Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (6): 1045-1057.doi: 10.3864/j.issn.0578-1752.2019.06.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability

ZHAO LiLi1,2,LI LuSheng3,CAI HuanJie1,2(),SHI XiaoHu1,2,XUE ShaoPing4   

  1. 1 Key Laboratory for Agricultural Soil and Water Engineering in Arid Area of Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi;
    2 Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling 712100, Shaanxi ;
    3 School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046
    4 College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, Shaanxi;
  • Received:2018-10-09 Accepted:2018-11-16 Online:2019-03-16 Published:2019-03-22
  • Contact: HuanJie CAI E-mail:caihj@nwsuaf.edu.cn

Abstract:

【Objective】 The comprehensive analysis of soil water and gas transport properties in response to different types of organic amendments is important for optimizing water and air environment of root-zone soil and improving the soil productivity. 【Method】 For this purpose, a two-year (from June 2014 to June 2016) field experiment was conducted with a fixed plot test on a Lou soil (Eum-Orthic Anthrosols) in the Guanzhong Plain. There were five treatments: application of mineral fertilizer both alone (control, CK) and along with wheat straw (MWS), wheat husk (MWH), farmyard soil (MFS), and bioorganic fertilizer (MBF). This experiment was used to study the effects of combined use of mineral fertilizer and organic materials on soil porosity, hydraulic conductivity and air permeability in the 0-30 cm soil layer. These soil parameters were comprehensively evaluated by using the principal component analysis method.【Result】 Integrated application of organic materials and mineral fertilizer improved soil pore size distribution and promoted the increase in macro-porosity compared to the CK treatment. This was especially true at the 0-10 cm and 20-30 cm soil depths, where incorporation of organic materials significantly (P<0.05) increased soil macro-porosity by 12.3%-136.4% compare to the CK treatment. The significant (P<0.05) increase in the macro-porosity was also recorded in the MWS treatment at the 10-20 cm depth soil layer compared to the CK treatment. Combination with organic materials and mineral fertilizer significantly (P<0.05) enhanced soil hydraulic conductivity at the 0-10 cm and 10-20 cm soil depths compared to the CK treatment, such as increasing initial infiltration rate, steady infiltration rate, average infiltration rate, 90 min cumulative infiltration, as well as saturated hydraulic conductivity. These parameters were highest in the MWS treatment (greater by 5.3-8.8 times compared to the CK treatment) at the 0-10 cm soil depth and in the MBF treatment (greater by 2.0-4.5 times compared to the CK treatment) at the 10-20 cm soil depth, respectively (P<0.05). Meanwhile, the MBF treatment also significantly (P<0.05) improved soil hydraulic conductivity relative to the CK treatment at the 20-30 cm soil depth. With regard to soil air permeability, the MWS and MWH treatments led to significantly (P<0.05) better soil pore continuity and hence higher soil air permeability at the 0-10 cm soil depth, compared to the CK treatment, while the MBF treatment yielded significantly (P<0.05) higher soil air permeability at both the 10-20 cm and 20-30 cm soil depths. The principal component analysis results indicated that the MWS treatment had the strongest improvement on soil water-gas transport properties at the 0-10 cm soil depth, and the MBF treatment had the strongest improvement at 10-20 cm and 20-30 cm soil depths. 【Conclusion】 To alleviate sub-surface soil compaction and improve soil water-gas transport properties, application of bioorganic fertilizer was highly recommended. The MBF treatment exhibited the best improvement in soil water-gas transport properties at 10-30 cm soil depth.

Key words: organic materials, porosity, infiltration capacity, saturated hydraulic conductivity, air permeability, principal component analysis

Table 1

Initial physio-chemical characteristics of the 0—30 cm soil layers in the experimental field under investigation"

土壤性质
Soil parameters
土层 Depth (cm)
0—10 10—20 20—30
土壤质地 Soil texture 黏壤土
Clay loam
黏壤土
Clay loam
粉砂质黏壤土
Silty clay loam
砂粒 Sand (0.02—2 mm) 38.24 36.65 30.51
粉粒 Silt (0.002—0.02 mm) 43.80 44.22 46.71
黏粒 Clay (<0.002 mm) 17.96 19.12 22.78
容重 Bulk density (g·cm-3) 1.32 1.44 1.68
有机质Organic matter (g·kg-1) 15.09 13.87 12.53
有效氮Available N (mg·kg-1) 28.37 22.53 19.85
有效磷Available P (mg·kg-1) 16.25 14.83 10.67
有效钾Available K (mg·kg-1) 143.2 138.5 132.0
pH 8.56 8.57 8.55

Table 2

Physico-chemical characteristics of the applied organic materials"

有机物料
Material
纤维素
Cellulose
(%)
有机碳
Organic carbon
(g·kg-1)
全氮
Total N
(g·kg-1)
C/N比
C/N
ratio
全磷
Total P
(g·kg-1)
全钾
Total K
(g·kg-1)
干容重
Dry bulk density
(g·cm-3)
麦秆 Wheat straw 36.32 432.44 10.84 39.95 1.65 9.71 0.074
麦壳 Wheat husk 24.89 396.99 20.44 19.43 5.41 6.20 0.137
土粪 Farmyard soil 18.25 190.30 11.63 16.46 3.02 6.49 0.474
生物肥 Bioorganic fertilizer 17.96 184.19 12.98 14.21 3.19 6.27 0.325

Table 3

Changes in soil bulk density, total porosity, macro and micro-porosity distribution and pore continuity of different depths with various organic amendments to soils in 2014-2016"

年份
Year
土层深度
Depth (cm)
处理
Treatments
容重
Bulk density
(g·cm-3)
孔隙度
Total
porosity (%)
大孔隙
Macro-
porosity (%)
小孔隙
Micro-
porosity (%)
孔隙连通性
Pore continuity index (μm2)
2015 0—10 PT 1.32±0.05a 50.29±1.98a 17.50±0.93c 32.79±1.23a 61.65±9.80c
CK 1.33±0.06a 50.00±2.15a 17.42±1.25c 32.58±2.01a 58.90±13.88c
MWS 1.27±0.02a 52.44±0.65a 25.66±2.44a 26.78±2.25b 119.06±14.54b
MWH 1.29±0.05a 51.51±2.06a 22.72±3.18ab 28.79±1.21b 141.86±19.90a
MFS 1.33±0.04a 50.05±1.60a 20.57±1.35b 29.48±2.51b 50.40±9.41c
MBF 1.32±0.03a 49.63±1.26a 21.85±2.46b 27.77±1.63b 58.52±9.54c
10—20 PT 1.44±0.05a 46.03±1.71a 20.60±1.94a 25.43±0.98c 27.88±4.89c
CK 1.46±0.08a 45.11±3.05a 19.82±1.27a 25.29±0.73c 27.21±7.92c
MWS 1.41±0.02a 46.85±0.82a 20.65±2.04a 26.40±1.44bc 45.98±7.68b
MWH 1.39±0.04a 47.65±1.61a 20.35±2.31a 27.30±0.85a 129.09±13.31a
MFS 1.44±0.04a 45.96±1.32a 18.54±1.94a 27.42±0.89a 48.67±11.82b
MBF 1.46±0.05a 45.14±1.97a 18.06±1.97a 26.88±0.67ab 57.44±7.80b
20—30 PT 1.68±0.04a 36.89±1.51a 5.99±1.72b 30.90±2.04a 31.59±7.46a
CK 1.69±0.04a 36.24±1.43a 5.18±1.98b 31.06±0.54a 37.36±7.08a
MWS 1.66±0.04a 37.53±1.35a 10.61±1.77a 26.92±1.80b 22.23±3.58b
MWH 1.64±0.03a 38.32±1.11a 11.94±3.38a 26.38±2.27b 20.21±2.41b
MFS 1.68±0.03a 36.78±1.13a 10.55±1.75a 26.23±0.62b 36.72±2.79a
MBF 1.67±0.03a 36.40±1.05a 10.03±1.84a 26.37±1.13b 31.61±1.82a
2016 0—10 PT 1.32±0.05a 50.29±1.98a 17.50±0.93d 32.79±1.23a 61.65±9.80c
CK 1.31±0.04a 50.62±1.66a 17.94±1.10d 32.68±1.04a 61.66±11.40c
MWS 1.25±0.02a 53.01±0.92a 27.52±0.87a 25.49±0.57c 138.83±23.22b
MWH 1.26±0.04a 52.71±1.57a 22.86±2.24b 29.86±0.67b 198.05±25.09a
MFS 1.30±0.02a 51.32±0.89a 20.14±1.47c 31.17±0.57a 54.01±10.49c
MBF 1.30±0.03a 51.01±1.10a 22.18±1.66bc 28.84±0.57b 50.36±9.76c
10—20 PT 1.44±0.55a 46.03±1.71c 20.60±1.94b 25.43±0.98c 27.88±4.89d
CK 1.43±0.03a 46.13±1.34c 21.00±1.07b 25.13±0.29c 26.90±3.96d
MWS 1.38±0.02bc 48.29±0.80ab 23.61±0.99a 25.67±0.30c 73.19±15.82b
MWH 1.36±0.02c 48.79±0.86a 20.67±1.15b 28.12±0.35a 121.56±26.23a
MFS 1.39±0.03bc 47.90±1.36ab 21.75±1.67b 26.15±0.79b 50.10±3.41c
MBF 1.41±0.02ab 47.17±0.65bc 21.17±0.99b 26.00±0.79b 51.76±7.29c
20—30 PT 1.68±0.04ab 36.89±1.51bc 5.99±1.72d 30.90±2.04a 31.59±7.46b
CK 1.69±0.03a 36.29±1.11c 5.48±1.40d 30.81±0.67a 34.26±6.89ab
MWS 1.64±0.03bc 38.41±1.32ab 12.95±1.46a 25.46±0.44c 18.19±4.58c
MWH 1.61±0.03c 39.61±1.34a 12.31±1.89ab 27.30±0.57b 16.39±3.85c
MFS 1.66±0.03ab 37.66±1.32bc 10.11±1.69bc 27.56±0.37b 34.73±6.69ab
MBF 1.66±0.03ab 37.44±1.31bc 9.49±1.91c 27.95±0.60b 41.37±6.41a

Fig. 1

Changes in soil infiltration rates of organic amendments at different depths in 2014-2016"

Fig. 2

Changes in saturated hydraulic conductivity and air permeability at -10 kPa soil matric suction of organic amendments at different depths in 2014-2016"

Fig. 3

Principal component analysis of soil water-gas transport parameters"

Table 4

Comprehensive scores of effects of organic amendments on soil water-gas transport properties"

土层深度
Depth (cm)
处理
Treatments
综合得分
Comprehensive scores
0—10 CK -0.712
MWS 1.188
MWH 0.077
MFS -0.391
MBF -0.106
10—20 CK -1.109
MWS 0.375
MWH 0.438
MFS -0.314
MBF 0.609
20—30 CK -1.096
MWS 0.063
MWH 0.162
MFS -0.028
MBF 0.899
[1] JI J M, CAI H J, HE J Q, WANG H J . Performance evaluation of CERES-Wheat model in Guanzhong Plain of Northwest China. Agriculture Water Management, 2014,144:1-10.
doi: 10.1016/j.agwat.2014.04.016
[2] LI S, LI Y B, LI X S, TIAN X H, ZHAO A Q, WANG S J, WANG S X, SHI J L . Effect of straw management on carbon sequestration and grain production in a maize-wheat cropping system in Anthrosol of the Guanzhong Plain. Soil & Tillage Research, 2016,157:43-51.
doi: 10.1016/j.still.2015.11.002
[3] ZHANG Y L, LI C H, WANG Y W, HU Y M, CHRISTIE P, ZHANG J L, LI X L . Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain. Soil & Tillage Research, 2016,155:85-94.
doi: 10.1016/j.still.2015.08.006
[4] 王加旭, 王益权, 李欣, 梁化学, 史红平, 石宗琳 . 关中农田土壤物理状态与分析. 干旱地区农业研究, 2017,35(3):245-252.
doi: 10.7606/j.issn.1000-7601.2017.03.38
WANG J X, WANG Y Q, LI X, LIANG H X, SHI H P, SHI Z L . Evaluation of soil physical state in Guanzhong farmland. Agricultural Research in the Arid Areas, 2017,35(3):245-252. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2017.03.38
[5] MU X Y, ZHAO Y L, LIU K, JI B Y, GUO H B, XUE Z W, LI C H . Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat-maize cropping system on the North China Plain. European Journal of Agronomy, 2016,78:32-43.
doi: 10.1016/j.eja.2016.04.010
[6] 李陆生, 张振华, 潘英华, 赵丽丽, 朱敏, 任尚岗 . 一种田间测算土壤导气率的瞬态模型. 土壤学报, 2012,49(6):1252-1256.
LI L S, ZHANG Z H, PAN Y H, ZHAO L L, ZHU M, REN S G . Transient-flow model for in-situ measuring of soil air permeability. Acta Pedologica, 2012,49(6):1252-1256. (in Chinese)
[7] 邵明安, 王全九, 黄明斌 . 土壤物理学. 北京: 高等教育出版社, 2006.
SHAO M A, WANG Q J , HUANG M B . Soil Physics. Beijing: Higher Education Press, 2006. ( in Chinese)
[8] KUNCORO P H, KOGA K, SATTA N, MUTO Y . A study on the effect of compaction on transport properties of soil gas and water Ⅰ: Relative gas diffusivity, air permeability, and saturated hydraulic conductivity. Soil & Tillage Research, 2014,143:172-179.
[9] KUNCORO P H, KOGA K, SATTA N, MUTO Y . A study on the effect of compaction on transport properties of soil gas and water Ⅱ: Soil pore structure indices. Soil & Tillage Research, 2014,143:180-187.
doi: 10.1016/j.still.2014.01.008
[10] YANG X Y, SUN B H, ZHANG S L . Trends of yield and soil fertility in a long-term wheat-maize system. Journal of Integrative Agriculture, 2014,13:402-414.
doi: 10.1016/S2095-3119(13)60425-6
[11] LAIRD D A, CHANG C W . Long-term impacts of residue harvesting on soil quality. Soil & Tillage Research, 2013,134:33-40.
doi: 10.1016/j.still.2013.07.001
[12] GILL J S , SALE P W G, PERIES R R, TANG C . Changes in soil physical properties and crop root growth in dense sodic subsoil following incorporation of organic amendments. Field Crops Research, 2009,114:137-146.
doi: 10.1016/j.fcr.2009.07.018
[13] 杨志臣, 吕贻忠, 张凤荣, 肖小平, 刘沫 . 秸秆还田和腐熟有机肥对水稻土培肥效果对比分析. 农业工程学报, 2008,24(3):214-218.
doi: 10.3321/j.issn:1002-6819.2008.03.043
YANG Z C, LÜ Y Z, ZHANG F R, XIAO X P, LI M . Comparative analysis of the effects of straw-returning and decomposed manure on paddy soil fertility betterment. Transactions of the Chinese Society of Agricultural Engineering, 2008,24(3):214-218. (in Chinese)
doi: 10.3321/j.issn:1002-6819.2008.03.043
[14] 李江涛, 钟晓兰, 张斌, 刘勤, 赵其国 . 长期施用畜禽粪便对土壤孔隙结构特征的影响. 水土保持学报, 2010,24(6):137-140.
LI J T, ZHONG X L, ZHANG B, LIU Q, ZHAO Q G . Soil pore structure properties as affected by long-term application of poultry litter and livestock manure. Journal of Soil and Water Conservation, 2010,24(6):137-140. (in Chinese)
[15] 王秋菊, 高中超, 常本超, 刘峰 . 有机物料深耕还田改善石灰性黑钙土物理性状. 农业工程学报, 2015,31(10):161-166.
doi: 10.11975/j.issn.1002-6819.2015.10.021
WANG Q J, GAO Z C, CHANG B C, LIU F . Deep tillage with organic materials returning to field improving soil physical characters of calcic chernozem. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(10):161-166. (in Chinese)
doi: 10.11975/j.issn.1002-6819.2015.10.021
[16] 赵占辉, 张丛志, 蔡太义, 刘昌华, 张佳宝 . 不同稳定性有机物料对砂姜黑土理化性质及玉米产量的影响. 中国生态农业学报, 2015,23(10):1228-1235.
doi: 10.13930/j.cnki.cjea.150546
ZHAO Z H, ZHANG C Z, CAI T Y, LIU C H, ZHANG J B . Effects of different stable organic matters on physicochemical properties of lime concretion black soil and maize yield. Chinese Journal of Eco- Agriculture, 2015,23(10):1228-1235. (in Chinese)
doi: 10.13930/j.cnki.cjea.150546
[17] BANDYOPADHYAY K K, MISRA A K, GHOSH P K, HATI K M . Effect of integrated use of farmyard manure and chemical fertilizers on soil physical properties and productivity of soybean. Soil & Tillage Research, 2010,110(1):115-125.
doi: 10.1016/j.still.2010.07.007
[18] YU K, DONG Q G, CHEN H X, FENG H, ZHAO Y, SI B.C, LI Y, HOPKINS W . Incorporation of pre-treated straw improves soil aggregate stability and increases crop productivity. Agronomy Journal, 2017,109(5):2253-2265.
doi: 10.2134/agronj2016.11.0645
[19] 丁奠元, 冯浩, 赵英, 杜璇 . 氨化秸秆还田对土壤孔隙结构的影响. 植物营养与肥料学报, 2016,22(3):650-658.
doi: 10.11674/zwyf.15128
DING D Y, FENG H, ZHAO Y, DU X . Effect of ammoniated straw returning on soil pore structure. Journal of Plant Nutrition and Fertilizer, 2016,22(3):650-658. (in Chinese)
doi: 10.11674/zwyf.15128
[20] SHI Y G, ZHAO X N, GAO X D, ZHANG S L, WU P T . The effects of long-term fertiliser applications on soil organic carbon and hydraulic properties of a Loess soil in China. Land Degradation & Development, 2016,27(1):60-67.
doi: 10.1002/ldr.2391
[21] ZHANG S L, YANG X Y, WISS M, GRIP M, LOVDAHL L . Changes in physical properties of a loess soil in China following two long-term fertilization regimes. Geoderma, 2006,136(3/4):579-587.
doi: 10.1016/j.geoderma.2006.04.015
[22] ARTHUR E, SCHJØNNING P, MOLDRUP P, TULLER M , JONGE L W D . Density and permeability of a loess soil: long-term organic matter effect and the response to compressive stress. Geoderma, 2013, 236-245:193-194.
doi: 10.1016/j.geoderma.2012.09.001
[23] KHAN A R, CHANDRA D, QURAISHI S, SINHA R K . Soil aeration under different soil surface conditions. Journal of Agronomy and Crop Science, 2000,185(2):105-112.
doi: 10.1046/j.1439-037X.2000.00417.x
[24] NAVEED M, MOLDRUP P, VOGEL H J, LAMANDÉ M, WILDENSCHILD D, TULLER M , JONGE L.W.D . Impact of long-term fertilization practice on soil structure evolution. Geoderma, 2014, 217-218:181-189.
[25] 陈帅, 陈强, 孙涛, 张光辉, 张兴义 . 黑土坡耕地秸秆覆盖对表层土壤结构和导气性的影响. 水土保持通报, 2016,36(1):17-21.
doi: 10.13961/j.cnki.stbctb.2016.01.004
CHEN S, CHEN Q, SUN T, ZHANG G H, ZHANG X Y . Effects of straw mulching on topsoil structure and air permeability in Black soil sloping farmland. Bulletin of Soil and Water Conservation, 2016,36(1):17-21. (in Chinese)
doi: 10.13961/j.cnki.stbctb.2016.01.004
[26] 罗松, 韩少杰, 王恩姮, 陈祥伟 . 不同开垦年限黑土耕地土壤导气率及其影响因素. 东北林业大学学报, 2017,45(6):47-50.
LUO S, HAN S J, WANG E H, CHEN X W . Air permeability and its influence factors of black soil with different tillage periods. Journal of Northeast Forestry University, 2017,45(6):47-50. (in Chinese)
[27] 王卫华, 李建波, 张志鹏, 王全九 . 覆膜滴灌条件下土壤改良剂对土壤导气率的影响. 农业机械学报, 2015,46(6):160-167.
doi: 10.6041/j.issn.1000-1298.2015.06.023
WANG W H, LI J B, ZHANG Z P, WANG Q J . Effects of soil amendments on soil air permeability in film mulched drip irrigation field. Transactions of the Chinese Society for Agricultural Machinery, 2015,46(6):160-167. (in Chinese)
doi: 10.6041/j.issn.1000-1298.2015.06.023
[28] SOLTANI A , RAVALEC-DUPIN M L, FOURAR M . An experimental method for one dimensional permeability characterization of heterogeneous porous media at the core scale. Transport Porous Media, 2009,77(1):1-16.
doi: 10.1007/s11242-008-9258-0
[29] GROENEVELT P H, KAY B D, GRANT C D . Physical assessment of a soil with respect to rooting potential. Geoderma, 1984,34(2):101-114.
doi: 10.1016/0016-7061(84)90016-8
[30] 王卫华 . 土壤导气率变化特征试验研究[D]. 西安: 西安理工大学, 2008.
WANG W H . Experimental studies on soil air permeability[D]. Xi’an: Xi’an University of Technology, 2008. (in Chinese)
[31] 李江涛, 钟晓兰, 赵其国 . 畜禽粪便施用对稻麦轮作土壤质量的影响. 生态学报, 2011,31(10):2837-2845.
LI J T, ZHONG X L, ZHAO Q G . Enhancement of soil quality in a rice-wheat rotation after long-term application of poultry litter and livestock manure. Acta Ecologica Sinica, 2011,31(10):2837-2845. (in Chinese)
[32] CELIK I, GUNAL H, BUDAK M, AKPINAR C . Effects of long-term organic and mineral fertilizers on bulk density and penetration resistance in semi-arid Mediterranean soil conditions. Geoderma, 2010,160(2):236-243.
doi: 10.1016/j.geoderma.2010.09.028
[33] YAZDANPANAH N, MAHMOODABADI M, CERDÀ A . The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma, 2016,266:58-65.
doi: 10.1016/j.geoderma.2015.11.032
[34] XIN X L, ZHANG J B, ZHU A, ZHANG C Z . Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil & Tillage Research, 2016,156:166-172.
doi: 10.1016/j.still.2015.10.012
[35] KHALIQ A, ABBASI M K . Improvements in the physical and chemical characteristics of degraded soils supplemented with organic-inorganic amendments in the Himalayan region of Kashmir, Pakistan. Catena, 2015,126:209-219.
doi: 10.1016/j.catena.2014.11.015
[36] WATSON K, LUXMOORE R . Estimating macroporosity in a forest watershed by use of a tension infiltrometer. Soil Science Society of America Journal, 1986,50(3):578-582.
doi: 10.2136/sssaj1986.03615995005000030007x
[37] CAMEIRA M R, FERNANDO R M, PEREIRA L S . Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil & Tillage Research, 2003,70(2):131-140.
doi: 10.1016/S0167-1987(02)00154-X
[38] 郭慧超, 邵明安, 樊军 . 有机肥质量分数对土壤导水率稳定性的影响. 中国水土保持科学, 2013,11(6):7-14.
doi: 10.3969/j.issn.1672-3007.2013.06.002
GUO H C, SHAO M A, FAN J . Effects of the organic matter content on the stability of the soil hydraulic conductivity. Science of Soil and Water Conservation, 2013,11(6):7-14. (in Chinese)
doi: 10.3969/j.issn.1672-3007.2013.06.002
[39] 王秋菊, 常本超, 张劲松, 韩东来, 隋玉刚, 陈海龙, 杨兴玉, 王雪冬, 焦峰, 新家宪, 刘峰 . 长期秸秆还田对白浆土物理性质及水稻产量的影响. 中国农业科学, 2017,50(14):2748-2757.
doi: 10.3864/j.issn.0578-1752.2017.14.011
Wang Q j, CHaNG B C, Zhang J s, HAN D L, SUI Y G, CHEN H L, YANG X Y, WANG X D, Jiao F, KEN A, Liu F . Effects of albic soil physical properties and rice yields after long-term straw incorporation. Scientia Agricultura Sinica, 2017,50(14):2748-2757. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.14.011
[40] BORIE F, RUBIO R, ROUANET J L, MORALES A, BORIE G, ROJAS C . Effects of tillage systems on soil characteristics, glomalin and mycorrhizal propagules in a Chilean Ultisol. Soil & Tillage Research, 2006,88(1/2):253-261.
doi: 10.1016/j.still.2005.06.004
[41] HUBBE M A, NAZHAD M , SÁNCHEZ C . Composting as a way to convert cellulosic biomass and organic waste into high-value soil amendments: A review. Bioresources, 2010,5(4):2808-2854.
doi: 10.1007/s00226-009-0268-z
[42] 王晓娟, 贾志宽, 梁连友, 韩清芳, 丁瑞霞, 杨保平, 崔荣美 . 旱地施有机肥对土壤有机质和水稳性团聚体的影响. 应用生态学报, 2012,23(1):159-165.
WANG X J, JIA Z K, LIANG L Y, HAN Q F, DING R X, YANG B P, CUI R M . Effects of organic manure application on dry land soil organic matter and water stable aggregates. Chinese Journal of Applied Ecology, 2012,23(1):159-165. (in Chinese)
[43] 吕凤莲, 侯苗苗, 张弘弢, 强久次仁, 周应田, 路国艳, 赵秉强, 杨学云, 张树兰 . 塿土冬小麦-夏玉米轮作体系有机肥替代化肥比例研究. 植物营养与肥料学报, 2018,24(1):22-32.
doi: 10.11674/zwyf.17210
LÜ F L, HOU M M, ZHANG H T , QIANG J C R, ZHOU Y T, LU G Y, ZHAO B Q, YANG X Y, ZHANG S L . Replacement ratio of chemical fertilizer nitrogen with manure under the winter wheat- summer maize rotation system in Lou soil. Journal of Plant Nutrition and Fertilizers, 2018,24(1):22-32. (in Chinese)
doi: 10.11674/zwyf.17210
[44] 王秋菊, 高中超, 张劲松, 常本超, 姜辉, 孙兵, 郭中原, 贾会彬, 焦峰, 刘峰 . 黑土稻田连续深耕改善土壤理化性质提高水稻产量大田试验. 农业工程学报, 2017,33(9):126-132.
WANG Q J, GAO Z C, ZHANG J S, CHANG B C, JIANG H, SUN B, GUO Z Y, JIA H B, JIAO F, LIU F . Black-soil paddy field experiment on improving soil physical and chemical properties and increasing rice yield by continuous deep ploughing. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(9):126-132. (in Chinese)
[45] 侯贤清, 贾志宽, 韩清芳, 孙红霞, 王维, 聂俊峰, 杨宝平 . 不同轮耕模式对旱地土壤结构及入渗蓄水特性的影响. 农业工程学报, 2012,28(5):85-94.
doi: 10.3969/j.issn.1002-6819.2012.05.015
HOU X Q, JIA Z K, HAN Q F, SUN H X, WANG W, NIE J F, YANG B P . Effects of different rotational tillage patterns on soil structure, infiltration and water storage characteristics in dryland. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(5):85-94. (in Chinese)
doi: 10.3969/j.issn.1002-6819.2012.05.015
[46] 翟振, 李玉义, 郭建军, 王婧, 董国豪, 郭智慧, 逄焕成 . 耕深对土壤物理性质及小麦-玉米产量的影响. 农业工程学报, 2017,33(11):115-123.
ZHAI Z, LI Y Y, GUO J J, WANG J, DONG G H, GUO Z H, PANG H C . Effect of tillage depth on soil physical properties and yield of winter wheat-summer maize. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(11):115-123. (in Chinese)
[47] 朱宝国, 张春峰, 贾会彬, 王囡囡, 孟庆英, 匡恩俊, 王秋菊, 高中超, 刘峰, 张立波, 高雪冬 . 秸秆心土混合犁改良白浆土效果. 农业工程学报, 2017,33(15):57-63.
doi: 10.11975/j.issn1002-6819.2017.15.007
ZHU B G, ZHANG C F, JIA H B, WANG N N, MENG Q Y, KUANG E J, WANG Q J, GAO Z C, LIU F, ZHANG L B, GAO X D . Effect of planosol improvement by using straw subsoil mixed layer plough. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(15):57-63. (in Chinese)
doi: 10.11975/j.issn1002-6819.2017.15.007
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[4] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[5] YAO YiWen,DAI QuanHou,GAN YiXian,GAO RuXue,YAN YouJin,WANG YuHong. Effects of Rainfall Intensity and Underground Hole (Fracture) Gap on Nutrient Loss in Karst Sloping Farmland [J]. Scientia Agricultura Sinica, 2021, 54(1): 140-151.
[6] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[7] SONG ChuJun,FAN FangYuan,GONG ShuYing,GUO HaoWei,LI ChunLin,ZONG BangZheng. Taste Characteristic and Main Contributing Compounds of Different Origin Black tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394.
[8] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[9] ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
[10] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[11] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[12] SHI TianTian, HE JieLi, GAO ZhiJun, CHEN Ling, WANG HaiGang, QIAO ZhiJun, WANG RuiYun. Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109.
[13] YaJing XI,DongYang LIU,JunYu WANG,XuePing WU,XiaoXiu LI,YinKun LI,BiSheng WANG,MengNi ZHANG,XiaoJun SONG,ShaoWen HUANG. Effect of Organic Partial Replacement of Inorganic Fertilizers on N2O Emission in Greenhouse Soil [J]. Scientia Agricultura Sinica, 2019, 52(20): 3625-3636.
[14] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
[15] SONG ZiRong,E ShengZhe,YUAN JinHua,JIA WuXia,ZENG XiBai,SU ShiMing,BAI LingYu. Heavy Metal Accumulation in Irrigated Desert Soils and Their Crop Effect After Applying Different Organic Materials [J]. Scientia Agricultura Sinica, 2019, 52(19): 3367-3379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!