Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (12): 2321-2330.doi: 10.3864/j.issn.0578-1752.2020.12.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Genome-Wide Identification and Expression Analysis of PIN Genes Family in Wheat

LIU PeiXun,WAN HongShen,ZHENG JianMin,LUO JiangTao,PU ZongJun()   

  1. Crop Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066
  • Received:2019-09-04 Online:2020-06-16 Published:2020-06-25
  • Contact: ZongJun PU E-mail:pzjun68@163.com

Abstract:

【Objective】 The puroindoline (PIN) gene is a family specific to plants and plays an important role in controlling the grain hardness in wheat. In silico identification and expression analysis of PIN family genes in Triticum aestivum on whole genome level lay the foundation for elucidation the biological function of wheat PIN family. 【Method】 The known sequences of wheat PIN proteins and barley hordoindoline (HIN) proteins were used to query the newly released wheat peptides dataset of Chinese spring variety with HMM and BLASTP profiles. UniProt, URGI, PFAM, CDD, expVIP and other databases were used for bioinformatics analysis with Clustal X, MEGA 7.0, ExPASy, MEME, GSDS, TBtools, GraphPad Prism5 and other programs. The expression profiles of TaPIN genes in different wheat harness seeds were validated with quantitative real-time polymerase chain reaction (qRT-PCR). 【Result】 A total of 19 TaPINs were identified in wheat genome, which were clustered in homologous groups of chromosome 1, 5 and 7. These TaPIN proteins contained 148 to 327 amino acids, as their relative molecular weight varied from 16.39 to 37.19 kD and the isoelectric points ranged from 6.35 to 9.34. Phylogenetic and conserved domain analyses showed that the 19 TaPIN proteins were divided into A and B categories, respectively. Most TaPIN genes harbored only one exon, and there were many cis-acting regulatory elements involved in stress responsiveness and seed-specific regulation. RNA-Seq showed that this gene family expressed largely in wheat grain and hardly expressed in other tissues. The qRT-PCR results indicated that the relative expression level among TaPIN genes were significantly changed. TaPIN9 and TaPIN10 were highly expressed. The expression levels of TaPIN9 and TaPIN10, as well as its expression ratio, were up-regulated with the decrease of wheat grain hardness, while TaPIN16 and TaPIN6 showed an opposite trend. 【Conclusion】 Pina and Pinb genes were the main factors regulating grain hardness in wheat. It is speculated that other members of this gene family have similar functions, but have little influence on grain hardness because of low expression level. According to the evolutionary relationship of this gene, Aegilops tauschii is most closely related to wheat, followed by oats, rye and barley.

Key words: Triticum aestivum, grain hardness, PIN gene, gene expression

Table 1

Primer sequences used in quantitative real-time PCR analysis of TaPINs"

基因名称
Gene name
正向引物序列
Forward primer sequence (5′-3′)
反向引物序列
Revers primer sequence (5′-3′)
TaPIN6 TATGCCGCTCTCTTGGGT GATCGCCTTGGATTGATG
TaPIN7 AGCTATGCAAGCTCCCAC CACAACTTCTCTTCCCCC
TaPIN8 TATGCCGCTCTCTTGGTT GATCGCCTTGGATTGATG
TaPIN9 AGCTCCTTGGGGAGTGTT CAGGTTCTTGGCTTCTTG
TaPIN14 GGCGGTGAAGGGTTTTTC GCTATCGGGCGTAGTTGC
TaPIN15 AAGGATTATGTGATGGAG GCTGGTAACACTGGTCTA
TaPIN16 AAAGAAGTGCCGATGTGAGG GCTGAAAGCCAAAGACGC
TaPIN19 TGTGAACAAGAAGCCCTA TGCTGAAAACCAAAGATG
TaPIN10 TGAGCATGAGGTTCGGGA TTGCACTTTGAGGGGAGG
β-Actin ATGTACCGTGGTGATGTT CCTGGTGGCTGGTAGTTG

Fig. 1

Phylogenetic tree of TaPINs using the complete protein sequences PINA and PINB were puroindoline proteins reported in Triticum aestivum, AINA and AINB were homologous proteins in Avena sativa, SINA and SINB in Secale cereale, HINA and HINB in Hordeum vulgare, EMT21351 and EMT21353 in Aegilops tauschii, respectively"

Fig. 2

The conserved motifs and gene structure analysis of 19 TaPINs The sectional intron of TaPIN15 gene was deleted manually, as it was too long (17881 bp), and only 1200 bp was retained for showing the gene structure"

Fig. 3

Cis-acting element analysis of 19 TaPINs ABRE: cis-acting element involved in the abscisic acid responsiveness; CGTCA-motif: cis-acting regulatory element involved in the MeJA-responsiveness; TGACG-motif: cis-acting regulatory element involved in the MeJA-responsiveness; GCN4_motif: cis-regulatory element involved in endosperm expression; P-box: Gibberellin-responsive element; MBS: MYB binding site involved in drought-inducibility; LTR: cis-acting element involved in low-temperature responsiveness; O2-site: cis-acting regulatory element involved in zein metabolism regulation; TC-rich repeats: cis-acting element involved in defense and stress responsiveness; TCA-element: cis-acting element involved in salicylic acid responsiveness; GARE-motif: Gibberellin-responsive element; RY-element: cis-acting regulatory element involved in seed-specific regulation"

Fig. 4

Expression profiles of TaPINs in different growth stages and different tissues of Chinese Spring A: Root_3 leaf stage; B: Spike_emergence; C: Spike_anthesis; D: Stem_anthesis; E: Grain_2dpa; F: Shoot_5 leaf stage; G: Leaf_7 leaf stage; H: Grain_14dp; I: Aleurone layer_20dpa; J: Endosperm_10dpa; K: Endosperm_20dpa; L: Endosperm_30dpa"

Fig. 5

Relative expression of TaPINs belong to class A The value in the figure is the average value of three replicates. SM969MN: SM969, Medium nitrogen application; SM969LN: SM969, Low nitrogen treatment; CM601LN: CM601, Low nitrogen treatment"

[1] GREENWELL P, SCHOFIELD J D. A starch granule protein associated with endosperm softness in wheat. Cereal Chemistry, 1986,63:379.
[2] JOLLY C J, RAHMAN S, KORTT A A, HIGGINS T J V. Characterisation of the wheat Mr 15000 "grain-softness protein" and analysis of the relationship between its accumulation in the whole seed and grain softness. Theoretical and Applied Genetics, 1993,86(5):589-597.
doi: 10.1007/BF00838714 pmid: 24193708
[3] GIROUX M J, MORRIS C F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proceedings of the National Academy of Sciences of the United States of America, 1998,95(11):6262-6266.
[4] HEINZE K, KISZONAS A M, MURRAY J C, MORRIS C F, LULLIEN-PELLERIN V. Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats. Journal of Cereal Science, 2016,71:183-189.
doi: 10.1016/j.jcs.2016.08.016
[5] GASPARIS S, ORCZYK W, ZALEWSKI W, NADOLSKA-ORCZYK A. The RNA-mediated silencing of one of the Pin genes in allohexaploid wheat simultaneously decreases the expression of the other, and increases grain hardness. Journal of Experimental Botany, 2011,62(11):4025-4036.
doi: 10.1093/jxb/err103
[6] WILEY P R, TOSI P, EVRARD A, LOVEGROVE A, JONES H D, SHEWRY P R. Promoter analysis and immunolocalisation show that puroindoline genes are exclusively expressed in starchy endosperm cells of wheat grain. Plant Molecular Biology, 2007,64(1/2):125-136.
doi: 10.1007/s11103-007-9139-x
[7] 陈锋, 董中东, 程西永, 詹克慧, 许海霞, 崔党群. 小麦puroindoline及其相关基因分子遗传基础研究进展. 中国农业科学, 2010,43(6):1108-1116.
CHEN F, DONG Z D, CHENG X Y, ZHAN K H, XU H X, CUI D Q. Advances in research of molecular genetics of puroindoline and its related genes in wheat. Scientia Agricultura Sinica, 2010,43(6):1108-1116. (in Chinese)
[8] FEIZ L, MARTIN J M, GIROUX M J. Creation and functional analysis of new Puroindoline, alleles in Triticum aestivum. Theoretical and Applied Genetics, 2009,118(2):247-257.
doi: 10.1007/s00122-008-0893-1
[9] WILKINSON M, WAN Y, TOSI P, LEVERINGTON M, SNAPE J, MITCHELL R A, SHEWRY P R. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. Journal of Cereal Science, 2008,48(3):722-728.
doi: 10.1016/j.jcs.2008.03.007
[10] ALI I, SARDAR Z, RASHEED A, MAHMOOD T. Molecular characterization of the puroindoline-a and b alleles in synthetic hexaploid wheats and in silico functional and structural insights into Pina-D1. Journal of Theoretical Biology, 2015,376:1-7.
doi: 10.1016/j.jtbi.2015.04.001 pmid: 25865523
[11] GOLLAN P, SMITH K, BHAVE M. Gsp-1 genes comprise a multigene family in wheat that exhibits a unique combination of sequence diversity yet conservation. Journal of Cereal Science, 2007,45(2):184-198.
doi: 10.1016/j.jcs.2006.07.011
[12] WILKINSON M, WAN Y, TOSI P, LEVERINGTON M, SNAPE J, MITCHELL R A, SHEWRY P R. Identification and genetic mapping of variant forms of puroindoline b expressed in developing wheat grain. Journal of Cereal Science, 2008,48(3):722-728.
doi: 10.1016/j.jcs.2008.03.007
[13] CHEN F, BEECHER B S, MORRIS C F. Physical mapping and a new variant of puroindoline b-2genes in wheat. Theoretical and Applied Genetics, 2010,120(4):745-751.
doi: 10.1007/s00122-009-1195-y
[14] 王月福, 于振文, 李尚霞, 余松烈. 施氮量对小麦籽粒蛋白质组分含量及加工品质的影响. 中国农业科学, 2002,35(9):1071-1078.
WANG Y F, YU Z W, LI S X, YU S L. Effects of nitrogen application amount on content of protein components and processing quality of wheat grain. Scientia Agricultura Sinica, 2002,35(9):1071-1078. (in Chinese)
[15] 李友军, 熊瑛, 骆炳山. 氮、钾及其互作对两种质型小麦品质性状的影响. 干旱地区农业研究, 2006,24(2):43-47.
LI Y J, XIONG Y, LUO B S. Effects of nitrogen, potassium and their interactions on quality characteristics of two different gluten wheat cultivars. Agricultural Research in the Arid Areas, 2006,24(2):43-47. (in Chinese)
[16] UniProt: The universal protein knowledgebase. Nucleic Acids Research, 2016,45(D1):D158-D169.
doi: 10.1093/nar/gkw1099 pmid: 27899622
[17] DAY L, BHANDARI D G, GREENWELL P, LEONARD S A, SCHOFIELD J D. Characterization of wheat puroindoline proteins. FEBS Journal, 2006,273(23):5358-5373.
doi: 10.1111/j.1742-4658.2006.05528.x pmid: 17076702
[18] BEECHER B, BOWMAN J, MARTIN J M, BETTGE A D, MORRIS C F, BLAKE T K, GIROUX M J. Hordoindolines are associated with a major endosperm-texture QTL in barley (Hordeum vulgare). Genome, 2002,45(3):584-591.
doi: 10.1139/g02-008 pmid: 12033628
[19] ALAUX M, ROGERS J, LETELLIER T, FLORES R, ALFAMA F, POMMIER C, GUERCHE C. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biology, 2018,19(1):111.
doi: 10.1186/s13059-018-1491-4 pmid: 30115101
[20] EDDY S R, PEARSON, WILLIAM R. Accelerated profile HMM searches. PLoS Computational Biology, 2011,7(10):e1002195.
doi: 10.1371/journal.pcbi.1002195 pmid: 22039361
[21] FINN R D, CLEMENTS J, EDDY S R, FINN R D, CLEMENTS J, EDDY S R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Research, 2011,39(Web Server issue):29-37.
[22] ALTSCHUL S F. Gapped BLAST and PSI-BLAST: A new generation of protein detabase search programs. Nucleic Acids Research, 1997,25:3389-3402.
doi: 10.1093/nar/25.17.3389 pmid: 9254694
[23] KUMAR S, STECHER G, TAMURA K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology & Evolution, 2016,33(7):1870.
doi: 10.1093/molbev/msw054 pmid: 27004904
[24] FINN R D, COGGILL P, EBERHARDT R Y, EDDY S R, MISTRY J, MITCHELL A L, SALAZAR G A. The Pfam protein families database: Towards a more sustainable future. Nucleic Acids Research, 2015,44(D1):D279-D285.
doi: 10.1093/nar/gkv1344 pmid: 26673716
[25] MARCHLER-BAUER A, BO Y, HAN L, HE J, LANCZYCKI C J, LU S, GWADZ M. CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 2017,45(D1):D200-D203.
doi: 10.1093/nar/gkw1129 pmid: 27899674
[26] GASTEIGER E. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 2003,31(13):3784-3788.
doi: 10.1093/nar/gkg563 pmid: 12824418
[27] BROWN P, BAXTER L, HICKMAN R, BEYNON J, MOORE J D, OTT S. MEME-LaB: Motif analysis in clusters. Bioinformatics, 2013,29(13):1696-1697.
doi: 10.1093/bioinformatics/btt248
[28] HU B, JIN J, GUO A Y, ZHANG H, LUO J, GAO G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 2014,31(8):1296.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850
[29] LESCOT M. Plant CARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 2002,30(1):325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327
[30] CHEN C, XIA R, CHEN H, HE Y. TBtools, a Toolkit for Biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv, 2018: 289660.
[31] RAMÍREZ-GONZÁLEZ R H, BORRILL P, LANG D, HARRINGTON S A, BRINTON J, VENTURINI L, KHEDIKAR Y. The transcriptional landscape of polyploid wheat. Science, 2018, 361(6403): eaar6089.
doi: 10.1126/science.aar6089 pmid: 30115782
[32] BORRILL P, RAMIREZ-GONZALEZ R, UAUY C. expVIP: A customisable RNA-seq data analysis and visualisation platform. Plant Physiology, 2016,170(4):2172-2186.
doi: 10.1104/pp.15.01667 pmid: 26869702
[33] ZHANG Y, HU X, ISLAM S, SHE M, PENG Y, YU Z, ZHANG J. New insights into the evolution of wheat avenin-like proteins in wild emmer wheat (Triticum dicoccoides). Proceedings of the National Academy of Sciences of the United States of America, 2018,115(52):13312-13317.
doi: 10.1073/pnas.1812855115 pmid: 30530679
[34] CHEN F, BEECHER B S, MORRIS C F. Physical mapping and a new variant of puroindoline b-2 genes in wheat. Theoretical & Applied Genetics, 2010,120(4):745-751.
doi: 10.1007/s00122-009-1195-y pmid: 19911160
[35] CHANTRET N, SALSE J, SABOT F, RAHMAN S, BELLEC A, LAUBIN B, GAUTIER M F. Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). The Plant Cell, 2005,17(4):1033-1045.
doi: 10.1105/tpc.104.029181 pmid: 15749759
[36] GASPARIS S, ORCZYK W, NADOLSKA-ORCZYK A. Sina, and Sinb, genes in triticale do not determine grain hardness contrary to their orthologs Pina, and Pinb, in wheat. BMC Plant Biology, 2013,13(1):190.
doi: 10.1186/1471-2229-13-190
[37] GAZZA L, TADDEI F, CONTI S, GAZZELLONI G, MUCCILLI V, JANNI M, OVIDIO R D, ALFIERI M, REDAELLI R, POGNA N E. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Molecular Genetics and Genomics, 2015,290(1):39-54.
doi: 10.1007/s00438-014-0894-5 pmid: 25120168
[38] KIM K H, FEIZ L, DYER A T, GREY W, HOGG A C, MARTIN J M, GIROUX M J. Puroindoline: Antimicrobial wheat endosperm specific protein. Journal of Phytopathology, 2011,7:903-906.
[39] KIM K H, FEIZ L, DYER A T, GREY W, HOGG A C, MARTIN J M, GIROUX M J. Increased resistance to penicillium seed rot in transgenic wheat over‐expressing Puroindolines. Journal of Phytopathology, 2012,160(5):243-247.
doi: 10.1111/j.1439-0434.2012.01881.x
[40] HANEY E F, PETERSEN A P, LAU C K, JING W, STOREY D G, VOGEL H J. Mechanism of action of puroindoline derived tryptophan-rich antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2013,1828(8):1802-1813.
[41] AYALA M, GUZMÁN C, PEÑA R J, ALVAREZ J B. Genetic diversity and molecular characterization of puroindoline genes (Pina-D1 and Pinb-D1) in bread wheat landraces from Andalusia (Southern Spain). Journal of Cereal Science, 2016,71:61-65.
doi: 10.1016/j.jcs.2016.07.017
[42] NIRMAL R C, FURTADO A, WRIGLEY C, HENRY R J. Influence of gene expression on hardness in wheat. PLoS ONE, 2015,11(10):e0164746.
doi: 10.1371/journal.pone.0164746 pmid: 27741295
[43] CHEN M, WILKINSON M, TOSI P, HE G, SHEWRY P. Novel puroindoline and grain softness protein alleles in Aegilops species with the C, D, S, M and U genomes. Theoretical and Applied Genetics, 2005,111(6):1159-1166.
doi: 10.1007/s00122-005-0047-7
[44] DARLINGTON H F, ROUSTER J, HOFFMANN L, HALFORD N G, SHEWRY P R, SIMPSON D J. Identification and molecular characterisation of hordoindolines from barley grain. Plant Molecular Biology, 2001,47(6):785-794.
doi: 10.1023/A:1013691530675
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[3] LAI ChunWang, ZHOU XiaoJuan, CHEN Yan, LIU MengYu, XUE XiaoDong, XIAO XueChen, LIN WenZhong, LAI ZhongXiong, LIN YuLing. Identification of Ethylene Synthesis Pathway Genes in Longan and Its Response to ACC Treatment [J]. Scientia Agricultura Sinica, 2022, 55(3): 558-574.
[4] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[5] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[6] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[7] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[8] YuXia WEN,Jian ZHANG,Qin WANG,Jing WANG,YueHong PEI,ShaoRui TIAN,GuangJin FAN,XiaoZhou MA,XianChao SUN. Cloning, Expression and Anti-TMV Function Analysis of Nicotiana benthamiana NbMBF1c [J]. Scientia Agricultura Sinica, 2022, 55(18): 3543-3555.
[9] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[10] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[11] SHU JingTing,JI GaiGe,SHAN YanJu,ZHANG Ming,JU XiaoJun,LIU YiFan,TU YunJie,SHENG ZhongWei,TANG YanFei,JIANG HuaLian,ZOU JianMin. Expression Analysis of IGF1-PI3K-Akt-Dependent Pathway Genes in Skeletal Muscle and Liver Tissue of Yellow Feather Broilers [J]. Scientia Agricultura Sinica, 2021, 54(9): 2027-2038.
[12] ZHAO Ke,ZHENG Lin,DU MeiXia,LONG JunHong,HE YongRui,CHEN ShanChun,ZOU XiuPing. Response Characteristics of Plant SAR and Its Signaling Gene CsSABP2 to Huanglongbing Infection in Citrus [J]. Scientia Agricultura Sinica, 2021, 54(8): 1638-1652.
[13] ZHAO Le,YANG HaiLi,LI JiaLu,YANG YongHeng,ZHANG Rong,CHENG WenQiang,CHENG Lei,ZHAO YongJu. Expression Patterns of TETs and Programmed Cell Death Related Genes in Oviduct and Uterus of Early Pregnancy Goats [J]. Scientia Agricultura Sinica, 2021, 54(4): 845-854.
[14] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[15] YUE YingXiao,HE JinGang,ZHAO JiangLi,YAN ZiRu,CHENG YuDou,WU XiaoQi,WANG YongXia,GUAN JunFeng. Comparison Analysis on Volatile Compound and Related Gene Expression in Yali Pear During Cellar and Cold Storage Condition [J]. Scientia Agricultura Sinica, 2021, 54(21): 4635-4649.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!