Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (18): 3729-3740.doi: 10.3864/j.issn.0578-1752.2020.18.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Regional Variation in the Effects of No-Till on Soil Water Retention and Organic Carbon Pool

LI JingYu1,2(),LI Qian2,3,WU XuePing2,WU HuiJun2(),SONG XiaoJun2,ZHANG YongQing1(),LIU XiaoTong2,DING WeiTing2,ZHANG MengNi2,ZHENG FengJun2   

  1. 1College of Geographical Sciences, Shanxi Normal University, Linfen 041000, Shanxi
    2Institute of Agricultural Resource and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    3College of Resource Environment and Tourism, Capital Normal University, Beijing 100048
  • Received:2020-04-29 Accepted:2020-07-09 Online:2020-09-16 Published:2020-09-25
  • Contact: HuiJun WU,YongQing ZHANG E-mail:lijingyu0809@126.com;wuhuijun@caas.cn;yqzhang208@126.com

Abstract:

【Objective】Soil tillage is an important factor which affecting soil organic carbon, but the impact of tillage on soil organic carbon and the driving factors in different regions are still unknown. In this study, the regional variation in the effects of no-till on soil water retention and organic carbon pool were studied to improve regional soil tillage in the north of China. 【Method】The four typical long-term tillage experiments were selected, which was located in Shouyang (SSY) and Linfen (SLF) of Shanxi Province, Gongzhuling (GZL) of Jilin Province and Langfang (HLF) of Hebei Province. Two tillage treatments, including conventional tillage (CT) and no-till (NT) , were selected to study the effects of tillage on organic carbon. 【Result】 (1) Soil bulk density and penetrometer resistance were significantly affected by no-tillage in different regions. Compared with CT, NT significantly increased the bulk density in black soil (GZL) and sandy soil (HLF), which was increased by 12.1% and 0.7%, respectively. But CT reduced the bulk density in fluvo-aquic soil (SLF) and cinnamon soil (SSY), which was decreased by 1.5% and 8.2%, respectively. (2) The soil water content of 0 and 10 kPa under NT in black soil (GZL) was significantly different, which were increased by 40.4% and 30.1%, respectively; the soil water content of 0, 10 and 500 kPa under NT in cinnamon soil (SSY) was reduced by 6.4%, 4.3%, and 5.9%, respectively, and which was increased by 2.1% at 350 kPa. The soil water content of 10 kPa, 350 kPa, and 500 kPa under NT in sandy soil (HLF) were increased by 0.6%, 5.6%, and 2.6%, respectively. The soil water content of 0 and 10 kPa under NT in fluvo-aquic soil (SLF) decreased by 7.1% and 5.5%, respectively, and the soil water content of 350kPa and 500kPa was increased by 2.9% and 8.9%, respectively. (3) Soil organic carbon was affected by no-tillage in different regions. Compared with CT, NT significantly increased the organic carbon storage in 0-80 cm layer in black soil (GZL); in cinnamon soil (SSY), fluvo-aquic soil (SLF) and sandy soil (HLF), NT decreased soil organic carbon storage by 26.8%, 31.3%, and 23.5%, respectively. (4) Soil organic carbon stocks were positive correlated with altitude and saturated moisture, which was negatively correlated with annual average temperature, annual precipitation, and penetrometer resistance. This showed that organic carbon storage was significantly affected by climatic factors, soil water retention and penetrometer resistance. 【Conclusion】No-tillage changed soil organic carbon stocks by affecting penetrometer resistance and soil water retention. However, due to differences in climate, crop and soil factors in northeast and north of China, the increase in soil organic carbon stocks was different. In general, conservation tillage was an effective way to increase the surface soil organic carbon storage.

Key words: no-tillage, soil organic carbon, soil physical properties, soil water characteristic curve, region

Table 1

Basic of the four experimental site"

地点
Site
试验起始年
Experiment
starting year
年均气温
Annual average
temperature (℃)
年均降水
Annual precipitation (mm)
作物
Crop
土壤类型
Soil type
土壤颗粒组成 Soil particle composition (%)
黏粒
(0-0.002 mm)
Clay
粉粒
(0.002-0.05 mm)
Silt
砂粒
(0.05-2 mm)
Sand
吉林公主(GZL)
Gongzhuling, Jilin
1990 5.6 594.8 春玉米
Spring corn
黑土
Black soil
31.1 29.9 39.1
山西寿阳(SSY)
Shouyang, Shanxi
2003 7.4 461.8 春玉米
Spring corn
褐土
Cinnamon soil
5.6 63.9 30.5
河北廊坊(HLF)
Langfang, Hebei
2009 11.9 550.0 冬小麦-夏玉米
Winter wheat-
summer corn
潮土
Fluvo-aquic soil
4.1 51.4 44.5
山西临汾(SLF)
Linfen, Shanxi
1992 10.7 555.0 冬小麦
Winter wheat
黄绵土
Loessal soil
5.2 73.9 20.9

Table 2

Soil bulk density and total porosity in 0-10 cm depth under different tillage"

试验点
Site
处理
Treatment
容重
Bulk density (g·cm-3)
孔隙度
Total porosity
(%)
吉林公主岭(GZL)
Gongzhuling, Jilin
CT 1.33 ± 0.03b 0.49 ± 0.01a
NT 1.49 ± 0.13a 0.44 ± 0.05b
山西寿阳(SSY)
Shouyang, Shanxi
CT 1.46 ± 0.02a 0.45 ± 0.01b
NT 1.34 ± 0.07b 0.49 ± 0.03a
河北廊坊(HLF)
Langfang, Hebei
CT 1.46 ± 0.06a 0.45 ± 0.02a
NT 1.47 ± 0.01a 0.44 ± 0.01a
山西临汾(SLF)
Linfen, Shanxi
CT 1.38 ± 0.10a 0.47 ± 0.04a
NT 1.36 ± 0.06a 0.49 ± 0.02a

Fig. 1

Penetrometer resistance under different tillage"

Table 3

Fitting value of water characteristic curve parameters of Van-Genuchten"

试验点
Site
处理
Treatment
拟合参数值Fitting parameter value 相关系数
Correlation coefficient, R2
θs θr α n
吉林公主岭(GZL)
Gongzhuling, Jilin
CT 27.25 0.000048 0.01240 1.2942 0.9835
NT 38.21 0.000090 0.11683 1.2028 0.9864
山西寿阳(SSY)
Shouyang, Shanxi
CT 39.08 0.000853 0.03930 1.4887 0.9958
NT 37.14 0.000130 0.03026 1.4947 0.9923
河北廊坊(HLF)
Langfang, Hebei
CT 31.14 0.000002 0.04490 1.4784 0.9924
NT 30.96 0.000005 0.04155 1.3655 0.9848
山西临汾(SLF)
Linfen, Shanxi
CT 35.88 0.000457 0.05522 1.3415 0.9936
NT 34.06 0.000713 0.04422 1.3097 0.9832

Fig. 2

Soil water retention curve under different tillage methods"

Fig. 3

Soil organic carbon contents under different tillage"

Table 4

Soil organic carbon storage under different tillage"

试验点 处理 有机碳储量 Organic carbon storage (t·hm-2)
Site Treatment 0-10 cm 比CT提高 10-20 cm 比CT提高 20-40 cm 比CT提高
Increased than Increased than Increased than
CT (%) CT (%) CT (%)
吉林公主(GZL) CT 19.04 ± 0.96b 15.59 ± 0.56b 23.21 ± 0.02a
Gongzhuling, Jilin NT 27.69 ± 1.52a 45.4 24.71 ± 0.19a 58.5 19.37 ± 0.72b -16.5
山西寿阳(SSY) CT 28.41 ± 1.19b 27.12 ± 0.42b 56.55 ± 4.89a
Shouyang, Shanxi NT 31.81 ± 0.52a 11.9 29.62 ± 0.14a 9.2 24.49 ± 1.66b -56.7
河北廊坊(HLF) CT 10.56 ± 0.63b 9.06 ± 0.32a 12.14 ± 2.48a
Langfang, Hebei NT 12.99 ± 0.99a 23.1 7.66 ± 0.69b -15.5 4.96 ± 1.16b -59.1
山西临汾(SLF) CT 12.02 ± 0.67b 10.07 ± 0.58a 12.32 ± 2.67a
Linfen, Shanxi NT 15.29 ± 0.62a 27.2 8.25 ± 0.33b -18.1 6.26 ± 1.12b -49.2
试验点 处理 有机碳储量 Organic carbon storage(t·hm-2)
Site Treatment 40-60 cm 比CT提高 60-80 cm 比CT提高 0-80 cm 比CT提高
Increased than Increased than Increased than
CT (%) CT (%) CT (%)
吉林公主(GZL) CT 16.87 ± 0.28a 8.61 ± 0.36a 83.33 ± 0.89b
Gongzhuling, Jilin NT 11.07 ± 1.79b -34.4 6.24 ± 0.81b -27.5 89.32 ± 0.21a 7.2
山西寿阳(SSY) CT 28.68 ± 0.28a 11.69 ± 0.69a 154.09 ± 3.57a
Shouyang, Shanxi NT 20.97 ± 0.14b -26.9 5.92 ± 0.09b -49.4 112.84 ± 1.81b -26.8
河北廊坊(HLF) CT 3.04 ± 0.31a 3.36 ± 1.96a 39.85 ± 1.75a
Langfang, Hebei NT 1.45 ± 0.55b -52.3 0.85 ± 0.14b -74.7 27.37 ± 2.81b -31.3
山西临汾(SLF) CT 9.18 ± 2.06a 7.28 ± 1.32a 50.22 ± 4.06a
Linfen, Shanxi NT 4.65 ± 0.29b -49.3 3.71 ± 0.17b -49.1 38.42 ± 0.45b -23.5

Table 5

Correlation coefficients between climate factors、soil factors and soil organic carbon"

年均温
Annual average
temperature
年降水
Annual precipitation
容重
Bulk density
黏粒含量
Clay
粉粒含量
Silt
砂粒含量
Sand
饱和含水量Saturated moisture 紧实度
Penetrometer resistance
有机碳储量
Organic C storage
年均温
Annual average temperature
1
年降水Annual precipitation 0.126 1
容重Bulk density 0.149 0.106 1
黏粒含量Clay -0.132 0.101 -0.389 1
粉粒含量Silt -0.368 0.023 -0.321 0.902** 1
砂粒含量Sand 0.337 -0.035 0.335 -0.928** -0.998** 1
饱和含水量
Saturated moisture
-0.381 -0.589** -0.524** 0.381 0.317 -0.315 1
紧实度
Penetrometer resistance
-0.337 0.298 0.084 -0.308 -0.544** 0.538** -0.154 1
有机碳储量
Organic C storage
-0.731** -0.708** -0.88 0.46 0.218 -0.194 0.627** -0.538* 1
[1] 王绍强, 周成虎, 李克让, 朱松丽, 黄方红. 中国土壤有机碳库及空间分布特征分析. 地理学报, 2000,55(50):533-544.
WANG S Q, ZHOU C H, LI K R, ZHU S L, HUANG F H. Analysis of soil organic carbon pool and spatial distribution in China. Acta Geographica Sinica, 2000,55(50):533-544. (in Chinese)
[2] BATJES N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 1996,47(2):151-163.
doi: 10.1111/ejs.1996.47.issue-2
[3] LIU E, CHEN B, YAN C, ZHANG Y, MEI X, WANG J. Seasonal changes and vertical distributions of soil organic carbon pools under conventional and No-till practices on Loess Plateau in China. Soil Science Society of America Journal, 2015,79:517-526.
doi: 10.2136/sssaj2014.02.0069
[4] WANG H, WANG S, ZHANG Y, WANG X, WANG R, LI J. Tillage system change affects soil organic carbon storage and benefits land restoration on loess soil in North China. Land Degradation & Development, 2018,29:2880-2887.
[5] PUGET P, LAL R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil and Tillage Research, 2004 80(1):201-213.
doi: 10.1016/j.still.2004.03.018
[6] DOLAN M S, CLAPP C E, ALLMARAS R R. Soil organic carbon and nitrogen in a Minnesota soil a related to tillage, residue and nitrogen management. Soil & Tillage Research, 2006 89:221-231.
[7] 田效琴, 田佳乔, 李卓, 刘永红. 保护性耕作下西南黄壤坡地的土壤结构效应. 中国农学通报, 2017,33(14):62-68.
TIAN X Q, TIAN J Q, LI Z, LIU Y H. Soil structure effects of sloping land in the yellow soil of Southwest China under Conservation tillage. Chinese Agricultural Science Bulletin, 2017,33(14):62-68. (in Chinese)
[8] MARQUEZ C O, GARCIA V J, CAMBARDELA C A. Aggregate-size stability distribution and soil stability. Soil Science Society of America Journal, 2004,68(3):725-735.
doi: 10.2136/sssaj2004.7250
[9] 孙国峰, 张海林, 徐尚起, 崔思远, 汤文光, 陈阜. 轮耕对双季稻田土壤结构及水贮量的影响. 农业工程学报, 2010(9):66-71.
SUN G F, ZHANG H L, XU S Q, CUI S Y, TANG W G, CHEN F. Effects of rotary cultivation on soil structure and water storage in double cropping paddy fields. Transactions of Chinese Society of Agricultural Engineering, 2010(9):66-71. (in Chinese)
[10] 罗珠珠, 黄高宝, 张国盛. 保护性耕作对黄土高原旱地表土容重和水分入渗的影响. 干旱地区农业研究, 2005(4):7-11.
LUO Z Z, HUANG G B, ZHANG G S. Effects of conservation tillage on bulk density and water infiltration of dry surface soils in the Loess Plateau. Agricultural Research in the Arid Areas, 2005(4):7-11. (in Chinese)
[11] 刘孝义, 周桂琴, 依艳丽, 刘春梅. 东北地区几种主要土壤持水特性研究. 沈阳农学院学报, 1985,16(2):31-37.
LIU X Y, ZHOU G Q, YI Y L, LIU C M. Study on water holding characteristics of several major soils in Northeast China. Journal of Shenyang Agricultural College, 1985,16(2):31-37. (in Chinese)
[12] 魏燕华, 赵鑫, 翟云龙, 张二鹏, 陈阜, 张海林. 耕作方式对华北农田土壤固碳效应的影响. 农业工程学报, 2013,29(17):87-95.
WEI Y H, ZHAO X, ZHAI Y L, ZHANG E P, CHEN F, ZHANG H L. Effects of tillage methods on soil carbon sequestration in North China farmland. Transactions of Chinese Society of Agricultural Engineering, 2013,29(17):87-95. (in Chinese)
[13] 田慎重, 王瑜, 宁堂原, 董晓霞, 董亮, 郑东峰, 郭洪海. 转变耕作方式对长期旋免耕农田土壤有机碳库的影响. 农业工程学报, 2016,32(17):98-105.
TIAN S Z, WANG Y, NING T Y, DONG X X, DONG L, ZHENG D F, GUO H H. Effects of shifting tillage methods on soil organic carbon pool in long-term spin-no-till farmland. Transactions of Chinese Society of Agricultural Engineering, 2016,32(17):98-105. (in Chinese)
[14] 王旭东, 张霞, 王彦丽, 李军. 不同耕作方式对黄土高原黑垆土有机碳库组成的影响. 农业机械学报, 2017,48(11):29-23.
WANG X D, ZHANG X, WANG Y L, LI J. Effects of different tillage methods on the composition of organic carbon pools in black loess soil on the Loess Plateau. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(11):29-23. (in Chinese)
[15] 张国盛, Chan K Y, Li G D, Heenan D P. 长期保护性耕作方式对农田表层土壤性质的影响. 生态学报, 2008,28(6):2722-2728.
ZHANG G S, CHAN K Y, LI G D, HEENAN D P. Effects of long-term protective tillage methods on soil properties of topsoil. Acta Ecologica Sinica, 2008,28(6):2722-2728. (in Chinese)
[16] GAO L L, WANG B S, LI S P, WU H J, WU X P, LIANG G P, GONG D Z, ZHANG X M, CAI D X, AURORE D. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China. Catena, 2019,173:38-47.
doi: 10.1016/j.catena.2018.09.043
[17] LOGSDN S D, KARLEN D L. Bulk density as a soil quality indicator during conversion to no-tillage. Soil and Tillage Research, 2004,78:143-149.
doi: 10.1016/j.still.2004.02.003
[18] 李亚杰, 唐江华, 苏丽丽, 张永强, 彭姜龙, 徐文修. 耕作方式对土壤含水量及夏大豆生长的影响. 新疆农业科学, 2015,52(4) : 621-627.
LI Y J, TANG J H, SU L L, ZHANG Y Q, PENG J L, XU W X. Effects of tillage methods on soil moisture and content and summer soybean growth. Xinjiang Agricultural Science, 2015,52(4):621-627. (in Chinese)
[19] 苏丽丽, 徐文修, 李亚杰, 唐江华, 王娜, 罗家祥. 耕作方式对干旱绿洲滴灌复播大豆农田土壤有机碳的影响. 农业工程学报, 2016,32(4):150-156.
SU L L, XU W X, LI Y J, TANG J H, WANG N, LUO J X. Effects of tillage methods on soil organic carbon in soybean farmland with Drip Irrigation in Arid Oasis. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(4):150-156. (in Chinese)
[20] 侯雪坤. 不同耕作方式下土壤耕层理化性状和生物学特性时空分布研究[D]. 哈尔滨: 黑龙江八一农垦大学, 2010.
HOU X K. Temporal and spatial distribution of physical and chemical properties and biological characteristics of soil plow layer under different tillage methods[D]. Harbin: Heilongjiang August First Land Reclamation University, 2010. (in Chinese)
[21] 王恩姮, 柴亚凡, 陈祥伟. 大机械作业对黑土区耕地土壤结构性特征的影响. 应用生态学报, 2008,19(2):351-356.
WANG E X, CHAI Y F, CHEN X W. Effects of large mechanical operations on soil structural characteristics of cultivated land in black soil areas. Chinese Journal of Applied Ecology, 2008,1927(2):351-356. (in Chinese)
[22] 雷志栋, 杨诗秀, 谢森传. 土壤水动力学, 北京: 清华大学出版社, 1988: 18-24.
LEI Z D, YANG S X, XIE S C. Soil Hydrodynamics. Beijing: Tsinghua University Press, 1988: 18-24. (in Chinese)
[23] 邵明安, 王全九, 黄明斌. 土壤物理学, 北京: 高等教育出版社, 2006: 67-74.
SHAO M A, WANG Q J, HUANG M B. Soil Physics. Beijing: Higher Education Press, 2006: 67-74. (in Chinese)
[24] 王小华, 贾克力, 刘景辉, 李立军. Van Genuchten模型在土壤水分特征曲线拟合分析中的应用. 干旱地区农业研究, 2009,27(2):179-183.
WANG X H, JIA K L, LIU J H, LI L J. Application of Van Genuchten model to soil moisture characteristic curve fitting analysis. Agricultural Research in the Arid Areas, 2009,27(2):179-183. (in Chinese)
[25] MRABET R, SABER N, EI-BRAHLI A, LAHLOU S, BESSAM F. Total, particulate organic matter and structural stability of a Calcixeroll soil under different wheat rotations and tillage systems in a semiarid area of Morocco. Soil and Tillage Research, 2001,57:225-235.
doi: 10.1016/S0167-1987(00)00180-X
[26] BAKER J M, OCHSNER T E, VENTEREA R T, GRIFFIS T J. Tillage and soil carbon sequestration: what do we really know? Agriculture, Ecosystems & Environment, 2007,118:1-5.
[27] 胡宁, 娄翼来, 梁雷. 保护性耕作对土壤有机碳、氮储量的影响. 生态环境学报, 2010,19(1):223-226.
HU N, LOU Y L, LIANG L. The effect of conservation tillage on soil organic carbon and nitrogen storage. Journal of Eco-Environment, 2010,19(1):223-226. (in Chinese)
[28] WEST T O, POST W M. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Science Society of America Journal, 2002,66:1930-1946.
doi: 10.2136/sssaj2002.1930
[29] 李倩, 李晓秀, 吴会军, 宋霄君, 王碧胜, 武雪萍. 不同气候和施肥条件下保护性耕作对农田土壤碳氮储量的影响. 植物营养与肥料学报, 2018,24(6):1539-1549.
LI Q, LI X X, WU H J, SONG X J, WANG B S, WU X P. Effects of conservation tillage on soil carbon and nitrogen storage in farmland under different climate and fertilization conditions. Journal of Plant Nutrition and Fertilizer, 2018,24(6):1539-1549. (in Chinese)
[30] 李新举, 张志国, 邓基先, 刘辉友. 免耕对土壤生态环境的影响. 山东农业大学学报, 1998,29(4):520-526.
LI X J, ZHANG Z G, DENG J X, LIU H Y. Effects of no-tillage on soil ecological environment. Journal of Shandong Agricultural University, 1998,29(4):520-526. (in Chinese)
[31] MELERO S, LÓPEZ-GARRIDO R, MURILLO J M. et al. Conservation tillage: Short- and long-term effects on soil carbon fractions and enzymatic activities under Mediterranean conditions. Soil & Tillage Research, 2009,104:292-298.
[32] 李景, 吴会军, 武雪萍, 蔡典雄, 姚宇卿, 吕军杰, 田云龙. 长期不同耕作措施对土壤团聚体特征及微生物多样性的影. 应用生态学报, 2014,25(8):2341-2348.
LI J, WU H J, WU X P, CAI D X, YAO Y Q, LY J J, TIAN Y L. Effects of long-term different tillage measures on soil aggregates and microbial diversity. Chinese Journal of Applied Ecology, 2014,25(8):2341-2348. (in Chinese)
[33] 严昌荣, 刘恩科, 何文清, 刘爽, 刘勤. 耕作措施对土壤有机碳和活性有机碳的影响. 中国土壤与肥料, 2010(6):58-63.
YAN C R, LIU E K, HE W Q, LIU S, LIU Q. Effects of farming measures on soil organic carbon and active organic carbon. Soil and Fertilizer Sciences in China, 2010(6):58-63. (in Chinese)
[34] MUNKHOLML J, HECK R J, DEEN B. Long-term rotation and tillage effects on soil structure and crop yield. Soil and Tillage Research, 2013,127:85-91.
doi: 10.1016/j.still.2012.02.007
[35] 梁爱珍, 张晓平, 杨学明, C. F. Drury. 耕作方式对耕层黑土有机碳库储量的短期影响. 中国农业科学, 2006,39(6):1287-1293.
LIANG A Z, ZHANG X P, YANG X M, DRURY C F. Short-term effects of tillage methods on soil organic carbon storage in plow layer of black soil in Northeast China. Scientia Agricultura Sinica, 2006,39(6):1287-1293. (in Chinese)
[36] 王碧胜, 蔡典雄, 武雪萍, 李景, 梁国鹏, 于维水, 王相玲, 杨毅宇, 王小彬. 长期保护性耕作对土壤有机碳和玉米产量及水分利用的影响. 植物营养与肥料学报, 2015,21(6):1455-1464.
doi: 10.11674/zwyf.2015.0610
WANG B S, CAI D X, WU X P, LI J, LIANG G P, YU W S, WANG X L, YANG Y Y, WANG X B. Effects of long-term conservation tillage on soil organic carbon and maize yield and water use. Journal of Plant Nutrition and Fertilizer, 2015,21(6):1455-1464. (in Chinese)
doi: 10.11674/zwyf.2015.0610
[37] 宋霄君, 吴会军, 武雪萍, 李倩, 王碧胜, 李生平, 梁国鹏, 李景, 刘彩彩, 张孟妮. 长期保护性耕作可提高表层土壤碳氮含量和根际土壤酶活性. 植物营养与肥料学报, 2018,24(6):1588-1597.
SONG X J, WU H J, WU X P, LI Q, WANG B S, LI S P, LIANG G P, LI J, LIU C C, ZHANG M N. Long-term conservation tillage can increase carbon and nitrogen content in surface soil and soil enzyme activities in rhizosphere. Journal of Plant Nutrition and Fertilizer, 2018,24(6):1588-1597. (in Chinese)
[38] STRONG D T, DE WEVER H, MERCKX R, RECOUS S. Spatial location of carbon decomposition in the soil pore system. European Journal of Soil Science, 2004,55(4):739-750.
doi: 10.1111/ejs.2004.55.issue-4
[39] 祖元刚, 李冉, 王文杰, 苏冬雪, 王莹, 邱岭. 我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性. 生态学报, 2011,31(18):5207-5216.
ZU Y G, LI R, WANG W J, SU D X, WANG Y, QIU L. Correlation between soil organic carbon and inorganic carbon contents and soil physical and chemical properties in Northeast China. Acta Ecologica Sinica, 2011, 31(18):5207-5216. (in Chinese)
[40] 王玉珏, 赵佳宁, 于洋, 张敬莉, 张钰舒, 冯金朝, 肖春旺. 不同纬度兴安落叶松林土壤碳氮含量特征及影响机制. 中央民族大学学报(自然科学版), 2020,29(2):13-20.
WANG Y J, ZHAO J N, YU Y, ZHANG J L, ZHANG Y S, FENG J C, XIAO C W. Characteristics and influence mechanisms of soil carbon and nitrogen in larch forests of different latitudes. Journal of Central University for Nationalities (Natural Science Edition), 2020,29(2):13-20. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[3] WANG ShuHui,TAO Wen,LIANG Shuo,ZHANG XuBo,SUN Nan,XU MingGang. The Spatial Characteristics of Soil Organic Carbon Sequestration and N2O Emission with Long-Term Manure Fertilization Scenarios from Dry Land in North China Plain [J]. Scientia Agricultura Sinica, 2022, 55(6): 1159-1171.
[4] LI JiaYan,SUN LiangJie,MA Nan,WANG Feng,WANG JingKuan. Carbon and Nitrogen Fixation Characteristics of Maize Root and Straw Residues in Brown Soil Under High and Low Fertility [J]. Scientia Agricultura Sinica, 2022, 55(23): 4664-4677.
[5] WU Jun,GUO DaQian,LI Guo,GUO Xi,ZHONG Liang,ZHU Qing,GUO JiaXin,YE YingCong. Prediction of Soil Organic Carbon Content in Jiangxi Province by Vis-NIR Spectroscopy Based on the CARS-BPNN Model [J]. Scientia Agricultura Sinica, 2022, 55(19): 3738-3750.
[6] WANG ChuHan,LIU Fei,GAO JianYong,ZHANG HuiFang,XIE YingHe,CAO HanBing,XIE JunYu. The Variation Characteristics of Soil Organic Carbon Component Content Under Nitrogen Reduction and Film Mulching [J]. Scientia Agricultura Sinica, 2022, 55(19): 3779-3790.
[7] CUI Shuai,LIU ShuoRan,WANG Yin,XIA ChenZhen,YAN Li,FENG GuoZhong,GAO Qiang. Soil Available Sulfur Content in Jilin Province and Its Correlation with Soil Organic Matter and Soil Total Nitrogen [J]. Scientia Agricultura Sinica, 2022, 55(12): 2372-2383.
[8] WU YunYu,XIAO Ning,YU Ling,CAI Yue,PAN CunHong,LI YuHong,ZHANG XiaoXiang,HUANG NianSheng,JI HongJuan,DAI ZhengYuan,LI AiHong. Construction and Analysis of Broad-Spectrum Resistance Gene Combination Pattern for Japonica Rice in Lower Region of the Yangtze River, China [J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893.
[9] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[10] XU FangFu,BIAN JinLong,HAN Chao,CHEN ZhiQing,LIU GuoDong,XING ZhiPeng,HU YaJie,WEI HaiYan,ZHANG HongCheng. Temperature and Light Adaptability of High-Quality Japonica Rice and Optimum Seeding Date in Huaibei Region [J]. Scientia Agricultura Sinica, 2021, 54(7): 1365-1381.
[11] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[12] XU TianJun,LÜ TianFang,ZHAO JiuRan,WANG RongHuan,XING JinFeng,ZHANG Yong,CAI WanTao,LIU YueE,LIU XiuZhi,CHEN ChuanYong,WANG YuanDong,LIU ChunGe. The Grain Dehydration Characteristics of the Main Summer Maize Varieties in Huang-Huai-Hai Region [J]. Scientia Agricultura Sinica, 2021, 54(4): 708-719.
[13] ZHENG FengJun, WANG Xue, LI ShengPing, LIU XiaoTong, LIU ZhiPing, LU JinJing, WU XuePing, XI JiLong, ZHANG JianCheng, LI YongShan. Synergistic Effects of Soil Moisture, Aggregate Stability and Organic Carbon Distribution on Wheat Yield Under No-Tillage Practice [J]. Scientia Agricultura Sinica, 2021, 54(3): 596-607.
[14] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[15] ZHOU YongJie,XIE JunHong,LI LingLing,WANG LinLin,LUO ZhuZhu,WANG JinBin. Effects of Long-Term Reduce/Zero Tillage and Nitrogen Fertilizer Reducing on Maize Yield and Soil Carbon Emission Under Fully Plastic Mulched Ridge-Furrow Planting System [J]. Scientia Agricultura Sinica, 2021, 54(23): 5054-5067.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!