Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 383-394.doi: 10.3864/j.issn.0578-1752.2020.02.012

• SPECIAL FOCUS: TEA • Previous Articles     Next Articles

Taste Characteristic and Main Contributing Compounds of Different Origin Black tea

SONG ChuJun,FAN FangYuan,GONG ShuYing(),GUO HaoWei,LI ChunLin,ZONG BangZheng   

  1. Tea Research Institute, Zhejiang University, Hangzhou 310058
  • Received:2019-05-23 Accepted:2019-08-21 Online:2020-01-16 Published:2020-02-17
  • Contact: ShuYing GONG E-mail:shuygong@zju.edu.cn

Abstract:

【Objective】 This study focused on the taste characteristic of typical black tea from main black tea producing areas in China. The important taste compounds of black tea were detected, and the correlation between the main contributing compounds and the taste characteristic of black tea was analyzed. 【Method】 In this study, the black tea samples were collected from Shandong, Hubei, Anhui, Henan, Zhejiang, Hunan, Fujian, Guizhou, Sichuan and Yunnan, named by Shandong Linyi black tea, Hubei Hongan black tea, Anhui Qimen black tea, Henan Xinyang black tea, Zhejiang Shaoxing black tea, Hunan Guzhang black tea, Fujian Wuyishan black tea, Guizhou Puan black tea, Sichuan Yaan black tea and Yunnan Fengqing black tea, respectively. The taste characteristic of black teas were analyzed and compared by sensory evaluation according national standard. High performance liquid chromatography (HPLC) and ultrahigh performance liquid chromatography-mass spectrometry (UPLC-MS) were used for the determination of 65 compounds including catechins, alkaiods, flavonoids, amino acids and gallic acid, sugars and organic acids. The correlation between the compounds and the taste characteristic of black teas were analyzed by principal component analysis (PCA) based on IBM SPSS Statistics 25. 【Result】 There were obvious difference on taste characteristic of black teas from 10 tea producing areas in China. Black teas from Yunnan and Guizhou were belong to large leaf teas, which were considered by the taste of mellow, thick, and umami, while the taste characteristic of black teas from other 8 tea producing areas were mainly reflected in fresh and umami. The PCA results showed that the taste constituents directly were responsible for discrimination of black teas from different sources. The clear separation of large-leaf black teas from small leaf-black teas could be found based on PC1. Black teas with taste characteristic of fresh and umami could be divided into two categories based on PC2, among which Shandong Linyi black tea, Anhui Qimen black tea and Zhejiang Shaoxing black tea with more fresh taste scored higher. According to the loading plot of principal component analysis, fumaric acid, total catechins, Myr-3-O-glu, theophylline, theobromine and theaflavins with high scores on the positive of PC1, two kaempferol triglucosides and total flavonol glycosides with high scores on the negative of PC1 and most of the free amino acids with high scores on the positive of PC2, were presumed to make important contribution for classification of geological black teas. Further chemical content analysis showed that the content of fumaric acid, total catechins, Myr-3-O-glu, theophylline, theobromine and theaflavins in large-leaf black teas were higher than that in other samples, with average value of about 7.6, 554, 1.3, 7.9, 205, and 15 μg?mL -1, respectively. Conversely, the contents of two kaempferol triglucosides and total flavonol glycosides were higher in small-leaf black teas than that in the big-leaf ones. Hubei Hongan black tea had the highest amounts of total flavonol glycosides, up to 80 μg?mL -1, which was four times as much as that in large leaf black teas. Black tea numbered 1, 3, and 5 had strong umami taste characteristic based on sensory evaluation, in which the content of free amino acids reached 300 μg?mL -1. 【Conclusion】 In conclusion, there were significant differences in the taste characteristic of 10 representative black tea producing areas in China. The taste characteristic of large-leaf black teas was mellow, thick and umami, while that of small-leaf black teas was fresh and umami. Alkaloids, organic acids, catechins and its oxides were the important contributors for taste characteristic of mellow and thick in black teas. The taste characteristic of fresh and umami in black teas maybe caused by free amino acids.

Key words: black tea, taste compound, contribution, principal component analysis

Fig. 1

Radar map of black tea samples’ taste (A. clean and fresh type; B. mellow and thick type)"

Fig. 2

Principal component score of black tea samples"

Fig. 3

Loading plot of principal component analysis"

Table 1

Contrast table of names of major taste substances"

序号
Number
物质简写
Abbreviation
物质名称
Name
序号
Number
物质简写
Abbreviation
物质名称
Name
1 GA 没食子酸 Gallic acid 34 Glu 谷氨酸 Glutamate
2 TB 可可碱 Theobromine 35 Asn 天门冬酰胺 Asparagine
3 GC 没食子儿茶素 Gallocatechin 36 Ser 丝氨酸 Serine
4 TP 茶碱 Theophylline 37 Gln 谷氨酰胺 Glutamine
5 EGC 表没食子儿茶素 Epi-gallocatechin 38 His 组氨酸 Histidine
6 CAF 咖啡碱 Caffeine 39 Gly 甘氨酸 Glycine
7 C 儿茶素 Catechin 40 Thr 苏氨酸Threonine
8 EC 表儿茶素 Epi-catechin 41 Arg 精氨酸 Arginine
9 EGCG 表没食子儿茶素没食子酸酯Epi-gallocatechin-3-gallate 42 Ala 丙氨酸 Alanine
10 GCG 没食子儿茶素没食子酸酯 Gallocatechin-3-gallate 43 GABA 氨基丁酸 GABA
11 ECG 表儿茶素没食子酸酯 Epi-catechin-3-gallate 44 Theanine 茶氨酸 Theanine
12 CG 儿茶素没食子酸酯 Catechin-3-gallate 45 Tyr 酪氨酸 Tyrosine
13 TNGC 非酯型儿茶素总量 Total non-galloylated catechins 46 Val 缬氨酸 Valine
14 TGC 酯型儿茶素总量 Total galloylated catechins 47 Trp 色氨酸 Tryptophan
15 TC 儿茶素总量 Total catechins 48 Phe 苯丙氨酸 Phenylalanine
16 TOA 生物碱总量 Total of alkaloids 49 Ile 异亮氨酸 Isoleucine
17 Myr1 杨梅素-3-O-葡萄糖苷 Myr-3-O-glu 50 Leu 亮氨酸Leucine
18 Que1 槲皮素-3-O-半乳糖鼠李糖葡萄糖苷Que-3-O-galrhaglu 51 Lys 赖氨酸 Lysine
19 Que2 槲皮素-3-O-葡萄糖鼠李糖葡萄糖苷Que-3-O-glurhaglu 52 TAA 氨基酸总量 Total amino acids
20 Que3 槲皮素-3-O-半乳糖双鼠李糖苷 Que-3-O-galrharha 53 OA 草酸 Oxalic acid
21 Que4 槲皮素-3-O-葡萄糖双鼠李糖苷 Que-3-O-glurharha 54 TA 酒石酸 Tartaric acid
22 Kae1 山柰酚-3-O-半乳糖鼠李糖葡萄糖苷Kae-3-O-galrhaglu 55 QA 奎尼酸 Quinic acid
23 Que5 槲皮素-3-O-半乳糖苷 Que-3-O-gal 56 PA 丙酮酸 Pyruvic acid
24 Que6 槲皮素-3-O-葡萄糖苷 Que-3-O-glu 57 MA 苹果酸 Malic acid
25 Kae2 山柰酚-3-O-半乳糖双鼠李糖苷 Kae-3-O-galrharha 58 AA 乙酸 Acetic acid
26 Kae3 山柰酚-3-O-葡萄糖鼠李糖葡萄糖苷 Kae-3-O-glurhaglu 59 CA 柠檬酸 Citric acid
27 Kae4 山柰酚-3-O-半乳糖鼠李糖苷 Kae-3-O-galrha 60 FA 富马酸Fumaric acid
28 Kae5 山柰酚-3-O-葡萄糖双鼠李糖苷Kae-3-O-glurharha 61 TOOA 有机酸总量 Total of organic acids
29 Kae6 山柰酚-3-O-半乳糖苷 Kae-3-O-gal 62 TFs 茶黄素 Theaflavins
30 Kae7 山柰酚-3-O-葡萄糖鼠李糖苷 Kae-3-O-glurha 63 TRs 茶红素 Thearubigins
31 Kae8 山柰酚-3-O-葡萄糖苷 Kae-3-O-glu 64 TBs 茶褐素 Theabrownines
32 TFOG 黄酮醇苷总量 Total flavonol glycosides 65 TSS 可溶性糖总量 Total soluble sugar
33 Asp 天门冬氨酸 Aspartic acid

Fig. 4

Content of main contributing substances in the first principal component (sample number same as Fig. 1)"

Fig. 5

Content of main contributing substances in the second principal component(sample number same as Fig. 1)"

[1] GB/T 23776-2018, 茶叶感官审评方法[S]. 2018.
GB/T 23776-2018, Methodology for sensory evaluation of tea[S]. 2018. (in Chinese)
[2] 易晓芹, 周原也, 贺麟, 萧力争, 文海涛 . 不同产地红茶主要品质成分分析. 茶叶通讯, 2017,44(2):30-33.
YI X Q, ZHOU Y Y, HE L, XIAO L Z, WEN H T . The biochemical composition analysis of the different origin black tea. Journal of Tea Communication, 2017,44(2):30-33. (in Chinese)
[3] 龚自明, 刘盼盼, 郑鹏程, 高士伟 . 长江中下游产区红茶品质分析. 食品工业科技, 2018,39(23):253-260.
GONG Z M, LIU P P, ZHENG P C, GAO S W . Analysis of quality components in black tea from middle and lower reaches of Yangtze River. Science and Technology of Food Industry, 2018,39(23):253-260. (in Chinese)
[4] 雷攀登, 黄建琴, 丁勇, 徐奕鼎, 方吴云 . 不同区域祁门红茶品质特点分析. 食品科学, 2015,36(10):144-149.
LEI P D, HUANG J Q, DING Y, XU Y D, FANG W Y . Quality characteristics of Keemun black tea from various regions. Food Science, 2015,36(10):144-149. (in Chinese)
[5] 银霞, 张曙光, 黄静, 包小村, 周凌云, 戴伟东 . 湖南红茶特征滋味化学成分研究. 茶叶科学, 2019,39(2):150-158.
YIN X, ZHANG S G, HUANG J, BAO X C, ZHOU L Y, DAI W D . Study on the chemical constituents of Hunan black tea. Journal of Tea Science, 2019,39(2):150-158. (in Chinese)
[6] 夏涛 . 制茶学.第三版. 北京: 中国农业出版社, 2016: 204.
XIA T. Science of Tea Processing.3rd Ed. Beijing: China Agriculture Press, 2016: 204. (in Chinese)
[7] 任广鑫 . 基于近红外分析技术的红茶成分分析与产地识别研究[D]. 合肥: 安徽农业大学, 2012.
REN G X . Component determination and geographical origin identification of black tea using Fourier transform near infrared reflectance spectroscopy(FT-NIRS).[D]. Hefei: Anhui Agricultural University, 2012. (in Chinese)
[8] 施兆鹏 . 茶叶审评与检验. 北京: 中国农业出版社, 2010: 59.
SHI Z P. Tea Evaluation and Inspection.4th Ed. Beijing: China Agriculture Press, 2010: 59. (in Chinese)
[9] 魏明香 . 基于电子舌技术的红茶滋味品质检测研究[D]. 杭州: 浙江大学, 2015.
WEI M X . Taste quality detection of black tea based on electronic tongue techniques[D]. Hangzhou: Zhejiang University, 2015. (in Chinese)
[10] LIN S D, UDOMPORNMONGKOL P, YANG J H, CHEN S Y, MAU J L . Quality and antioxidant property of three types of tea infusions. Journal of Food Processing and Preservation, 2014,38(4):1401-1408.
[11] 金恩惠, 王耀民, 毛笑, 王广伟, 吴媛媛, 屠幼英 . 基于主成分回归分析法的红茶审评评价模型构建. 中国食品学报, 2016,16(12):235-239.
JIN E H, WANG Y M, MAO X, WANG G W, WU Y Y, TU Y Y . Construction of the evaluation model of black tea taste sensory based on principal component regression analysis. Journal of Chinese Institute of Food Science and Technology, 2016,16(12):235-239. (in Chinese)
[12] ALASALVAR C, TOPAL B, SERPEN A, BAHAR B, PELVAN E, GÖKMEN V . Flavor characteristics of seven grades of black tea produced in Turkey. Journal of Agricultural and Food Chemistry, 2012,60(25):6323-6332.
[13] 张正竹 . 茶叶生物化学实验教程. 北京: 中国农业出版社, 2009: 52-54.
ZHANG Z Z. Tea Biochemistry Experiment Tutorial. Beijing: China Agriculture Press, 2009: 52-54. (in Chinese)
[14] FANG Z T, SONG C J, XU H R, YE J H . Dynamic changes in flavonol glycosides during production of green, yellow, white, oolong and black teas from Camellia sinensis L.(cv. Fudingdabaicha). International Journal of Food Science & Technology, 2019,54(2):490-498.
[15] 江昌俊 . 茶树育种学.第二版. 北京: 中国农业出版社, 2011: 9.
JIANG C J. Science of Tea Tree Breeding.2nd Ed . Beijing: China Agriculture Press, 2011: 9. (in Chinese)
[16] 骆耀平 . 茶树栽培学. 第五版. 北京: 中国农业出版社, 2015: 88-100.
LUO Y P. Science of Tea plantin.5th Ed. Beijing: China Agriculture Press, 2015: 88-100. (in Chinese)
[17] 李再兵 . 绿茶主要品质成分的浸出动态及其与滋味感官评相关性研究[D]. 杭州: 浙江大学, 2002.
LI Z B . Studies on the dynamic changes of the main quality components in green tea during brewing and the correlation between the components and the organolepeic evaluation[D]. Hangzhou: Zhejiang University, 2002. (in Chinese)
[18] 邵晓林, 龚淑英, 张月玲 . 西湖龙井茶主要呈味物质浸出浓度与速率的研究. 茶叶, 2006,32(2):92-96.
SHAO X L, GONG S Y, ZHANG Y L . Effect of infusion conditions on extraction rate and tea liquor concentration of Xihu Longjing tea. Journal of Tea, 2006,32(2):92-96. (in Chinese)
[19] 刘蕾, 罗文, 龚淑英, 顾志雷 . 采用近红外光谱技术定量分析绿茶中的主要呈味物质. 中国食品学报, 2008,8(6):109-115.
LIU L, LUO W, GONG S Y, GU Z L . Quantitative analysis by NIR spectrum technique for the main components of savor in green tea. Journal of Chinese Institute of Food Science and Technology, 2008,8(6):109-115. (in Chinese)
[20] 张英娜, 嵇伟彬, 许勇泉, 尹军峰 . 儿茶素呈味特性及其感官分析方法研究进展. 茶叶科学, 2017,37(1):1-9.
ZHANG Y N, JI W B, XU Y Q, YIN J F . Rewiew on taste characteristic of catechins and its sensory analysis method. Journal of Tea Science, 2017,37(1):1-9. (in Chinese)
[21] 陈美丽 . 基于感官审评与化学计量学的茶叶色香味品质研究[D]. 杭州: 浙江大学, 2013.
CHEN M L . Quality study of tea color, aroma and taste based on sensory evaluation and chemometrics[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[22] 阮宇成, 王月根 . 绿茶滋味品质醇、鲜、浓的生化基础. 茶叶通讯, 1987(4):1-4, 15.
RUAN Y C, WANG Y G . The biochemical basis of taste quality ‘mellow、fresh、heavy’ in green tea. Journal of Tea Communication, 1987(04):1-4, 15. (in Chinese)
[23] 范培珍, 郑雨婷, 王梦馨, 薄晓培, 崔林, 韩宝瑜 . 不同等级霍山黄芽茶滋味的电子舌评价及呈味氨基酸组成. 贵州农业科学, 2017,45(5):105-109.
FAN P Z, ZHENG Y T, WANG M X, BO X P, CUI L, HAN B Y . Taste and delicious amino acid composition of Huoshanhuangya tea with different grades determined by an electronic tongue. Guizhou Agricultural Sciences, 2017,45(5):105-109. (in Chinese)
[24] 黄建琴 . 氨基酸在茶叶制造中的转化机理及对茶叶品质的影响. 氨基酸和生物资源, 1992(1):26-29.
HUANG J Q . The transforming mechanism of amino acids during tea processing and their effect on tea quality. Amino Acids and Biotic Resources, 1992(1):26-29. (in Chinese)
[25] 程焕, 贺玮, 赵镭, 胡小松, 吴继红 . 红茶与绿茶感官品质与其化学组分的相关性. 农业工程学报, 2012,28(25):375-380.
CHENG H, HE W, ZHAO L, HU X S, WU J H . Correlation between sensory attributes and chemical components of black tea and green tea. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(25):375-380. (in Chinese)
[26] 刘盼, 钟小玉, 许勇泉, 陈根生, 尹军峰, 刘平 . 茶叶中有机酸及其浸出特性研究. 茶叶科学, 2013,33(5):405-410.
LIU P, ZHONG X Y, XU Y Q, CHEN Q S, YIN J F, LIU P . Study on organic acids contents in tea leaves and its extracting characteristics. Journal of Tea Science, 2013,33(5):405-410. (in Chinese)
[27] 张静, 蒋华军, 刘仲华, 陈金华, 林勇, 邹文敏 . 亲水性C18硅胶反相色谱柱同时分离测定红茶中11种有机酸. 食品安全质量检测学报, 2014,5(8):2476-2481.
ZHANG J, JIANG H J, LIU Z H, CHEN J H, LIN Y, ZOU W M . Simultaneous separation and determination of organic acids in black tea by high performance liquid chromatography using polar-enhanced C18 column. Food Safety and Quality Detection Technology, 2014,5(8):2476-2481. (in Chinese)
[28] SCHARBERT S, HOLZMANN N, HOFMANN T . Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural & Food Chemistry, 2004,52(11):3498-3508.
[29] SCHARBERT S, HOFMANN T . Molecular definition of black tea taste by means of quantitative studies, taste reconstitution and omission experiments. Journal of Agricultural and Food Chemistry, 2005,53(13):5377-5384.
[30] 刘阳, 陈根生, 许勇泉, 张英娜, 尹军峰 . 冲泡过程中西湖龙井茶黄酮苷类浸出特性及滋味贡献分析. 茶叶科学, 2015,35(3):217-224.
LIU Y, CHEN G S, XU Y Q, ZHANG Y N, YIN J F . Extracting characteristics of flavone and flavonol glycosides in Xihulongjing tea under different brewing conditions and their contribution to tea taste. Journal of Tea Science, 2015,35(3):217-224. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] LU BingLin,CHE ZongXian,ZHANG JiuDong,BAO XingGuo,WU KeSheng,YANG RuiJu. Effects of Long-Term Intercropping of Maize with Hairy Vetch Root Returning to Field on Crop Yield and Nitrogen Use Efficiency Under Nitrogen Fertilizer Reduction [J]. Scientia Agricultura Sinica, 2022, 55(12): 2384-2397.
[4] LEI HaoJie,LI GuiChun,KE HuaDong,WEI Lai,DING WuHan,XU Chi,LI Hu. Analysis of Impacts and Regulation Differences on Soil N2O Emissions from Two Typical Crop Systems Under Drip Irrigation and Fertilization [J]. Scientia Agricultura Sinica, 2021, 54(4): 768-779.
[5] LUO JiangTao,ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun. The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives [J]. Scientia Agricultura Sinica, 2021, 54(20): 4255-4264.
[6] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[7] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[8] XiuZhi ZHANG,Qiang LI,HongJun GAO,Chang PENG,Ping ZHU,Qiang GAO. Effects of Long-Term Fertilization on the Stability of Black Soil Water Stable Aggregates and the Distribution of Organic Carbon [J]. Scientia Agricultura Sinica, 2020, 53(6): 1214-1223.
[9] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[10] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[11] ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
[12] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[13] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[14] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[15] SHI TianTian, HE JieLi, GAO ZhiJun, CHEN Ling, WANG HaiGang, QIAO ZhiJun, WANG RuiYun. Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!