Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3367-3379.doi: 10.3864/j.issn.0578-1752.2019.19.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Heavy Metal Accumulation in Irrigated Desert Soils and Their Crop Effect After Applying Different Organic Materials

SONG ZiRong1,E ShengZhe2,YUAN JinHua2,JIA WuXia1,ZENG XiBai1,SU ShiMing1,BAI LingYu1()   

  1. 1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Environment, Ministry of Agriculture and Rural Affairs, Beijing 100081
    2 Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070
  • Received:2019-03-28 Accepted:2019-05-09 Online:2019-10-01 Published:2019-10-11
  • Contact: LingYu BAI E-mail:bailingyu@caas.cn

Abstract:

【Objective】 This study aimed to explore the long-term effects of organic materials application on heavy metal content, fractionation, crop uptake in irrigated desert soil, and in further to provide a theoretical basis and technical support to control soil heavy metals accumulation during fertilization with organic materials. 【Method】 A long-term (7 years) positioning experiment was conducted by applied with 6 types of organic materials, including chicken manure, cattle manure, pig manure, sludge, biogas residue and mushroom residue, in irrigated desert soil. Subsequently, soil heavy metal content, fractionation and crop uptake were analyzed. 【Result】 Application with chicken manure, pig manure or sludge significantly increased the soil Cu and Zn content, which was in the order of pig manure treatment>chicken manure treatment>sludge treatment. No significant effect on soil heavy metals was observed for the other organic materials. After application with pig manure, chicken manure and sludge, soil Cu content increased by 62.20%, 20.10% and 10.26%, respectively, while soil Zn increased by 79.98%, 39.24% and 18.31%, respectively, showing an increasing trend with application year; the average annual cumulative rates of Cu were 4.16, 1.25 and 0.97 mg·kg -1·a -1, while which for Zn were 11.04, 4.86 and 2.59 mg·kg -1·a -1, respectively; No significant effect on soil Cd, Cr, Pb and Ni was observed. The application of cattle manure, mushroom residue and biogas residue had no significant effect on the total content of Cu and Zn in soil. Application with Pig manure, chicken manure, cow manure and sludge significantly affected the forms of Cu and Zn in soil, and significantly increased the proportion of the effective forms and total content of Cu and Zn in soil. 【Conclusion】 Long-term application of pig manure, chicken manure and sludge could lead to the rapid accumulation of Cu and Zn and the increase in Cu and Zn bioavailability in irrigated desert soil, especially for pig manure. In the future, more concern is needed for the heavy metals in organic fertilizers during soil fertility improvement, so as to reduce heavy metal accumulation in soil and sustaining the soil healthy and agricultural use.

Key words: heavy metal, accumulation, fractionation, organic materials, irrigated desert soils, wheat, long-term positioning experiment

Table 1

Physiochemical properties of soil"

pH CaCO3
(%)
有机质
SOM
全氮
TN
全磷
TP
全钾
TK
碱解氮
Hydrolyzable N
速效磷
Avai. P
速效钾
Avai. K
全盐
Total salt
(g·kg-1) (mg·kg-1)
8.67 9.56 16.21 1.0 0.82 22.2 68.31 16.70 109 0.53

Table 2

Statistic values of total elemental content of some heavy metals in different organic materials"

元素
Element
有机物料
Organic material
含量变化范围
Rang of content(mg·kg-1
平均值
Average value(mg·kg-1
标准差
Standard deviation
变异系数
CV(%)
Cd 鸡粪Chicken manure 0.17—0.38 0.28 0.09 31.82
牛粪Cattle manure 0.11—0.71 0.31 0.21 69.61
猪粪Pig manure 0.23—0.75 0.47 0.19 41.29
菌渣 Mushroom residue 0.00—0.48 0.17 0.18 105.75
污泥Sludge 0.53—0.65 0.58 0.05 8.37
沼渣Biogas residue 0.05—0.36 0.19 0.12 60.19
Cr 鸡粪Chicken manure 35.45—169.07 92.46 47.96 81.87
牛粪Cattle manure 4.31—136.26 59.76 51.47 86.13
猪粪Pig manure 4.89—116.13 55.19 43.51 78.84
菌渣Mushroom residue 4.50—94.32 42.25 38.31 90.67
污泥Sludge 58.91—185.09 119.45 46.55 38.97
沼渣Biogas residue 10.58—127.10 59.34 45.96 77.46
Cu 鸡粪Chicken manure 42.64—217.09 84.65 65.17 76.99
牛粪Cattle manure 18.90—40.10 31.69 7.69 24.25
猪粪Pig manure 88.00—845.15 401.97 327.73 81.53
菌渣Mushroom residue 6.33—32.63 19.30 8.99 46.59
污泥Sludge 58.00—110.40 78.80 16.12 20.45
沼渣Biogas residue 22.04—33.94 27.60 5.55 20.10
Ni 鸡粪Chicken manure 17.21—58.64 35.12 15.96 45.43
牛粪Cattle manure 5.01—54.16 28.14 17.36 61.69
猪粪Pig manure 7.08—66.30 32.60 20.75 63.65
菌渣Mushroom residue 8.50—38.70 25.00 11.44 45.75
污泥Sludge 14.68—66.90 44.48 18.29 41.11
沼渣Biogas residue 7.99—55.90 30.95 17.99 58.11
Pb 鸡粪Chicken manure 20.81—28.91 23.98 2.81 11.72
牛粪Cattle manure 8.72—32.20 18.57 7.45 40.11
猪粪Pig manure 9.97—29.70 21.67 6.19 28.54
菌渣Mushroom residue 8.40—25.14 20.16 5.58 27.70
污泥Sludge 31.60—38.20 33.89 2.09 6.18
沼渣Biogas residue 7.40—29.30 18.54 7.75 41.80
Zn 鸡粪Chicken manure 160.61—765.22 319.56 219.59 68.72
牛粪Cattle manure 34.99—121.30 76.72 30.18 39.34
猪粪Pig manure 503.00—1405.65 940.58 360.18 38.29
菌渣Mushroom residue 11.61—76.15 44.88 26.60 59.27
污泥Sludge 173.60—310.40 251.74 40.92 16.25
沼渣Biogas residue 48.11—89.90 66.19 19.65 29.69

Table 3

Effects of long-term application of different organic materials on the total amount of heavy metals in irrigated desert soils"

处理
Treatment
Cd Cr Cu Ni Pb Zn
(mg·kg-1)
CK 0.22±0.03a 120.58±2.20a 33.00±0.57a 56.93±0.88a 24.48±0.34ab 74.55±1.85a
NP 0.19±0.05a 123.22±2.93a 33.23±0.73a 58.33±2.74a 24.63±0.84ab 73.44±1.44a
NP+JF 0.23±0.01a 128.80±13.34a 39.91±3.85c 59.23±5.44a 26.77±2.81b 102.26±6.09c
NP+NF 0.23±0.05a 118.15±4.12a 32.44±1.28a 56.03±2.58a 25.24±1.44ab 76.96±1.04a
NP+ZF 0.23±0.06a 119.43±11.24a 53.90±1.76d 54.28±1.08a 23.91±0.81a 132.18±6.25d
NP+JZ 0.20±0.01a 117.68±5.21a 32.64±0.31a 55.83±1.20a 24.57±0.30ab 73.82±0.34a
NP+WN 0.23±0.02a 120.19±3.20a 36.64±1.41b 55.42±1.51a 26.84±1.37b 86.89±3.62b
NP+ZZ 0.22±0.03a 123.31±5.58a 33.71±0.40a 57.02±2.97a 24.13±1.64ab 76.59±2.98a

Fig. 1

Trend of the total amount of heavy metals in soil with different application years of organic materials"

Table 4

The correlation between the total amount of Cu and Zn in soil (Y) with the application years of different organic materials (X)"

处理 Treatment Cu-Y R2 Zn-Y R2
CK Y=0.321X+31.285 0.613 Y=0.294X+72.943 0.357
NP Y=0.313X+30.996 0.717 Y=0.099X+72.87 0.144
NP+JF Y=1.252X+30.597 0.952** Y=4.868X+67.779 0.963**
NP+NF Y=0.174X+31.717 0.454 Y=0.730X+72.089 0.906**
NP+ZF Y=4.158X+28.419 0.910** Y=11.043X+58.695 0.978**
NP+JZ Y=0.129X+31.546 0.086 Y=0.264X+72.156 0.317
NP+WN Y=0.969X+29.955 0.932** Y=2.587X+69.933 0.942**
NP+ZZ Y=0.378X+30.78 0.902** Y=0.653X+71.467 0.848**

Table 5

Available heavy metal content in soils applied with different organic materials (DTPA extraction)"

处理
Treatment
Cd Cr Cu Ni Pb Zn
(mg·kg-1)
CK 0.04±0.01a 0.07±0.02a 1.95±0.09a 0.64±0.08a 1.22±0.07a 0.87±0.13a
NP 0.04±0.01a 0.07±0.02a 1.88±0.10a 0.65±0.07a 1.22±0.13a 0.97±0.18a
NP+JF 0.05±0.01a 0.04±0.01b 2.79±0.40b 0.72±0.06ab 1.22±0.18a 7.62±1.66c
NP+NF 0.05±0.01a 0.08±0.03a 1.94±0.25a 0.71±0.05ab 1.32±0.29a 1.55±0.07a
NP+ZF 0.05±0.01a 0.06±0.01ab 9.16±0.40c 0.71±0.01ab 1.23±0.08a 18.76±2.04d
NP+JZ 0.04±0.01a 0.06±0.01ab 1.74±0.03a 0.62±0.03a 1.08±0.09a 1.00±0.12a
NP+WN 0.06±0.02a 0.04±0.01b 2.62±0.49b 0.76±0.07b 1.30±0.31a 5.03±1.34b
NP+ZZ 0.05±0.01a 0.08±0.02a 1.86±0.28a 0.68±0.06ab 1.21±0.28a 1.55±0.35a

Fig. 2

Distribution of various forms of Cu and Zn in soil fertilized with organic materials"

Fig. 3

Distribution of Cu and Zn content in different parts of wheat treated with different organic materials Different lowercase letters indicate significant differences among treatments (P<0.05)"

Table 6

Relationship between the content of Cu and Zn in wheat and the occurrence forms of Cu and Zn in soil"

赋存形态
Occurrence form
Cu Zn
籽粒Grain 秸秆Straw 根Root 籽粒Grain 秸秆Straw 根Root
水溶态Water soluble form 0.034 0.421* 0.728**
离子交换态Exchangeable form 0.082 0.692** 0.768** -0.109 0.474* 0.668**
碳酸盐结合态Carbonated form -0.06 0.651** 0.766** -0.008 0.537** 0.719**
腐殖酸结合态Humic acid combination form 0.196 0.645** 0.785** -0.003 0.559** 0.720**
铁锰氧化态Fe - Mn oxidation form 0.035 0.748** 0.742** 0.114 0.570** 0.637**
强有机结合态Strong organism combination form -0.043 0.535** 0.633** -0.108 0.214 0.412*
残渣态Residual form 0.201 0.561** 0.321 -0.001 0.26 0.039
[1] CANG L, WANG Y J, ZHOU D M, DONG Y H . Heavy metals pollution in poultry and livestock feeds and manures under intensive farming in Jiangsu Province, China. Journal of Environmental Sciences, 2004,16(3):371-374.
[2] XIONG X, LI Y X, LI W, LIN C Y, HAN W, YANG M . Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resources, Conservation and Recycling, 2010,54(11):985-990.
[3] 刘荣乐, 李书田, 王秀斌, 王敏 . 我国商品有机肥料和有机废弃物中重金属的含量状况与分析. 农业环境科学学报, 2005,24(2):392-397.
LIU R L, LI S T, WANG X B, WANG M . Contents of heavy metal in commercial organic fertilizers and organic wastes. Journal of Agro-Environment Science, 2005,24(2):392-397. (in Chinese)
[4] 王飞, 邱凌, 沈玉君, 葛一洪, 候月卿 . 华北地区饲料和畜禽粪便中重金属质量分数调查分析. 农业工程学报, 2015,31(5):261-267.
WANG F, QIU L, SHEN Y J, GE Y H, HOU Y Q . Investigation and analysis of heavy metal contents from livestock feed and manure in North China. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(5):261-267. (in Chinese)
[5] 朱泉雯 . 重金属在猪饲料–粪污–沼液中的变化特征. 水土保持研究, 2014,21(6):284-289.
ZHU Q W . Distribution characteristics of heavy metals in feeds, pig manures and biogas slurry. Research of Soil and Water Conservation, 2014,21(6):284-289. (in Chinese)
[6] ATAFAR Z, MESDAGHINIA A, NOURI J, HOMAEE M, YUNESIAN M, AHMADIMOGHADDAM M, MAHVI A H . Effect of fertilizer application on soil heavy metal concentration. Environmental Monitoring and Assessment, 2010,160(1/4):83-89.
[7] 陈芳, 董元华, 安琼, 钦绳武 . 长期肥料定位试验条件下土壤中重金属的含量变化. 土壤, 2005,37(3):308-311.
CHEN F, DONG Y H, AN Q, QIN S W . Variation of soil heavy metal contents in a long-term fertilization experiment. Soils, 2005,37(3):308-311. (in Chinese)
[8] 刘全东, 蒋代华, 高利娟, 李吉进, 孙钦平, 刘本生 . 畜禽粪便有机肥源重金属在土壤-蔬菜系统中累积、迁移规律的研究进展. 土壤通报, 2014,45(1):252-256.
LIU Q D, JIANG D H, GAO L J, LI J J, SUN Q P, LIU B S . Research progress on heavy metal accumulation and migration of livestock dung organic fertilizer in soil-vegetable system. Chinese Journal of Soil Science, 2014,45(1):252-256. (in Chinese)
[9] 鲁洪娟, 马友华, 樊霆, 张国漪, 叶文玲, 陈海燕 . 有机肥中重金属特征及其控制技术研究进展. 生态环境学报, 2014,23(12):2022-2030.
LU H J, MA Y H, FAN T, ZHANG G Y, YE W L, CHEN H Y . Research progress of heavy metals characteristics and control technology in organic fertilizers. Ecology and Environmental Sciences, 2014,23(12):2022-2030. (in Chinese)
[10] 薄录吉, 李彦, LUO Jiafa, 张英鹏, 井永苹, 刘兆辉 . 我国规模化养猪场粪便重金属污染特征与农用风险评价. 农业机械学报, 2018,49(1):258-267.
BO L J, LI Y, LUO J F, ZHANG Y P, JING Y P, LIU Z H . Characteristics of heavy metals pollution in pig manures and environmental risks evaluation in intensive pig farming areas in China. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(1):258-267. (in Chinese)
[11] 黄玉溢, 陈桂芬, 刘斌, 熊柳梅 . 广西集约化养殖猪饲料Cu和Zn含量及粪便Cu和Zn残留特性研究. 安徽农业科学, 2012,40(17):9280-9281.
HUANG Y Y, CHEN G F, LIU B, XIONG L M . Content of Cu and Zn in pig feeds and their residual character in pig manures from intensive piggery in Guangxi. Journal of Anhui Agricultural Sciences, 2012,40(17):9280-9281. (in Chinese)
[12] 郭广慧, 陈同斌, 杨军, 郑国砥, 高定 . 中国城市污泥重金属区域分布特征及变化趋势. 环境科学学报, 2014,34(10):2455-2461.
GUO G H, CHEN T B, YANG J, ZHENG G D, GAO D . Distribution characteristics and changing trend of heavy metal in urban sludge in China. Journal of Environmental Science, 2014,34(10):2455-2461. (in Chinese)
[13] 韩春梅, 王林山, 巩宗强, 许华夏 . 土壤中重金属形态分析及其环境学意义. 生态学杂志, 2005,24(12):1499-1502.
HAN C M, WANG L S, GONG Z Q, XU H X . Chemical forms of soil heavy metals and their environmental significance. Chinese Journal of Ecology, 2005,24(12):1499-1502. (in Chinese)
[14] 钱进, 王子健, 单孝全 . 土壤中微量金属元素的植物可给性研究进展. 环境科学, 1995,16(6):73-75.
QIAN J, WANG Z J, SHAN X Q . Progress in the investigation on plant availability of soil trace metals. Chinese Journal of Environmental Science, 1995,16(6):73-75. (in Chinese)
[15] 陈曦, 杨丽标, 王甲辰, 邹国元, 田自华, 左强, 肖强, 张琳 . 施用污泥堆肥对土壤和小麦重金属累积的影响. 中国农学通报, 2010,26(8):278-283.
CHEN X, YANG L B, WANG J C, ZOU G Y, TIAN Z H, ZUO Q, XIAO Q, ZHANG L . effect of sewage sludge compost application on heavy metals accumulation in soil and wheat shoots. Chinese Agricultural Science Bulletin, 2010,26(8):278-283. (in Chinese)
[16] 张云青, 张涛, 李洋, 苏德纯 . 畜禽粪便有机肥中重金属在不同农田土壤中生物有效性动态变化. 农业环境科学学报, 2015,34(1):87-96.
ZHANG Y Q, ZHANG T, LI Y, SU D C . Bioavailability dynamics of heavy metal in livestock and poultry manures added to different farmland soils. Journal of Agro-Environment Science, 2015,34(1):87-96. (in Chinese)
[17] 郭天文, 谭伯勋 . 灌漠土区吨粮田开发与持续农业建设. 西北农业学报, 1998,7(4):91-96.
GUO T W, TAN B X . Development and sustainable agricultural construction of tons of grain field in irrigated desert soil area. Acta Agriculturae Boreali-occidentalis Sinica, 1998,7(4):91-96. (in Chinese)
[18] 谭伯勋 . 灌漠土的生态肥力及其展望. 甘肃农业科技, 1989(10):22-27.
TAN B X . Ecological fertility of irrigated desert soil and its prospect. Gansu Agricultural Science and Technology, 1989(10):22-27. (in Chinese)
[19] 王艺林, 贾玉琴, 赵维俊 . 张掖市生态循环农业与经济发展模式. 草业科学, 2013,30(9):1488-1492.
WANG Y L, JIA Y Q, ZHAO W J . Ecological cycle of agriculture and economic development model in Zhangye. Pratacultural Science, 2013,30(9):1488-1492. (in Chinese)
[20] 俄胜哲, 杨生茂, 郭永杰, 索东让, 杨思存, 崔云玲, 王成宝 . 长期施肥对河西绿洲灌漠土作物产量及土壤养分自然供给能力的影响. 植物营养与肥料学报, 2010,16(4):786-793.
doi: 10.11674/zwyf.2010.0402
E S Z, YANG S M, GUO Y J, SUO D R, YANG S C, CUI Y L, WANG C B . Effects of long-term fertilization on crop yield and indigenous soil nutrient supply in Hexi Oasis of Gansu Province. Plant Nutrition and Fertilizer Science, 2010,16(4):786-793. (in Chinese)
doi: 10.11674/zwyf.2010.0402
[21] 索东让, 李多忠 . 河西走廊灌漠土钾素状况及施钾效应. 磷肥与复肥, 2002(3):70-71.
SUO D R, LI D Z . The potassium contents in Gansu corridor irrigated desert soil and its fertilization effect of current season. Phosphate & Compound Fertilizer, 2002(3):70-71. (in Chinese)
[22] TESSIER A, CAMPBELL P G C, BISSON M . Sequential extraction procedure for the speciation of particular trace elements. Environmental Technology, 1979,15(7):844-851.
[23] 董占荣, 陈一定, 林咸永, 章永松, 倪丹华 . 杭州市郊规模化养殖场猪粪的重金属含量及其形态. 浙江农业学报, 2008,20(1):35-39.
DONG Z R, CHEN Y D, LIN X Y, ZHANG Y S, NI D H . Investigation on the contents and fractionation of heavy metals in swine manures from intensive livestock farms in the suburb of Hangzhou. Acta Agriculturae Zhejiangensis, 2008,20(1):35-39. (in Chinese)
[24] 叶必雄, 刘圆, 虞江萍, 杨林生, 王五一, 欧阳竹 . 畜禽粪便农用区土壤—小麦系统中重金属污染及迁移. 地理研究, 2013,32(4):645-652.
YE B X, LIU Y, YU J P, YANG L S, WANG W Y, OUYANG Z . Heavy metal pollution and migration in soil-wheat system of different livestock manures agricultural areas. Geographical Research, 2013,32(4):645-652. (in Chinese)
[25] HU Y, CHENG H, TAO S . Environmental and human health challenges of industrial livestock and poultry farming in China and their mitigation. Environment International, 2017,107(11):111-130.
[26] LECLERC A, LAURENT A . Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000-2014. Science of The Total Environment, 2017, 590-591:452-460.
[27] AHMAD K, SHAHEEN M, KHAN Z I, BASHIR H . Heavy metals contamination of soil and fodder: A possible risk to livestock. Science Technology and Development, 2016,32(2):140-148.
[28] LOGANATHAN P, HEDLEY M J, GRACE N D, LEE J, CRONIN S J, BOLAN N S, ZANDERS J M . Fertiliser contaminants in New Zealand grazed pasture with special reference to cadmium and fluorine-A review. Soil Research, 2003,41(41):501-532.
[29] MORAL R, PEREZ-MURCIA M D, PEREZ-ESPINOSA A, MORENO-CASELLES J, PAREDES C, RUFETE B . Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Management, 2008,28(2):367-371.
[30] BOLAN N S, KHAN M A, DONALDSON J, ADRIANO D C, MATTHEW C . Distribution and bioavailability of copper in farm effluent. Science of The Total Environment, 2003,309(1/3):225-236.
[31] NICHOLSON F A, SMITH S R, ALLOWAY B J, CARLTON-SMITH C, CHAMBERS B J . Quantifying heavy metal inputs to agricultural soils in England and Wales. Water and Environment Journal, 2006,20(2):87-95.
[32] 王美, 李书田 . 肥料重金属含量状况及施肥对土壤和作物重金属富集的影响. 植物营养与肥料学报, 2014,20(2):466-480.
WANG M, LI S T . Heavy metals in fertilizers and effect of the fertilization on heavy metal accumulation in soils and crops. Journal of Plant Nutrition and Fertilizer, 2014,20(2):466-480. (in Chinese)
[33] 刘秋萌, 徐楠楠, 谢忠雷, 陆文龙, 李文卓 . 不同类型畜禽粪便Zn的形态分布及冻融作用对畜禽粪便Zn活性的影响. 农业环境科学学报, 2013,32(8):1664-1669.
LIU Q M, XU N N, XIE Z L, LU W L, LI W Z . Form distribution of Zn in livestock and poultry and influence of freezing and thawing on activity of Zn in livestock and poultry mature. Journal of Agro- Environment Science, 2013,32(8):1664-1669. (in Chinese)
[34] 徐聪珑, 贾丽, 张璐, 刘秋萌, 谢忠雷 . 冻融作用对猪粪模拟施肥条件下东北黑土中重金属铜锌活性的影响. 农业资源与环境学报, 2015,32(3):229-234.
XU C L, JIA L, ZHANG L, LIU Q M, XIE Z L . Effect of freezing and thawing on activity of Cu and Zn in black soil of Northeast China under simulated fertilization using pig manure. Journal of Agriculture Resources and Environment, 2015,32(3):229-234. (in Chinese)
[35] 杨子仪, 吴景贵, 冯娜娜, 陈闯 . 不同畜禽粪肥与化肥配施下黑土中Zn含量及形态变化特征. 农业环境科学学报, 2014,33(9):1728-1735.
YANG Z Y, WU J G, FENG N N, CHEN C . Effects of different livestock manures combined with chemical fertilizers on contents and fractions of Zn in black soil. Journal of Agro-Environment Science, 2014,33(9):1728-1735. (in Chinese)
[36] 刘赫, 李双异, 汪景宽 . 长期施用有机肥对棕壤中主要重金属积累的影响. 生态环境学报, 2009,18(6):2177-2182.
LIU H, LI S Y, WANG J K . Effects of long-term application of organic manure on accumulation of main heavy metals in brown earth. Ecology and Environmental Sciences, 2009,18(6):2177-2182. (in Chinese)
[37] 商和平, 李洋, 张涛, 苏德纯 . 畜禽粪便有机肥中 Cu、Zn在不同农田土壤中的形态归趋和有效性动态变化. 环境科学, 2015,36(1):314-324.
SHANG H P, LI Y, ZHANG T, SU D C . Form tendency and bio-availability dynamics of Cu and Zn in different farm soils after application of organic fertilizer of livestock and poultry manures. Environmental Sciences , 2015,36(1):314-324. (in Chinese)
[38] 陈怀满 . 土壤-植物系统中的重金属污染. 北京: 科学出版社, 1996: 184-185.
CHEN H M. The Pollution of Heavy Metals in Soil-Plant System. Beijing: Science Press, 1996: 184-185. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[6] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[7] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[8] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[9] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[10] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[11] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[12] ZHANG JiaHua,YANG HengShan,ZHANG YuQin,LI CongFeng,ZHANG RuiFu,TAI JiCheng,ZHOU YangChen. Effects of Different Drip Irrigation Modes on Starch Accumulation and Activities of Starch Synthesis-Related Enzyme of Spring Maize Grain in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1332-1345.
[13] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[14] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[15] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!