Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (3): 612-631.doi: 10.3864/j.issn.0578-1752.2020.03.013

• FOOD SCIENCE AND ENGINEERING • Previous Articles     Next Articles

Identification and Analysis of Phenolic Acids in Rice Using Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry

ZHAO Shan1,ZHONG LingLi1,ZHOU Hong1,LI Xi1,LEI XinYu1,HUANG ShiQun1,ZHENG XingGuo1,FENG JunYan2,LEI ShaoRong1,GUO LingAn1()   

  1. 1 Center of Analysis and Testing, Sichuan Academy of Agricultural Sciences/Risk Assessment Laboratory of Agricultural Products Quality and Safety (Chengdu), Ministry of Agriculture, Chengdu 610066
    2 Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061
  • Received:2019-06-27 Accepted:2019-11-20 Online:2020-02-01 Published:2020-02-13
  • Contact: LingAn GUO E-mail:gla028@163.com

Abstract:

【Objective】 Rice is one of the most important crops in the world, and it is also an important source of phenolic acids in people’s diet. To further understand and explore the functional nutrition of rice, an ultra-high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was established for identification and analysis of rice phenolic acids in the present study. 【Method】 The qualitative and quantitative analysis of 19 phenolic acids in 14 samples of white rice, red rice, purple rice and black rice from Sichuan province, was carried out by UPLC-MS/MS. The pretreatment conditions, including alkali hydrolysis, acid hydrolysis and purification extraction, were optimized, besides, the chromatographic column, mobile phase condition and mass spectrometry conditions were optimized too. Furthermore, all detection was carried out by electrospray ionization and multi reaction monitoring mode. Finally, the content of free ester, soluble ester, soluble glycoside, insoluble binding and insoluble glycoside phenolic acid in brown rice samples was determined by using the optimized analytical method. 【Result】 The optimal conditions were obtained through the comparison and optimization of the pre-treatment conditions. It was as follows: alkaline hydrolysis was 4 hours at the concentration of 1% ascorbic acid and 10 mmol·L -1 EDTA, and acid hydrolysis was 1 hour at the concentration of 1 mol·L -1 HCl; all purification and extraction were carried out with ethylacetate containing 0.2% BHA; HSS T3 column was used, acetonitrile-0.01% formic acid aqueous solution was used as mobile phase for gradient elution; except trans-cinnamic acid adopts positive ion mode, the rest were negative ion mode. The compounds had good peak shape, high resolution and sensitivity. The linear range of 19 phenolic acids was good (R 2≥0.9997), the detection limit was 0.023-4.728 μg·L -1, and the quantitative limit was 0.076-15.759 μg·L -1. Recoveries of 19 phenolic acids in direct extraction were 55.3%-98.0%. Recoveries of 18 phenolic acids (except chlorogenic acid) in alkali hydrolysis and acid hydrolysis were 90.8%-103.1% and 51.7%-100.3%, respectively. In total, there were 14 phenolic acids in 14 rice samples determined using this method, 12 of which were quantitative. The total content range of phenolic acids was 356.3-1 234.5 mg·kg -1. Ferulic acid, protocatechuic acid, vanillic acid, p-coumaric acid, sinapic acid and p-hydroxybenzoic acid had higher content. Protocatechuic acid and vanillic acid could be mainly found in purple rice and black rice, most of which were insoluble binding type, soluble ester type and soluble glycosidic phenolic acid. 【Conclusion】 The method obtained in this study was accurate and sensitive. The addition of protectors effectively inhibited the degradation of phenolic acid and increased the identification and quantitative analysis of free and glycosidic phenolic acid during extraction and determination. Therefore, distribution of phenolic acid could be presented more accurately and comprehensively in rice.

Key words: phenolic acids, ultra-high performance liquid chromatography, tandem mass spectrometry, rice

Table 1

Summary table of basic information of phenolic acids"

化合物名称
Compounds name
英文名
English name
分子式
Molecular formula
分子量
Molecular weight
CAS登录号
CAS Number
分子结构图
Molecular structure
所属类别
Category
没食子酸
Gallic acid
3,4,5-Trihydroxybenzoic acid C7H6O5 170.1 149-91-7 羟基苯甲酸类
Hydroxybenzoic acids
2,3,4-三羟基苯甲酸
2,3,4-Trihydroxybenzoic acid
1,2,3-Benzenetriol-4-carboxylic acid C7H6O5 170.1 610-02-6
水杨酸
Salicylic acid
2-Hydroxybenzoic acid C7H6O3 138.1 69-72-7
3,5-二羟基苯甲酸
3,5-Dihydroxybenzoic acid
- C7H6O4 154.1 99-10-5
原儿茶酸
Protocatechuic acid
3,4-Dihydroxybenzoic acid C7H6O4 154.1 99-50-3
龙胆酸
Gentisic acid
2,5-Dihydroxybenzoic acid C7H6O4 154.1 490-79-9
焦儿茶酸
Pyrocatechuic acid
2,3-Dihydroxybenzoic acid C7H6O4 154.1 303-38-8
化合物名称
Compounds name
英文名
English name
分子式
Molecular formula
分子量
Molecular weight
CAS登录号
CAS Number
分子结构图
Molecular structure
所属类别
Category
对羟基苯甲酸
p-Hydroxybenzoic acid
4-Hydroxybenzoic acid C7H6O3 138.1 99-96-7
香草酸
Vanillic acid
4-Hydroxy-3-methoxybenzoic acid C8H8O4 168.1 121-34-6
丁香酸
Syringic acid
4-Hydroxy-3,5-dimethoxybenzoic acid C9H10O5 198.2 530-57-4
绿原酸
Chlorogenic acid
3-O-Caffeoylquinic acid C16H18O9 354.3 327-97-9 咖啡酰奎宁酸类
Caffeoylquinic acids
咖啡酸
Caffeic acid
3,4-Dihydroxycinnamic acid C9H8O4 180.2 331-39-5 羟基肉桂酸类
Hydroxycinnamic acids
4-香豆酸
p-Coumaric acid
4-Hydroxycinnamic acid C9H8O3 164.2 501-98-4
阿魏酸
Ferulic acid
4-Hydroxy-3-methoxycinnamic acid C10H10O4 194.2 1135-24-6
3-羟基肉桂酸
3-Hydroxycinnamic acid
3-Coumaric acid C9H8O3 164.2 14755-02-3
芥子酸
Sinapic acid
4-Hydroxy-3,5-dimethoxycinnamic acid C11H12O5 224.2 530-59-6
异阿魏酸
Isoferulic acid
3-Hydroxy-4-methoxycinnamic acid C10H10O4 194.2 537-73-5
2-羟基肉桂酸
2-Hydroxycinnamic acid
2-Coumaric acid C9H8O3 164.2 614-60-8
反式肉桂酸
trans-Cinnamic acid
3-Phenyl-2-propenoic acid C9H8O2 148.2 140-10-3

Fig. 1

Different rice materials after hulling"

Table 2

Material name and source information"

编号No. 材料(品种)名称Material (variety) name 类别Category 采样地点Collected site
1 德香4103 Dexiang4103 籼稻/白米稻 Indica/white rice 绵竹 Mianzhu
2 桂朝2号 Guichao No.2 籼稻/白米稻 Indica/white rice 绵竹 Mianzhu
3 五山丝苗 Wushansimiao 籼稻/白米稻 Indica/white rice 绵竹 Mianzhu
4 德优4727 Deyou4727 籼稻/白米稻 Indica/white rice 绵竹 Mianzhu
5 德粳6号 Dejing No.6 梗稻/白米稻 Japonica/white rice 绵竹 Mianzhu
6 川香优37 Chuanxiangyou37 籼稻/白米稻 Indica/white rice 新都 Xindu
7 川绿优188 Chuanlvyou188 籼稻/白米稻 Indica/white rice 新都 Xindu
8 黑香糯 Heixiangnuo 黑米稻 Black rice 广汉 Guanghan
9 黑稻2号 Heidao No.2 黑米稻 Black rice 广汉 Guanghan
10 广汉黑米 Guanghan black rice 黑米稻 Black rice 广汉 Guanghan
11 红宝石Rubine 红米稻 Red rice 广汉 Guanghan
12 广汉红米 Guanghan red rice 红米稻 Red rice 广汉 Guanghan
13 螺髻山红米 Luojishan red rice 红米稻 Red rice 普格 Puge
14 紫米 Purple rice 紫米稻 Purple rice 遂宁 Suining

Fig. 2

The ion chromatograms of 19 kinds of phenolic acids"

Table 3

UPLC-MS/MS parameters for target compounds"

酚酸
Phenolic acid
保留时间
Retention time (min)
质荷比Mass-to-charge ratio (m/z) 锥孔电压
Cone voltage (V)
碰撞能量Collision energy (eV) 离子扫描模式
Ion scanning mode
母离子
Parent ion
子离子
Daughter ion
没食子酸Gallic acid 1.89 168.90 124.91*、78.90 28 14,22 负离子 Negative ions
2,3,4-三羟基苯甲酸
2,3,4-Trihydroxybenzoic acid
2.87 168.90 150.94*、106.89 32 14,18 负离子Negative ions
3,5-二羟基苯甲酸
3,5-Dihydroxybenzoic acid
2.97 152.90 108.90*、64.97 14 12,12 负离子Negative ions
原儿茶酸Protocatechuic acid 3.24 152.90 108.90*、90.88 6 14,22 负离子Negative ions
龙胆酸Gentisic acid 4.64 152.90 108.90*、80.92 10 12,16 负离子Negative ions
焦儿茶酸Pyrocatechuic acid 4.65 152.90 108.90*、80.92 14 16,22 负离子Negative ions
对羟基苯甲酸
p-Hydroxybenzoic acid
4.69 136.90 92.89*、64.91 6 12,24 负离子Negative ions
绿原酸Chlorogenic acid 4.85 353.03 190.99*、84.88 18 20,40 负离子Negative ions
香草酸Vanillic acid 5.85 166.90 151.93*、107.92 8 12,22 负离子Negative ions
咖啡酸Caffeic acid 5.98 178.90 134.93*、106.88 27 16,24 负离子Negative ions
丁香酸Syringic acid 6.61 196.97 181.96*、122.89 18 14,24 负离子Negative ions
4-香豆酸p-Coumaric acid 8.97 162.97 118.92*、93.15 22 12,20 负离子Negative ions
水杨酸Salicylic acid 10.25 136.90 92.89*、64.91 16 14,22 负离子Negative ions
阿魏酸Ferulic acid 11.06 192.97 133.95*、177.95 14 18,12 负离子Negative ions
3-羟基肉桂酸
3-Hydroxycinnamic acid
11.49 162.97 118.92*、90.93 22 16,24 负离子Negative ions
芥子酸Sinapic acid 11.65 223.03 207.97*、163.93 16 14,16 负离子Negative ions
异阿魏酸Isoferulic acid 12.09 192.97 177.95*、133.96 6 12,14 负离子Negative ions
2-羟基肉桂酸
2-Hydroxycinnamic acid
13.64 162.97 119.18*、92.89 2 24,24 负离子Negative ions
反式肉桂酸 trans-Cinnamic acid 14.50 148.90 130.92*、102.94 38 10,18 正离子Positive ions

Table 4

Recoveries of phenolic acids in rice samples under different experimental condition (n=6)"

酚酸
Phenolic acid
游离型提取Free type extraction (%) 碱水解Alkaline hydrolysis (%) 酸水解
Acid hydrolysis (%)
RSD
(%)
HLB固相萃取法
HLB Solid-phase extraction
RSD
(%)
乙酸乙酯萃取法
Ethyl acetate extraction
RSD
(%)
NaOH RSD
(%)
NaOH+1%抗坏血酸 NaOH+1% ascorbic acid RSD
(%)
NaOH +1%抗坏血酸+10 mmol∙L-1 EDTA
NaOH +1% ascorbic acid+10 mmol∙L-1 EDTA
RSD
(%)
没食子酸Gallic acid 96.3 2.95 75.7 0.83 0.0 - 87.4 4.79 92.1 2.11 73.5 2.47
2,3,4-三羟基苯甲酸
2,3,4-Trihydroxybenzoic acid
92.6 1.93 95.4 2.02 0.0 - 86.9 3.41 94.5 1.80 86.9 0.66
3,5-二羟基苯甲酸
3,5-Dihydroxybenzoic acid
102.1 0.20 86.7 4.65 95.2 2.81 97.2 1.65 97.5 0.79 96.5 0.61
原儿茶酸Protocatechuic acid 100.3 1.39 88.2 0.01 0.0 - 95.1 0.98 98.8 1.99 92.1 2.05
龙胆酸Gentisic acid 87.7 3.80 84.1 2.89 0.0 - 85.5 4.63 96.0 4.20 100.3 0.43
焦儿茶酸Pyrocatechuic acid 93.1 2.20 84.3 2.81 0.0 - 91.9 5.88 103.0 0.24 99.8 0.81
对羟基苯甲酸
p-Hydroxybenzoic acid
99.0 0.47 95.0 0.55 99.9 0.12 99.5 2.36 103.1 2.03 96.2 1.86
绿原酸Chlorogenic Acid 89.9 1.01 55.3 3.98 - - - - - - - -
香草酸Vanillic acid 103.8 1.90 92.3 1.34 101.8 0.19 98.6 1.28 100.5 1.74 92.1 3.87
咖啡酸Caffeic acid 90.2 0.59 93.1 2.53 0.0 - 92.9 1.50 100.1 1.64 64.1 1.63
丁香酸Syringic acid 102.9 1.28 92.6 2.19 94.1 1.40 98.8 0.42 100.9 2.30 95.9 1.00
4-香豆酸p-Coumaric acid 93.1 2.82 94.8 1.40 90.2 0.67 104.8 2.94 100.8 2.01 51.7 3.77
水杨酸Salicylic acid 89.1 2.39 85.6 0.72 90.5 0.09 98.4 1.68 100.6 1.14 78.5 1.73
阿魏酸Ferulic acid 97.5 3.00 98.0 1.05 84.4 1.61 110.5 0.12 103.1 0.28 52.3 3.55
3-羟基肉桂酸
3-Hydroxycinnamic acid
98.1 0.95 91.8 2.49 97.8 1.18 100.0 3.15 100.9 2.42 92.5 1.64
芥子酸Sinapic acid 85.3 4.03 88.3 4.67 6.9 34.0 101.4 1.11 101.9 3.35 62.2 3.03
异阿魏酸Isoferulic acid 111.4 3.90 91.3 0.01 100.8 0.69 97.8 3.09 100.9 1.66 70.6 1.84
2-羟基肉桂酸
2-Hydroxycinnamic acid
94.4 2.88 89.9 0.01 94.4 0.70 101.1 4.28 102.1 1.60 86.9 1.64
反式肉桂酸
trans-Cinnamic acid
97.0 4.08 74.7 2.57 82.9 1.43 101.1 3.36 104.8 1.95 68.2 3.58

Fig. 3

Recovery of phenolic acids under different acid hydrolysis conditions 1: 1 mol·L-1 HCl solution for 1 h; 2: 1 mol·L-1 HCl solution for 2 h; 3: 2 mol·L-1 HCl solution for 1 h; 4: 2 mol·L-1 HCl solution for 2 h"

Table 5

Linear equations, correlation coefficients, limits of detection (LODs) and limits of quantification (LOQs) of 19 kinds of phenolic acids"

酚酸
Phenolic acid
线性范围
Linear range
(μg·L-1)
回归方程
Linear equation
相关系数(R2
Correlation coefficient
检出限
LOD
(μg·L-1)
定量限
LOQ
(μg·L-1)
没食子酸Gallic acid 1.0—500 y=4129.01x+5097.625 0.99994 0.121 0.403
2,3,4-三羟基苯甲酸2,3,4-Trihydroxybenzoic acid 1.0—500 y=1181.706x+1184.094 0.99998 0.178 0.592
3,5-二羟基苯甲酸3,5-Dihydroxybenzoic acid 1.0—500 y=4200.251x+6932.746 0.99981 0.577 1.922
原儿茶酸Protocatechuic acid 1.0—500 y=5195.678x+4966.813 0.99998 0.221 0.735
龙胆酸Gentisic acid 5.0—500 y=1143.852x-5212.479 0.99974 4.728 15.759
焦儿茶酸Pyrocatechuic acid 2.5—500 y=1578.332 x-2815.838 0.99976 1.391 4.637
对羟基苯甲酸p-Hydroxybenzoic acid 1.0—500 y=8060.058x+89591.57 0.99999 0.023 0.076
绿原酸Chlorogenic Acid 1.0—500 y=3455.433x+915.729 0.99999 0.029 0.097
香草酸Vanillic acid 1.0—250 y=791.212x+5290.2 0.99993 0.060 0.201
咖啡酸Caffeic acid 2.5—250 y=9980.757x+29851.52 0.99962 1.799 5.995
丁香酸Syringic acid 1.0—500 y=1194.07x-734.952 0.99989 0.047 0.158
4-香豆酸p-Coumaric acid 1.0—500 y=11839.49x+4169.524 0.99999 0.144 0.479
水杨酸Salicylic acid 1.0—500 y=12668.42x-8192.132 0.99989 0.126 0.420
阿魏酸Ferulic acid 1.0—500 y=3638.813x-2875.187 0.99998 0.110 0.368
3-羟基肉桂酸3-Hydroxycinnamic acid 1.0—500 y=9461.071x+10025.18 0.99998 0.122 0.408
芥子酸Sinapic acid 1.0—500 y=2006.256x-2051.911 0.99998 0.050 0.167
异阿魏酸Isoferulic acid 1.0—500 y=929.839x-1868.854 0.99966 0.227 0.756
2-羟基肉桂酸2-Hydroxycinnamic acid 1.0—500 y=2820.271x+375.238 0.99999 0.457 1.522
反式肉桂酸trans-Cinnamic acid 1.0—250 y=3065.769x+3429.845 0.99973 0.293 0.976

Table 6

Content and distribution of different types of phenolic acids in Sichuan rice samples (n=3)"

酚酸
Phenolic acid
类型
Type
材料(品种)名称 Material (variety) name
五山丝苗
Wushansimiao
德优4727
Deyou
4727
德粳6号
Dejing
No.6
德香4103
Dexiang 4103
川绿优188
Chuanlvyou188
桂潮2号
Guichao No.2
川香优37
Chuanxiangyou37
螺髻山红米
Luojishan red rice
红宝石
Rubine
广汉红米
Guanghan red rice
紫米
Purple rice
黑香糯
Heixiangnuo
广汉黑米
Guanghan black rice
黑稻2号
Heidao
No.2
样品水分
Sample moisture (%)
8.28 7.89 8.33 8.85 7.94 7.91 8.10 8.11 7.60 8.31 12.5 7.95 8.09 7.73
没食子酸
Gallic acid
(mg∙kg-1)
1 0.01±0.00 TD TD 0.01±0.00 0.01±0.00 TD 0.01±0.00 0.01±0.00 0.01±0.00 0.01±0.00 0.06±0.00 0.06±0.00 0.06±0.00 0.10±0.01
2 0.46±0.01 ND ND 1.31±0.04 0.05±0.01 ND 0.59±0.05 0.20±0.50 ND ND ND 0.06±0.07 ND 0.06±0.03
3 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
4 ND ND ND ND ND ND ND ND ND ND ND ND ND 0.26±0.02
5 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
2,3,4-三羟基苯
甲酸
2,3,4-
Trihydroxybenzoic
acid (mg∙kg-1)
1 0.01±0.00 0.01±0.00 TD TD TD 0.01±0.00 TD 0.01±0.00 0.02±0.00 0.02±0.00 0.34±0.06 1.71±0.32 1.89±0.21 4.73±0.41
2 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
3 0.51±0.04 0.61±0.07 0.52±0.04 0.50±0.02 0.51±0.06 0.50±0.01 0.52±0.02 0.47±0.02 0.49±0.09 0.57±0.02 0.67±0.02 0.74±0.12 0.73±0.01 0.79±0.09
4 ND ND ND ND ND ND ND ND ND ND 0.06±0.06 0.20±0.03 0.08±0.03 0.45±0.04
5 0.49±0.13 0.52±0.10 0.44±0.05 0.48±0.03 0.46±0.06 0.44±0.04 0.43±0.01 ND ND ND 0.49±0.01 0.40±0.04 0.47±0.06 0.46±0.02
原儿茶酸
Protocatechuic acid
(mg∙kg-1)
1 0.06±0.00 0.05±0.00 0.06±0.00 0.05±0.00 0.05±0.00 0.06±0.00 0.05±0.00 3.24±0.02 3.35±0.02 6.42±0.16 27.37±0.61 20.81±0.21 21.36±0.47 24.70±2.44
2 ND ND ND ND ND ND ND 10.47±0.24 8.12±0.31 15.87±0.26 104.37±0.80 134.10±0.86 155.84±1.41 168.73±0.55
3 ND ND ND ND ND ND ND 2.26±0.18 1.44±0.08 2.60±0.19 14.75±0.57 19.80±0.76 23.08±0.64 22.61±0.24
4 ND ND ND ND ND ND ND 9.60±0.21 14.82±0.06 21.99±1.30 152.50±2.41 226.54±13.70 203.72±3.19 280.32±5.32
5 ND ND ND ND ND ND ND 1.67±0.04 2.20±0.14 2.95±0.94 12.79±0.58 18.42±0.48 16.83±0.64 24.32±0.91
对羟基苯甲酸
p-Hydroxybenzonic acid
(mg∙kg-1)
1 0.36±0.00 0.34±0.00 0.52±0.02 0.33±0.00 0.46±0.00 0.41±0.00 0.40±0.01 0.32±0.01 0.28±0.01 0.40±0.02 1.39±0.03 0.59±0.01 0.54±0.00 0.66±0.09
2 2.52±0.23 4.94±0.13 23.36±0.05 4.06±0.01 8.26±0.05 3.11±0.08 6.37±0.06 9.81±0.17 2.94±0.01 3.67±0.07 6.24±0.36 4.11±0.04 4.63±0.01 4.42±0.00
3 7.75±0.50 19.13±0.06 52.23±0.64 15.41±0.19 27.03±1.05 11.21±0.44 23.08±0.51 28.27±0.22 6.91±0.24 6.98±0.46 9.63±0.22 5.72±0.30 6.57±0.07 7.31±0.24
4 1.58±0.04 1.66±0.06 5.43±0.03 1.38±0.14 2.44±0.03 1.82±0.07 2.68±0.07 2.81±0.00 1.84±0.04 2.22±0.10 3.22±0.06 3.51±0.17 2.85±0.07 3.97±0.06
5 1.02±0.08 1.80±0.05 6.10±0.07 1.71±0.13 2.81±0.06 1.55±0.08 2.79±0.09 4.72±0.03 1.49±0.01 1.83±0.16 2.49±0.02 0.99±0.04 1.21±0.14 1.54±0.07
香草酸
Vanillic acid
(mg∙kg-1)
1 0.42±0.01 0.40±0.00 0.45±0.03 0.39±0.00 0.43±0.01 0.46±0.01 0.45±0.00 0.27±0.01 0.33±0.02 0.50±0.04 19.38±0.18 13.45±0.37 13.96±0.25 19.63±2.72
2 1.55±0.06 2.09±0.08 2.26±0.08 2.52±0.07 1.99±0.11 1.78±0.12 2.74±0.10 1.37±0.00 1.92±0.01 3.47±0.15 52.81±0.91 83.57±1.07 107.81±3.44 100.04±2.16
3 2.52±0.19 3.59±0.17 3.23±0.11 4.39±0.05 3.92±0.04 3.67±0.13 4.88±0.21 2.73±0.08 2.92±0.09 3.73±0.01 13.04±0.10 21.73±0.91 23.96±0.36 21.64±0.80
4 0.99±0.05 1.06±0.00 1.35±0.07 0.88±0.07 1.03±0.01 0.94±0.04 1.14±0.08 0.69±0.01 1.02±0.01 1.56±0.07 56.82±1.22 110.17±11.82 99.36±0.58 139.94±3.69
5 0.81±0.02 0.86±0.03 1.01±0.01 0.90±0.05 0.96±0.10 0.88±0.01 0.97±0.01 0.85±0.02 1.02±0.02 1.27±0.07 6.97±0.04 10.39±0.62 9.89±0.21 10.72±0.10
咖啡酸
Caffeic acid
(mg∙kg-1)
1 0.73±0.00 0.98±0.04 0.66±0.01 1.00±0.01 0.33±0.01 0.30±0.00 0.44±0.02 0.32±0.05 0.43±0.00 0.43±0.02 0.50±0.01 1.18±0.01 0.85±0.02 0.67±0.02
2 4.25±0.20 6.64±0.17 4.07±0.42 5.30±0.44 3.77±0.21 3.66±0.02 4.85±0.13 3.27±0.07 3.57±0.03 6.53±0.14 5.64±0.09 13.08±0.12 12.08±0.15 8.25±0.02
3 2.17±0.23 3.97±0.39 2.77±0.16 4.01±0.08 2.59±0.21 2.54±0.01 2.96±0.07 1.67±0.08 2.63±0.13 2.54±0.14 2.61±0.12 4.34±0.05 3.44±0.04 3.88±0.12
4 6.05±0.26 5.47±0.33 7.37±0.29 4.02±0.72 4.17±0.01 3.26±0.22 4.27±0.53 4.32±0.15 3.89±0.07 3.79±0.42 7.82±0.16 7.38±0.33 6.27±0.29 4.06±0.41
5 TD TD TD TD TD TD TD TD TD TD 0.84±0.01 0.61±0.03 0.76±0.08 0.78±0.01
酚酸
Phenolic acid
类型
Type
材料(品种)名称 Material (variety) name
五山丝苗
Wushansimiao
德优4727
Deyou
4727
德粳6号
Dejing
No.6
德香4103
Dexiang 4103
川绿优188
Chuanlvyou188
桂潮2号
Guichao No.2
川香优37
Chuanxiangyou37
螺髻山红米
Luojishan red rice
红宝石
Rubine
广汉红米
Guanghan red rice
紫米
Purple rice
黑香糯
Heixiangnuo
广汉黑米
Guanghan black rice
黑稻2号
Heidao
No.2
丁香酸
Syringic acid
(mg∙kg-1)
1 0.11±0.00 0.12±0.00 0.13±0.01 0.14±0.00 0.15±0.00 0.18±0.01 0.16±0.00 0.14±0.01 0.10±0.00 0.15±0.01 1.57±0.01 0.23±0.01 0.22±0.00 0.20±0.03
2 1.41±0.11 1.47±0.04 1.59±0.02 1.68±0.02 1.50±0.01 1.56±0.01 1.64±0.05 1.84±0.03 1.02±0.00 1.59±0.05 4.28±0.25 2.70±0.02 2.98±0.19 1.89±0.02
3 0.26±0.02 0.35±0.04 0.38±0.01 0.40±0.01 0.39±0.01 0.39±0.01 0.41±0.01 0.55±0.02 0.17±0.02 0.32±0.03 0.35±0.02 0.44±0.02 0.50±0.03 0.38±0.02
4 0.80±0.08 0.79±0.02 0.96±0.08 0.72±0.04 0.82±0.01 0.89±0.04 0.80±0.04 0.74±0.03 0.62±0.04 1.19±0.08 1.19±0.06 0.96±0.00 0.77±0.04 0.73±0.03
5 0.18±0.02 0.19±0.01 0.22±0.01 0.17±0.01 0.18±0.02 0.23±0.01 0.19±0.02 0.17±0.00 0.15±0.01 0.22±0.08 0.20±0.00 0.17±0.02 0.15±0.01 0.13±0.00
4-香豆酸
p-Coumaric acid
(mg∙kg-1)
1 0.62±0.01 0.67±0.01 1.38±0.07 0.62±0.00 0.62±0.02 0.84±0.01 0.57±0.01 1.14±0.07 0.70±0.02 0.93±0.05 2.95±0.07 0.35±0.01 0.41±0.01 0.30±0.04
2 3.69±0.69 3.89±0.26 11.97±2.76 3.51±0.18 4.30±0.49 5.10±0.30 3.77±0.14 13.01±1.13 8.95±0.81 6.79±0.41 9.21±0.21 5.82±0.21 6.99±0.02 4.79±0.16
3 0.85±0.07 1.53±0.14 3.20±0.05 1.16±0.02 1.95±0.07 1.10±0.04 1.60±0.04 1.83±0.02 1.05±0.02 0.95±0.04 1.20±0.05 0.73±0.01 0.83±0.01 0.71±0.03
4 61.26±0.21 55.60±0.16 72.13±3.97 38.24±3.31 51.68±0.03 45.91±0.20 43.15±2.90 75.53±0.83 91.74±1.48 83.21±5.40 29.68±4.17 17.71±2.68 17.92±0.19 25.50±1.93
5 0.76±0.15 0.85±0.16 1.12±0.06 0.59±0.00 0.93±0.05 0.71±0.03 0.72±0.03 1.02±0.06 1.41±0.01 1.52±0.05 0.72±0.05 0.43±0.01 0.41±0.03 0.40±0.01
水杨酸
Salicylic acid
(mg∙kg-1)
1 0.19±0.00 0.19±0.00 0.35±0.03 0.19±0.01 0.17±0.00 0.16±0.00 0.20±0.00 0.24±0.02 0.37±0.01 0.46±0.01 1.01±0.01 0.21±0.01 0.25±0.00 0.32±0.07
2 0.88±0.01 0.90±0.00 1.54±0.04 0.85±0.10 0.71±0.01 0.67±0.03 0.79±0.02 0.99±0.07 1.62±0.13 1.68±0.10 1.98±0.12 1.17±0.09 1.32±0.07 1.93±0.07
3 3.96±0.26 5.72±0.08 6.25±0.03 4.43±0.06 4.73±0.31 3.31±0.02 3.68±0.10 5.36±0.13 6.53±0.50 6.86±0.15 2.95±0.07 3.84±0.21 4.29±0.23 5.84±0.33
4 ND ND 0.16±0.00 ND 0.12±0.08 TD ND 0.05±0.02 0.05±0.06 0.07±0.01 0.11±0.05 ND ND 0.01±0.00
5 0.52±0.07 0.78±0.01 1.12±0.02 0.66±0.06 0.62±0.09 0.52±0.01 0.45±0.03 0.85±0.01 0.85±0.01 1.01±0.19 0.75±0.04 0.38±0.01 0.45±0.06 0.43±0.11
阿魏酸
Ferulic acid
(mg∙kg-1)
1 1.85±0.02 2.00±0.01 3.71±0.20 2.43±0.03 2.80±0.05 3.12±0.01 3.49±0.08 3.09±0.25 2.01±0.02 1.81±0.13 7.31±0.13 2.45±0.02 2.09±0.03 2.22±0.30
2 17.59±2.03 20.29±2.54 36.31±7.82 19.72±0.80 29.07±0.50 33.02±4.49 23.72±0.20 48.63±1.04 24.69±1.34 29.65±1.44 35.15±0.96 36.41±1.88 49.66±5.59 30.42±2.38
3 6.15±0.45 8.41±0.84 12.66±0.09 9.15±0.27 12.95±0.45 7.91±0.32 9.62±0.11 8.24±0.08 7.35±0.06 7.47±0.24 6.92±0.21 5.28±0.02 5.80±0.03 4.78±0.25
4 154.49±3.27 180.16±5.45 240.69±2.93 153.75±13.16 179.00±2.17 184.74±7.25 175.56±10.56 208.43±0.63 158.46±0.25 191.68±7.32 274.44±14.66 213.68±14.68 248.27±9.31 152.52±1.60
5 3.55±0.44 3.79±0.22 4.55±0.22 3.30±0.02 4.25±0.11 3.46±0.04 3.48±0.10 4.25±0.25 4.48±0.05 5.21±0.29 5.21±0.14 3.16±0.32 3.23±0.11 3.58±0.02
芥子酸
Sinapic acid
(mg∙kg-1)
1 0.28±0.00 0.15±0.00 0.21±0.01 0.22±0.00 0.22±0.00 0.31±0.00 0.23±0.00 0.35±0.02 0.25±0.00 0.19±0.01 1.32±0.03 0.28±0.01 0.27±0.00 0.26±0.03
2 28.22±1.44 33.27±5.12 44.58±0.00 32.37±1.78 59.81±0.35 65.49±1.84 44.94±1.57 71.36±2.17 43.50±0.68 35.78±1.97 52.64±1.02 48.62±0.41 63.15±4.86 40.70±2.04
3 2.03±0.23 2.60±0.41 5.94±0.44 3.21±0.15 3.82±0.16 5.04±0.23 3.14±0.00 3.35±0.02 3.45±0.18 2.15±0.14 2.58±0.11 1.92±0.01 2.27±0.07 1.79±0.01
4 2.50±0.22 3.49±0.10 5.15±0.09 3.51±0.61 4.38±0.25 5.31±0.35 3.69±0.14 6.35±0.06 5.55±0.01 5.58±0.50 9.54±0.43 3.14±0.12 3.87±0.29 3.34±0.06
5 0.30±0.05 0.44±0.01 0.71±0.02 0.39±0.03 0.45±0.03 0.57±0.01 0.37±0.01 0.45±0.01 0.51±0.01 0.46±0.02 0.76±0.02 0.24±0.00 0.30±0.01 0.32±0.01
反式肉桂酸
trans-Cinnamic acid
(mg∙kg-1)
1 0.05±0.00 0.01±0.00 0.07±0.01 0.01±0.01 ND ND 0.05±0.02 0.02±0.01 0.02±0.01 0.04±0.00 ND 0.01±0.00 ND ND
2 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
3 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
4 ND ND ND ND ND ND ND ND ND ND ND ND ND ND
5 ND ND ND ND ND ND ND ND ND ND ND ND ND ND

Fig. 4

Distribution of phenolic acids in different rice materials 1: Wushansimiao, 2: Deyou4727, 3: Dejing No.6, 4: Dexiang4103, 5: Chuanlvyou188, 6: Guichao No.2, 7: Chuanxiangyou37, 8: Luojishan red rice, 9: Rubine, 10: Guanghan red rice, 11: Purple rice, 12: Heixiangnuo, 13: Guanghan black rice, 14: Heidao No.2"

Fig. 5

Distribution of different types of phenolic acids in rice 1: Wushansimiao, 2: Deyou4727, 3: Dejing No.6, 4: Dexiang4103, 5: Chuanlvyou188, 6: Guichao No.2, 7: Chuanxiangyou37, 8: Luojishan red rice, 9: Rubine, 10: Guanghan red rice, 11: Purple rice, 12: Heixiangnuo, 13: Guanghan black rice, 14: Heidao No.2"

[1] DENG G F, XU X R, ZHANG Y, LI D, GAN R Y, LI H B . Phenolic compounds and bioactivities of pigmented rice. Critical Reviews in Food Science and Nutrition, 2013,53(3):296-306.
[2] MIN B, MCCLUNG A M, CHEN M H . Phytochemicals and antioxidant capacities in rice brans of different color. Journal of Food Science, 2011,76(1):C117-C126.
[3] HUDSON E A, DINH P A, KOKUBUN T, SIMMONDS M S, GESCHER A . Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidemiology and Prevention Biomarkers, 2000,9(11):1163-1170.
[4] GOUFO P, TRINDADE H . Rice antioxidants: Phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, gamma-oryzanol, and phytic acid. Food Science & Nutrition, 2014,2(2):75-104.
[5] FARDET A, ROCK E, RÉMÉSY C . Is the in vitro antioxidant potential of whole-grain cereals and cereal products well reflected in vivo? Journal of Cereal Science, 2008,48(2):258-276.
[6] GOUFO P, PEREIRA J, MOUTINHO PEREIRA J, CORREIA C M, FIGUEIREDO N, CARRANCA C, ROSA E A S, TRINDADE H. Rice (Oryza sativa L.) phenolic compounds under elevated carbon dioxide (CO2) concentration. Environmental and Experimental Botany, 2014,99:28-37.
[7] KLICK S, HERRMANN K . Glucosides and glucose esters of hydroxybenzoic acids in plants. Phytochemistry, 1988,27(7):2177-2180.
[8] WINTER M, HERRMANN K . Esters and glucosides of hydroxycinnamic acids in vegetables. Journal of Agricultural and Food Chemistry, 1986,34(4):616-620.
[9] ROBBINS R J . Phenolic acids in foods: An overview of analytical methodology. Journal of Agricultural and Food Chemistry, 2003,51(10):2866-2887.
[10] MORTON L W, ABU-AMSHA CACCETTA R, PUDDEY I B, CROFT K D . Chemistry and biological effects of dietary phenolic compounds: relevance to cardiovascular disease. Clinical and Experimental Pharmacology and Physiology, 2000,27(3):152-159.
[11] GOUFO P, PEREIRA J, FIGUEIREDO N OLIVEIRA M B P, CARRANCA C, ROSA E A, TRINDADE H. , Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ-oryzanol and antioxidant capacities of rice (Oryza sativa L.). Journal of Cereal Science, 2014,59(1):15-24.
[12] DENG G F, XU X R, GUO Y J, XIA E Q, LI S, WU S, CHEN F, LING W H, LI H B . Determination of antioxidant property and their lipophilic and hydrophilic phenolic contents in cereal grains. Journal of Functional Foods, 2012,4(4):906-914.
[13] IRAKLI M N, SAMANIDOU V F, BILIADERIS C G, PAPADOYANNIS I N . Simultaneous determination of phenolic acids and flavonoids in rice using solid-phase extraction and RP-HPLC with photodiode array detection. Journal of Separation Science, 2012,35(13):1603-1611.
[14] SOMPONG R, SIEBENHANDL-EHN S, LINSBERGER-MARTIN G, BERGHOFER E . Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chemistry, 2011,124(1):132-140.
[15] VICHAPONG J, SOOKSERM M, SRIJESDARUK V, SWATSITANG P, SRIJARANAI S . High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT-Food Science and Technology, 2010,43(9):1325-1330.
[16] ZHOU Z K, ROBARDS K, HELLIWELL S, BLANCHARD C . The distribution of phenolic acids in rice. Food Chemistry, 2004,87(3):401-406.
[17] TIAN S, NAKAMURA K, KAYAHARA H . Analysis of phenolic compounds in white rice, brown rice, and germinated brown rice. Journal of Agricultural and Food Chemistry, 2004,52(15):4808-4813.
[18] HARUKAZE A, MURATA M, HOMMA S . Analyses of free and bound phenolics in rice. Food Science and Technology Research, 1999,5(1):74-79.
[19] SHAO Y F, HU Z Q, YU Y H, MOU R X, ZHU Z W, BETA T . Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. Food Chemistry, 2018,239:733-741.
[20] DING C, LIU Q, LI P, PEI Y S, TAO T T, WANG Y, YAN W, YANG G F, SHAO X L . Distribution and quantitative analysis of phenolic compounds in fractions of Japonica and Indica rice. Food Chemistry, 2019,274:384-391.
[21] 周虹 . 四川省水稻产业现状及发展对策. 四川农业科技, 2015(9):46-48.
ZHOU H . Current status and development countermeasures of rice industry in Sichuan province. Sichuan Agricultural Science and Technology, 2015(9):46-48. (in Chinese)
[22] BUNEA A, ANDJELKOVIC M, SOCACIU C, BOBIS O, NEACSU M, VERH R, VAN CAMP J . Total and individual carotenoids and phenolic acids content in fresh, refrigerated and processed spinach (Spinacia oleracea L.). Food Chemistry, 2008,108(2):649-656.
[23] ESCARPA A, GONZÁLEZ M C . Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Analytica Chimica Acta, 2001,427(1):119-127.
[24] GRANATO D, SHAHIDI F, WROLSTAD R, KILMARTIN P, MELTON L D, HIDALGO F J, MIYASHITA K, VAN CAMP J, ALASALVAR C, ISMAIL A B, ELMORE S, BIRCH G G, CHARALAMPOPOULOS D, ASTLEY S B, PEGG R, ZHOU P, FINGLAS P . Antioxidant activity, total phenolics and flavonoids contents: Should we ban in vitro screening methods? Food Chemistry, 2018,264:471-475.
[25] MATTILA P, KUMPULAINEN J . Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 2002,50(13):3660-3667.
[26] DA SILVA PADILHA C V, MISKINIS G A, DE SOUZA M E A O, PEREIRA G E, DE OLIVEIRA D, BORDIGNON-LUIZ M T, DOS SANTOS LIMA M . Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chemistry, 2017,228:106-115.
[27] JIAO Y, KILMARTIN P A, FAN M T, QUEK S Y . Assessment of phenolic contributors to antioxidant activity of new kiwifruit cultivars using cyclic voltammetry combined with HPLC. Food Chemistry, 2018,268:77-85.
[28] ZHANG L Q, LI Y, LIANG Y, LIANG K H, ZHANG F, XU T, WANG M M, SONG H X, LIU X J, LU B Y . Determination of phenolic acid profiles by HPLC-MS in vegetables commonly consumed in China. Food Chemistry, 2019,276:538-546.
[29] PÉREZ-NAVARRO J, IZQUIERDO-CAÑAS P M, MENA-MORALES A, MARTÍNEZ-GASCUEÑA J, CHACÓN-VOZMEDIANO J L, GARCÍA-ROMERO E, HERMOSÍN-GUTIÉRREZ I, GÓMEZ- ALONSO S . Phenolic compounds profile of different berry parts from novel Vitis vinifera L. red grape genotypes and Tempranillo using HPLC-DAD-ESI-MS/MS: A varietal differentiation tool. Food Chemistry, 2019,295:350-360.
[30] GRUZ J, NOVÁK O, STRNAD M. Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chemistry, 2008,111(3):789-794.
[31] THOMAS M, BADR A, DESJARDINS Y, GOSSELIN A, ANGERS P . Characterization of industrial broccoli discards (Brassica oleracea var. italica) for their glucosinolate, polyphenol and flavonoid contents using UPLC MS/MS and spectrophotometric methods. Food Chemistry, 2018,245:1204-1211.
[32] GAO Y, WANG M, JIANG N, WANG Y, FENG X Y . Use of ultra-performance liquid chromatography-tandem mass spectrometry on sweet cherries to determine phenolic compounds in peel and flesh. Journal of the Science of Food and Agriculture, 2019,99(7):3555-3562.
[33] 马帅, 王纪华, 高媛, 王蒙, 冯晓元 . 超高效液相色谱-串联质谱法同时测定5个产地花椰菜和西兰花中的23种酚酸类化合物. 食品科学, 2018,39(4):176-187.
MA S, WANG J H, GAO Y, WANG M, FENG X Y . Simultaneous determination of twenty-three phenolic acids in cauliflower (Brassica oleracea L. var. botrytis L.) and broccoli (B. oleracea L. var. italica) from five producing places by ultra performance liquid chromatography- tandem mass spectrometry. Food Science, 2018,39(4):176-187. (in Chinese)
[34] 张娜, 王国祥, Abacar Jose Daniel, 刘正辉, 丁承强, 唐设, 李刚华, 王绍华, 丁艳锋 . 超高效液相色谱法分析稻米酚酸化合物组分及其含量. 中国农业科学, 2015,48(9):1718-1726.
ZHANG N, WANG G X, ABACAR J D, LIU Z H, DING C Q, TANG S, LI G H, WANG S H, DING Y F . Determination of phenolic acids in rice by ultra-high performance liquid chromatography. Scientia Agricultura Sinica, 2015,48(9):1718-1726. (in chinese)
[35] AYAZ F A, HAYIRLIOGLU-AYAZ S, GRUZ J, NOVAK O, STRNAD M . Separation, characterization, and quantitation of phenolic acids in a little-known blueberry (Vaccinium arctostaphylos L.) fruit by HPLC-MS. Journal of Agricultural and Food Chemistry, 2005,53(21):8116-8122.
[36] XU G H, YE X Q, LIU D H, MA Y Q, CHEN J C . Composition and distribution of phenolic acids in Ponkan (Citrus poonensis Hort. ex Tanaka) and Huyou (Citrus paradisi Macf. Changshanhuyou) during maturity. Journal of Food Composition and Analysis, 2008,21(5):382-389.
[37] NARDINI M, CIRILLO E, NATELLA F, MENCARELLI D, COMISSO A, SCACCINI C . Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chemistry, 2002,79(1):119-124.
[38] ESCARPA A, GONZÁLEZ M C. Total extractable phenolic chromatographic index: An overview of the phenolic class contents from different sources of foods. European Food Research and Technology, 2001,212(4):439-444.
[39] JULKUNEN-TIITTO R . Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 1985,33(2):213-217.
[40] YU J, VASANTHAN T, TEMELLI F . Analysis of phenolic acids in barley by high-performance liquid chromatography. Journal of Agricultural and Food Chemistry, 2001,49(9):4352-4358.
[41] KRYGIER K, SOSULSKI F, HOGGE L . Free, esterified, and insoluble-bound phenolic acids. 1. Extraction and purification procedure. Journal of Agricultural and Food Chemistry, 1982,30(2):330-334.
[42] MAILLARD M N, BERSET C . Evolution of antioxidant activity during kilning: role of insoluble bound phenolic acids of barley and malt. Journal of Agricultural and Food Chemistry, 1995,43(7):1789-1793.
[43] 邵雅芳 . 稻米酚类化合物的鉴定、分布、遗传与相关基因的表达研究[D]. 杭州: 浙江大学, 2014.
SHAO Y F . Polyphenols in rice (Oryza sativa L.): Identification, distribution, genetics and gene expression[D]. Hangzhou: Zhejiang University, 2014. ( in Chinese)
[44] BOURNE L C, RICE-EVANS C . Bioavailability of ferulic acid. Biochemical and Biophysical Research Communications, 1998,253(2):222-227.
[45] BOURNE L, PAGANGA G, BAXTER D, HUGHES P, RICE-EVANs C . Absorption of ferulic acid from low-alcohol beer. Free Radical Research, 2000,32(3):273-280.
[46] MANACH C, WILLIAMSON G, MORAND C, SCALBERT A, RÉMÉSY C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. The American Journal of Clinical Nutrition, 2005,81(1):230S-242S.
[47] MANACH C, SCALBERT A, MORAND C, RÉMÉSY C, JIMENEZ L. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 2004,79(5):727-747.
[48] ZHAO Z H, EGASHIRA Y, SANADA H . Ferulic acid sugar esters are recovered in rat plasma and urine mainly as the sulfoglucuronide of ferulic acid. The Journal of nutrition, 2003,133(5):1355-1361.
[49] ADAM A, CRESPY V, LEVRAT-VERNY M A, LEENHARDT F, LEUILLET M, DEMIGNÉ C, RÉMÉSY C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. The Journal of Nutrition, 2002,132(7):1962-1968.
[50] SUMCZYNSKI D, KOTÁSKOVÁ E, DRUŽBÍKOVÁ H, MLČEK J. Determination of contents and antioxidant activity of free and bound phenolics compounds and in vitro digestibility of commercial black and red rice (Oryza sativa L.) varieties. Food Chemistry, 2016,211:339-346.
[51] LIU L, GUO J J, ZHANG R F, WEI Z C, DENG Y Y, GUO J X, ZHANG M W . Effect of degree of milling on phenolic profiles and cellular antioxidant activity of whole brown rice. Food Chemistry, 2015,185:318-325.
[52] BUTSAT S, SIRIAMORNPUN S . Antioxidant capacities and phenolic compounds of the husk, bran and endosperm of Thai rice. Food Chemistry, 2010,119(2):606-613.
[53] MIN B, GU L W, MCCLUNG A M, BERGMAN C J, CHEN M H . Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chemistry, 2012,133(3):715-722.
[54] NACZK M, SHAHIDI F . Phenolics in cereals, fruits and vegetables: Occurrence, extraction and analysis. Journal of Pharmaceutical and Biomedical Analysis, 2006,41(5):1523-1542.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[14] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
[15] CHEN TingTing, FU WeiMeng, YU Jing, FENG BaoHua, LI GuangYan, FU GuanFu, TAO LongXing. The Photosynthesis Characteristics of Colored Rice Leaves and Its Relation with Antioxidant Capacity and Anthocyanin Content [J]. Scientia Agricultura Sinica, 2022, 55(3): 467-478.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!