shilin, Yunnan 08-20 红露Honglu 4
102 YN-2-3 云南弥勒Mile, Yunnan 08-20 富士Fuji 3

Table 2

Primers used in this study"

引物名称
Primer name
引物序列
Primer sequence (5′-3′)
条带大小
Product size (bp)
用途
Purpose
来源
Source
CRV1-5F GCAAAAAAGAACTAAAGGAC 800 AaCV2 ORF5的扩增
Amplification of AaCV2 ORF5
自行设计
Designed in this study
CRV1-5R ACACACAAATGGGATACC
CRV1-1F ATCTCAAGGTACCGGAGTCA 450 AaCV2 RT-PCR验证
Identification of AaCV2 by RT-PCR
自行设计
Designed in this study
CRV1-1R GCTGCTTAAACATCACCTGCA

Fig. 1

DsRNA types of A. alternata f. sp. mali in China M: DL8000; 1: YT-3-7; 2: SJZ-4; 3: QY-2; 4: CL-2-6; 5: SQ-1-1"

Fig. 2

Cultivation type I of A. alternata f. sp. mali strains"

Fig. 3

Cultivation type II of A. alternata f. sp. mali strains"

Fig. 4

The mycelial growth rate of different A. alternata f. sp. mali strains"

Fig. 5

Spots size of different strains of A. alternata f. sp. mali on cherry-apple leaves and apple fruits"

Fig. 6

Pathogenicity of different strains of A. alternata f. sp. mali on cherry-apple leaves"

Fig. 7

Pathogenicity of different strains of A. alternata f. sp. mali on apple fruits"

Table 3

Virus information in A. alternata f. sp. mali strain QY-2 by high-throughput sequencing"

基因ID
Unigene ID
基因长度
Unigene length (nt)
蛋白描述
Protein description
登录号
Accession number
E-value Reads数量
Number of Reads
RPKM
Contig 10 3665 RNA-dependent RNA polymerase [AaCV1] BBC27878.1 0.00E+00 1451570 4820
Contig 41 3054 Putative coat protein [AaCV1] BBC27881.1 3.5E-176 2331542 9292
Contig 38 2824 Hypothetical protein [AaCV1] BBC27880.1 2.9E-108 1167609 5032
Contig 24 2819 Hypothetical protein [AaCV1] BBC27879.1 2.3E-137 1268863 5478

Fig. 8

A schematic diagram of the genomic organization of A. alternata f. sp. mali QY-2 dsRNA virus"

Table 4

Similarity of nucleotide and amino acid sequences between A. alternata f. sp. mali strain QY-2 and other mycoviruses"

名称
Name
ORF1 ORF2 ORF3 ORF4 ORF5
nt (%) aa (%) nt (%) aa (%) nt (%) aa (%) nt (%) aa (%) nt (%) aa (%)
AaCV1 77 93 75 91 70 80 76 90 95 87
BdCV1 59 56 54 47 40 35 51 47
AtCV1 57 55 50 44 42 32 50 43
PjCV2 54 52 49 40 42 32 56 43

Fig. 9

Phylogenetic tree based on RNA-dependent RNA polymerase amino acid sequence of mycovirus"

Fig. 10

Identification of AaCV2 in A. alternata f. sp. mali strain QY-2 by RT-PCR"

[1] JUNG K H. Growth inhibition effect of pyroligneous acid on pathogenic fungus, Alternaria mali, the agent of Alternaria blotch of apple. Biotechnology and Bioprocess Engineering, 2007, 12: 318-322.
doi: 10.1007/BF02931111
[2] 胡同乐, 曹克强, 王树桐, 甄文超. 生长季苹果斑点落叶病流行主导因素的确定. 植物病理学报, 2005, 35(4): 374-377.
HU T L, CAO K Q, WANG S T, ZHEN W C. Study on the main factor for the epidemic of Alternaria blotch on apple. Acta Phytopathologica Sinica, 2005, 35(4): 374-377. (in Chinese)
[3] MIYAMOTO Y, ISHII Y, HONDA A, MASUNAKA A, TSUGE T, YAMAMOTO M, OHTANI K, FUKUMOTO T, GOMI K, PEEVER T L, AKIMITSU K. Function of genes encoding Acyl-CoA synthetase and enoyl-CoA hydratase for host-selective ACT-toxin biosynthesis in the tangerine pathotype of Alternaria alternata. Phytopathology, 2009, 99(4): 369-377.
doi: 10.1094/PHYTO-99-4-0369
[4] LI Y, ZHANG L Y, ZHANG Z, CONG P H, CHENG Z M. A simple sequence repeat marker linked to the susceptibility of apple to Alternaria blotch caused by Alternaria alternata apple pathotype. Journal of the American Society for Horticultural Science, 2011, 136(2): 109-115.
doi: 10.21273/JASHS.136.2.109
[5] 吴玉星, 李美娜, 周宗山, 仇贵生, 金纪艳, 乔壮. 8种杀菌剂防治苹果斑点落叶病试验. 中国果树, 2007(2): 28-30.
WU Y X, LI M N, ZHOU Z S, QIU G S, JIN J Y, QIAO Z. Experiment of eight fungicides against apple Alternaria blotch. China Fruits, 2007(2): 28-30. (in Chinese)
[6] 任璐, 史晓晶, 姚众, 韩巨才, 赵晓军. 苹果斑点落叶病菌对戊唑醇敏感基线建立及抗性突变体适合度. 植物病理学报, 2017, 47(3): 380-388.
REN L, SHI X J, YAO Z, HAN J C, ZHAO X J. Baseline sensitivity of Alternaria alternata f. sp. mali to tebuconazole and fitness of resistant mutants. Acta Phytopathologica Sinica, 2017, 47(3): 380-388. (in Chinese)
[7] 赵国康, 李焰, 张树武, 徐秉良, 刘佳. 5种植物源农药对苹果斑点落叶病的防效评价. 中国果树, 2020(5): 46-49.
ZHAO G K, LI Y, ZHANG S W, XU B L, LIU J. Evaluation the control effects of five botanical fungicides on apple Alternaria leaf spot(Alternaria mali). China Fruits, 2020(5): 46-49. (in Chinese)
[8] FERNANDO W G D, NAKKEERAN S, ZHANG Y, SAVCHUK S. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protection, 2007, 26(2): 100-107.
doi: 10.1016/j.cropro.2006.04.007
[9] ANAGNOSTAKIS S L. Biological control of chestnut blight. Science, 1982, 215(4532): 466-471.
doi: 10.1126/science.215.4532.466
[10] NUSS D L. Biological control of chestnut blight: An example of virus-mediated attenuation of fungal pathogenesis. Microbiological Reviews, 1992, 56(4): 561-576.
doi: 10.1128/mr.56.4.561-576.1992
[11] HOLLINGS M. Viruses associated with a die-back disease of cultivated mushroom. Nature, 1962, 196(4858): 962-965.
doi: 10.1038/196962a0
[12] GHABRIAL S A, NIBERT M L. Victorivirus, a new genus of fungal viruses in the family Totiviridae. Archives of Virology, 2009, 154(2): 373-379.
doi: 10.1007/s00705-008-0272-x
[13] YU J, KWON S J, LEE K M, SON M, KIM K H. Complete nucleotide sequence of double-stranded RNA viruses from Fusarium graminearum strain DK3. Archives of Virology, 2009, 154(11): 1855-1858.
doi: 10.1007/s00705-009-0507-5
[14] SHEPHERD H S. Viruslike particles in tentoxin-producing strains of Alternaria alternata. Journal of Virology, 1988, 62(10): 3888-3891.
doi: 10.1128/jvi.62.10.3888-3891.1988
[15] ZABALGOGEAZCOA I, PETRUNAK D, CHRIST B J, GILDOW F E. Unencapsidated double-stranded RNA associated with membrane vesicles in isolates of Alternaria solani. Mycological Research, 1997, 101(5): 604-608.
doi: 10.1017/S0953756296003097
[16] HAYASHI N, TSUGE T, KOBAYASHI H, NISHIMURA S. The presence of double-stranded RNAs in Alternaria alternata Japanese pear pathotype and their participation in AK-toxin productivity. Japanese Journal of Phytopathology, 1988, 54(2): 250-252.
doi: 10.3186/jjphytopath.54.250
[17] AOKI N, MORIYAMA H, KODAMA M, ARIE T, TERAOKA T, FUKUHARA T. A novel mycovirus associated with four double- stranded RNAs affects host fungal growth in Alternaria alternata. Virus Research, 2009, 140(1/2): 185-187.
[18] LIN Y H, ZHANG H L, ZHAO C J, LIU S X, GUO L H. The complete genome sequence of a novel mycovirus from Alternaria longipes strain HN28. Archives of Virology, 2015, 160(2): 577-580.
doi: 10.1007/s00705-014-2218-9
[19] KOMATSU K, KATAYAMA Y, OMATSU T, MIZUTANI T, FUKUHARA T, KODAMA M, ARIE T, TERAOKA T, MORIYAMA H. Genome sequence of a novel victorivirus identified in the phytopathogenic fungus Alternaria arborescens. Archives of Virology, 2016, 161(6): 1701-1704.
doi: 10.1007/s00705-016-2796-9
[20] ZHONG J, SHANG H H, ZHU C X, ZHU J Z, ZHU H J, HU Y, GAO B D. Characterization of a novel single-stranded RNA virus, closely related to fusariviruses, infecting the plant pathogenic fungus Alternaria brassicicola. Virus Research, 2016, 217: 1-7.
doi: 10.1016/j.virusres.2015.11.012
[21] 向均. 我国梨黑斑病病原菌种类及一种dsRNA病毒的鉴定[D]. 武汉: 华中农业大学, 2017.
XIANG J. Identification of the pathogenic fungi of pear black spot disease from China and a dsRNA virus in them[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese)
[22] OKADA R, ICHINOSE S, TAKESHITA K, URAYAMA S I, FUKUHARA T, KOMATSU K, ARIE T, ISHIHARA A, EGUSA M, KODAMA M, MORIYAMA H. Molecular characterization of a novel mycovirus in Alternaria alternata manifesting two-sided effects: Down-regulation of host growth and up-regulation of host plant pathogenicity. Virology, 2018, 519: 23-32.
doi: 10.1016/j.virol.2018.03.027
[23] 李朋华. 部分链格孢属真菌的形态学及多基因鉴定[D]. 郑州: 河南农业大学, 2016.
LI P H. Identification of partial Alternaria by morphology and multiple-gene analysis[D]. Zhengzhou: Henan Agricultural University, 2016. (in Chinese)
[24] 李波. 核盘菌弱毒菌株SX276生物学特性及其携带RNA病毒的研究[D]. 武汉: 华中农业大学, 2016.
LI B. Research on biological characteristics and RNA viruses from the hypovirulent strain SX276 of Sclerotinia sclerotiorum[D]. Wuhan: Huazhong Agricultural University, 2016. (in Chinese)
[25] CHIBA S, SALAIPETH L, LIN Y H, SASAKI A, KANEMASTU S, SUZUKI N. A novel bipartite double-stranded RNA mycovirus from the white root rot fungus Rosellinia necatrix: Molecular and biological characterization, taxonomic considerations, and potential for biological control. Journal of Virology, 2009, 83(24): 12801-12812.
doi: 10.1128/JVI.01830-09
[26] YU X, LI B, FU Y P, XIE J T, CHENG J S, GHABRIAL S A, LI G, YI X H, JIANG D H. Extracellular transmission of a DNA mycovirus and its use as a natural fungicide. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1452-1457.
[27] MELZER M S, DUNN M, ZHOU T, BOLAND G J. Assessment of hypovirulent isolates of Cryphonectria parasitica for potential in biological control of chestnut blight. Canadian Journal of Plant Pathology, 1997, 19(1): 69-77.
doi: 10.1080/07060669709500576
[28] 赵迎彤. Botryosphaeria dothidea病毒dsRNA的多样性研究[D]. 泰安: 山东农业大学, 2014.
ZHAO Y T. Diversity of dsRNA from Botryosphaeria dothidea fungal viruses[D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[29] 王利华, 罗慧, 王国平, 王利平. 来源于产黄青霉病毒科成员的分离物对梨轮纹病菌生长及其致病力的影响. 果树学报, 2017, 34(10): 1330-1339.
WANG L H, LUO H, WANG G P, WANG L P. Effect of Botryosphaeria dothidea chrysovirus 1 isolate belonging to the Chrysoviridae family on growth and pathogenicity of the B. dothidea strain infection in pears. Journal of Fruit Science, 2017, 34(10): 1330-1339. (in Chinese)
[30] MA G P, ZHANG X F, HUA H H, ZHOU T, WU X H. Molecular and biological characterization of a novel strain of Alternaria alternata chrysovirus 1 identified from the pathogen Alternaria tenuissima causing watermelon leaf blight. Virus Research, 2020, 280: 197904.
doi: 10.1016/j.virusres.2020.197904
[1] HUANG JiaQuan,LI Li,WU FengNian,ZHENG Zheng,DENG XiaoLing. Proliferation of Two Types Prophage of ‘Candidatus Liberibacter asiaticus’ in Diaphorina citri and their Pathogenicity [J]. Scientia Agricultura Sinica, 2022, 55(4): 719-728.
[2] YANG ShiMan, XU ChengZhi, XU BangFeng, WU YunPu, JIA YunHui, QIAO ChuanLing, CHEN HuaLan. Amino Acid of 225 in the HA Protein Affects the Pathogenicities of H1N1 Subtype Swine Influenza Viruses [J]. Scientia Agricultura Sinica, 2022, 55(4): 816-824.
[3] ZHANG JinLong,ZHAO ZhiBo,LIU Wei,HUANG LiLi. The Function of Key T3SS Effectors in Pseudomonas syringae pv. actinidiae [J]. Scientia Agricultura Sinica, 2022, 55(3): 503-513.
[4] SHA YueXia, HUANG ZeYang, MA Rui. Control Efficacy of Pseudomonas alcaliphila Strain Ej2 Against Rice Blast and Its Effect on Endogenous Hormones in Rice [J]. Scientia Agricultura Sinica, 2022, 55(2): 320-328.
[5] LI ZhengGang,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,HE ZiFu. Molecular Characteristics and Pathogenicity Analysis of Youcai Mosaic Virus Guangdong Isolate Infecting Radish [J]. Scientia Agricultura Sinica, 2022, 55(14): 2752-2761.
[6] ZHANG ChengQi,LIAO LuLu,QI YongXia,DING KeJian,CHEN Li. Functional Analysis of the Nucleoporin Gene FgNup42 in Fusarium graminearium [J]. Scientia Agricultura Sinica, 2021, 54(9): 1894-1903.
[7] Xiang XU,Yi XIE,LiYun SONG,LiLi SHEN,Ying LI,Yong WANG,MingHong LIU,DongYang LIU,XiaoYan WANG,CunXiao ZHAO,FengLong WANG,JinGuang YANG. Screening and Large-Scale Preparation of dsRNA for Highly Targeted Degradation of Tobacco Mosaic Virus (TMV) Nucleic Acids [J]. Scientia Agricultura Sinica, 2021, 54(6): 1143-1153.
[8] CHEN Yang,ZHAO HongYi,YAN JunJie,HUANG Jian,GAO YuLin. Chemical Synthesis View on Sex Pheromones of Potato Tuberworm (Phthorimaea operculella) [J]. Scientia Agricultura Sinica, 2021, 54(3): 556-572.
[9] ZHANG Li,TANG YaFei,LI ZhengGang,YU Lin,LAN GuoBing,SHE XiaoMan,HE ZiFu. Molecular Characteristic of Squash Leaf Curl China Virus (SLCCNV) Infecting Cucurbitaceae Crops in Guangdong Province [J]. Scientia Agricultura Sinica, 2021, 54(19): 4097-4109.
[10] ZHAO JingYa,XIA HuiQing,PENG MengYa,FAN Zhuo,YIN Yue,XU SaiBo,ZHANG Nan,CHEN WenBo,CHEN LinLin. Identification and Functional Analysis of Transcription Factors FpAPSES in Fusarium pseudograminearum [J]. Scientia Agricultura Sinica, 2021, 54(16): 3428-3439.
[11] HU ChangXiong,FAN Wei,ZHANG Qian,CHEN GuoHua,YIN HongHui,XU TianYang,YANG JinBo,YANG Hang,WU DaoHui,ZHANG XiaoMing. Control Effect of Orius similis on Frankliniella occidentalis Based on the Two-Sex Life Table and the Age-Stage-Specific Predation Rate [J]. Scientia Agricultura Sinica, 2021, 54(13): 2769-2780.
[12] LI YangFan,SHAO MeiQi,LIU CHANG,GUO QingGang,WANG PeiPei,CHEN XiuYe,SU ZhenHe,MA Ping. Identification of the Antifungal Active Compounds from Bacillus amyloliquefaciens Strain HMB33604 and Its Control Efficacy Against Potato Black Scurf [J]. Scientia Agricultura Sinica, 2021, 54(12): 2559-2569.
[13] ZHENG XinShi,SHANG PengXiang,LI JingYuan,DING XinLun,WU ZuJian,ZHANG Jie. Effects of Proteins Encoded by “C4 ORFs” of Cotton Leaf Curl Multan Virus on Viral Pathogenicity [J]. Scientia Agricultura Sinica, 2021, 54(10): 2095-2104.
[14] XIE KunLun,LIU LiMing,LIU Mei,PENG Bin,WU HuiJie,GU QinSheng. Prokaryotic Expression of dsRNA of Zucchini yellow mosaic virus and Its Control Efficacy on ZYMV [J]. Scientia Agricultura Sinica, 2020, 53(8): 1583-1593.
[15] JiaYing CHANG,ShuSen LIU,Jie SHI,Ning GUO,HaiJian ZHANG,HongXia MA,ChunFeng YANG. Pathogenicity and Genetic Diversity of Bipolaria maydis in Sanya, Hainan and Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2020, 53(6): 1154-1165.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!