Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (20): 4255-4264.doi: 10.3864/j.issn.0578-1752.2021.20.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives

LUO JiangTao(),ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun()   

  1. Crop Research Institute of Sichuan Academic of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Areas, Chengdu 610066
  • Received:2021-02-03 Accepted:2021-04-06 Online:2021-10-16 Published:2021-10-25
  • Contact: ZongJun PU E-mail:jtluohao@163.com;pzjun68@163.com

Abstract:

【Objective】Common wheat variety Chuanmai 44 has the characteristics of high yield, stable yield and wide adaptability. Ten new varieties have been selected and approved in breeding program using Chuanmai 44 as parent. It indicates Chuanmai 44 is an important breeding parent. To clarify the genetic base of Chuanmai 44 as a vital parent in breeding exercise and identify important genes or QTL within it will be helpful in breeding new elite varieties using Chuanmai 44. 【Method】Fluorescence in situ hybridization was applied to Chuanmai 44 and its ten derived varieties to identify whether there were wheat-alien translocations, and to analyze the chromosome diversity among them. The 660K SNP array data of Chuanmai 44 and its derived varieties were used to calculate the genetic contribution of Chuanmai 44 to its derived varieties and clarify the high transmission genomic segments. Functional molecular markers within cloned genes and linked molecular markers for yield-related traits were used to identify important genes or QTL in Chuanmai 44 for breeding. 【Result】 Chuanmai 44 did not harbor the 6VS/6AL and 1RS/1BL translocation chromosomes which both frequently existed in wheat varieties in Sichuan. Only two out of its ten derivatives, Changmai 32 and Changmai 34, contained 1RS/1BL translocation, which is inherited from another parent Changmai 19. The existence of 1RS/1BL translocation in the two varieties may explain their weak gluten phenotype. Except wheat-relative translocation, the karyotypes of Chuanmai 44 and its 10 derivative varieties also showed polymorphisms on some chromosomes. For instance, there were two types of chromosome 4A among derivatives, and 80% of them showed the same as Chuanmai 44. Chromosomes 5A, 6B and 7B had 4, 2 and 2 karyotypes, respectively. These three chromosomes in the derivative population of Chuanmai 44 showed the same karyotype with Chuanmai 44 in a frequency of 40%. 660K SNP chip analysis identified 1127 genomic segments with high transmission frequency (>50%) within its derived varieties. These genomic segments located on all 21 chromosomes and their mean length was 1.57 Mb. B genome owned the most number and the largest length of the high transmission frequency segments. Chromosomes 4A, 2B and 5B were the three chromosomes with the longest high transmission frequency segments. Chromosomes 4A, 2B and 3B were the three chromosomes with the most number of high transmission frequency segments. Combing the genotype data of 61 functional markers of cloned wheat gene and 13 SNP markers linked with yield-related QTL and the distribution of Chuanmai 44 high transmission genomic regions, we discovered that there are 9 genes markers and 3 QTL markers are anchored in the high transmission rate section of Chuanmai 44. The twelve markers responding to two favorable alleles and three QTL, including TaSdr, NAM-A1, QTKW.sicau-2AS.1, QTKW.Sicau-4AL, QSL.sicau-5AL.2, which exhibited positive effect on preharvest sprouting resistance, effective tiller number, thousand grain weight and spike length, respectively. 【Conclusion】The length of genomic segments retained within its derived varieties was short. It suggested that Chuanmai 44 as a breeding parent had high genetic combining ability, and its chromosomes were easy to recombine with different homologous chromosomes in resulting hybrids, which is beneficial to reduce linkage drag. Therefore, it plays an important role as a skeleton parent in breeding excercise. TaSdr, NAM-A1, QTKW.sicau-2AS.1, QTKW.Sicau-4AL and QSL.sicau-5AL.2 were the important loci in Chuanmai 44, which should be widely used in further breeding program under molecular marker assisted selecting.

Key words: Chuanmai 44, genetic contribution, beneficial gene, QTL, high transmission rate

Fig. 1

Karyotype of Chuanmai 44 and its 10 derivative varieties The red boxes indicate the 1RS/1BL translocation line; the white boxes indicate the type of chromosome polymorphism"

Fig. 2

Distribution of 1106 high transmission chromosome fragments of Chuanmai 44 The red and green arrows indicated the chromosome position of favorable gene and QTL in Chuanmai 44, respectively"

Table 1

Genomic segments of Chuanmai 44 retained by more than 50% of its derived varieties"

染色体
Chromosome
区段总长度
Total length (MB)
区段总数(个)
Total number
染色体
Chromosome
区段总长度
Total length (MB)
区段总数(个)
Total number
染色体
Chromosome
区段总长度
Total length (MB)
区段总数(个)
Total number
1A 55 41 1B 85 51 1D 48 37
2A 81 63 2B 161 78 2D 97 71
3A 60 33 3B 103 72 3D 48 36
4A 165 100 4B 38 30 4D 33 31
5A 105 53 5B 125 62 5D 70 48
6A 98 55 6B 101 62 6D 53 37
7A 58 37 7B 62 47 7D 88 61
A基因组
A genome
622 382 B基因组
B genome
675 402 D基因组
D genome
437 321

Table 2

High transmission frequent genes of Chuanmai 44"

基因
Gene
功能标记
Function marker
染色体
Chromosome
物理位置
Physical location
(Mb)
性状类型
Trait type
川麦44分型对应性状
Corresponding traits of Chuanmai 44
衍生品种与川麦44分型 相同的频率
The frequency of derivatives has the same type as Chuanmai 44 (%)
Glu-B3 Glu-B3e_SNP 1B 6.44 品质相关
Quality related
Glu-B3e Have Glu-B3e 100.00
Glu-B3g_SNP Glu-B3g Have Glu-B3g 70.00
TaCwi TaCwi 2A 508.03 产量相关
Production related
低千粒重
Low thousand grain weight
90.00
GS5 GS5-2334-SNP 2A 729.29 产量相关
Production related
低千粒重
Low thousand grain weight
90.00
TaSdr TaSdr-B1 2B 200.57 穗发芽相关
pre-harvest sprouting related
低穗发芽
Low pre-harvest sprouting
60.00
TaMFT TaMFT_1617R 3A 7.29 穗发芽相关
pre-harvest sprouting related
穗发芽敏感
Pre-harvest sprouting sensitivity
100.00
Fhb1 Fhb1-1138 3B 8.54 抗病相关
Disease resistance related
不抗赤霉病
No fusarium head blight resistance
100.00
Fhb1-1432
NAM-A1 NAM-6A-SNP1 6A 77.10 品质相关
Quality related
有利等位型(A1d)
Favorable allele (A1d)
90.00
NAM-6A-SNP2
GCP_DUP GCP_DUP 6B 134.66 品质相关
Quality related
普通蛋白质含量
Normal protein content
100.00
Sus1-7B Sus1-7B-2932IND 7B 68.34 产量相关
Production related
低千粒重
Low thousand grain weight
100.00

Table 3

The yield-related QTLs with the same locus and frequency ≥50% in the derived varieties and Chuanmai 44"

QTL名称
QTL name
SNP标记
SNP marker
染色体
Chromosome
物理位置
Physical location
(Mb)
性状
Trait
川麦44有利位点
Favorable alleles of Chuanmai 44
8个衍生品种有利位点比例
Proportion of favorable sites for 8 derivative varieties (%)
QSL.sicau-1AL AX_110408975 1A 590.99 穗长 Spike length T 75.00
QTKW.sicau-1BL.1 AX_109849833
AX_111525685
1B 670.68
670.78
粒重 Kernel weight T
G
50.00
50.00
QTKW.sicau-1BL.2 AX_111471952 1B 681.68 粒重 Kernel weight G 87.50
QTKW.sicau-2AS.1 AX_108781797
AX_111079592
2A 2.80
3.54
粒重 Kernel weight G
G
100.00
50.00
QSL.sicau-2AL AX_110079477 2A 432.59 穗长 Spike length T 100.00
QSL.sicau-4AS AX_109296730 4A 68.16 穗长 Spike length C 75.00
QTKW.sicau-4AL AX_109993853 4A 538.15 粒重 Kernel weight T 62.50
QSL.sicau-5AL.1 AX_109624254
AX_110717909
5A 595.71
595.95
穗长 Spike length G
C
100.00
100.00
QSL.sicau-5AL.2 AX_110521338 5A 621.94 穗长 Spike length T 100.00
[1] 庄巧生. 中国小麦品种改良及系谱分析. 北京: 中国农业出版社, 2003: 6.
ZHUANG Q S. Chinese Wheat Variety Improvement and Pedigree Analysis. Beijing: China Agriculture Press, 2003: 6. (in Chinese)
[2] 唐建卫, 殷贵鸿, 高艳, 王丽娜, 韩玉林, 黄峰, 于海飞, 杨光宇, 李新平, 肖永贵, 张艳, 阎俊. 小麦骨干亲本周8435B及其衍生品种(系)的农艺性状和加工品种综合分析. 麦类作物学报, 2015, 35(6):777-784.
TANG J W, YIN G H, GAO Y, WANG L N, HAN Y L, HUANG F, YU H F, YANG G Y, LI X P, XIAO Y G, ZHANG Y, YAN J. Comprehensive analysis on agronomic traits and processing quality of core parent Zhou 8425B and derivatives. Journal Tririceae Crops, 2015, 35(6):777-784. (in Chinese)
[3] 陈国跃, 刘伟, 何员江, 苟璐璐, 余马, 陈时盛, 魏育明, 郑有良. 小麦贵干亲本繁6条锈病成株抗性特异位点及其在衍生品种中的遗传解析. 作物学报, 2013, 39(5):827-836.
CHEN G Y, LIU W, HE Y J, GOU L L, YU M, CHEN S S, WEI Y M, ZHENG Y L. Specific loci for adult-plant resistance to stripe rust in wheat founder parent fan 6 and their genetic dissection in its derivatives. Acta Agronomica Sinica, 2013, 39(5):827-836. (in Chinese)
[4] 张德强, 宋晓朋, 冯洁, 连俊芳, 孙道杰. 小麦周8425B及其衍生品种与黄淮麦区主栽品种的遗传解析. 麦类作物学报, 2016, 36(10):1328-1334.
ZHANG D Q, SONG X P, FENG J, LIAN J F, SUN D J. Genetic dissection on the derived lines from wheat cultivar Zhou 8425B and widely grown cultivars in Huang-huai region. Journal Tririceae Crops, 2016, 36(10):1328-1334. (in Chinese)
[5] 高艳, 唐建卫, 邹少奎, 胡润雨, 张根源, 孙玉霞, 王磊, 殷贵鸿. 小麦周麦22及其衍生品种的遗传多样性分析. 植物遗传资源学报, 2021, 22(1):38-49.
GAO Y, TANG J W, ZOU S K, HU R Y, ZHANG G Y, SUN Y X, WANG L, YIN G H. Genetic diversity analysis of wheat cultivars/lines derived from wheat cultivar Zhoumai 22. Journal of Plant Genetic Resources, 2020, 22(1):38-49. (in Chinese)
[6] 孙子明, 宋晓朋. 小麦品种周麦16的遗传构成分析. 种子, 2020, 39(9):117-119.
SUN Z M, SONG X P. Genetic composition analysis of wheat variety Zhoumai 16. Seed, 2020, 39(9):117-119. (in Chinese)
[7] ELLIS M, SPIELMEYER W, GALE K, REBETZKE G, RICHARDS R. "Perfect" markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theoretical and Applied Genetics, 2002, 105:1038-1042.
doi: 10.1007/s00122-002-1048-4
[8] JIANG Y M, JIANG Q Y, HAO C Y, HOU J, WANG L F, ZHANG H N, ZHANG S N, CHEN X H, ZHANG X Y. A yield-associated gene TaCWI, in wheat: Its function, selection and evolution in global breeding revealed by haplotype analysis. Theoretical and Applied Genetics, 2015, 128:131-143.
doi: 10.1007/s00122-014-2417-5
[9] LI X P, ZHAO X Q, HE X, ZHAO G Y, LI B, LIU D C, ZHANG A M, ZHANG X Y, TONG Y P, LI Z S. Haplotype analysis of the genes encoding glutamine synthetase plastic isoforms and their association with nitrogen-use-and yield-related traits in bread wheat. New Phytologist, 2011, 189:449-458.
doi: 10.1111/nph.2010.189.issue-2
[10] ZHANG Y, LI D, ZHANG D B, ZHAO X G, GAO X M, DONG L L, LIU J X, CHEN K L, ZHANG H W, GAO C X, WANG D W. Analysis of the functions of TaGW2 homoeologs in wheat grain weight and protein content traits. The Plant Journal, 2018, 94:857-866.
doi: 10.1111/tpj.2018.94.issue-5
[11] HOU J, JIANG Q Y, HAO C Y, WANG Y Q, ZHANG H N, ZHANG X Y. Global selection on sucrose synthase haplotypes during a century of wheat breeding. Plant Physiology, 2014, 164:1918-1929.
doi: 10.1104/pp.113.232454
[12] JIANG Q Y, HOU J, HAO C Y, WANG L F, GE H M, DONG Y S, ZHANG X Y. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Functional & Integrative Genomics, 2011, 11:49-61.
[13] MA D Y, YAN J, HE Z H, WU L, XIA X C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Molecular Breeding, 2012, 29:43-52.
doi: 10.1007/s11032-010-9524-z
[14] ZHANG Y J, LIU J D, XIA X C, HE Z H. TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Molecular Breeding, 2014, 34:1097-1107.
doi: 10.1007/s11032-014-0102-7
[15] ZHANG B, LIU X, XU W N, CHANG J Z, LI A, MAO X G, ZHANG X Y, JING R L. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat. Scientific Reports, 2015, 5:12211.
doi: 10.1038/srep12211
[16] HANIF M, GAO F M, LIU J D, WEN W E, ZHANG Y J, RASHEED A, XIA X C, HE Z H, CAO S H. TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat. Molecular Breeding, 2016, 36:1.
doi: 10.1007/s11032-015-0425-z
[17] HU M J, ZHANG H P, LIU K, CAO J J, WANG S X, JIANG H, WU Z Y, LU J, ZHU X F, XIA X C, SUN G L, MA C X, CHANG C. Cloning and characterization of TaTGW-7A gene associated with grain weight in wheat via SLAF-seq-BSA. Frontiers in Plant Science, 2016, 7:1902.
[18] MILEC Z, TOMKOVA L, SUMIKOVA T, PANKOVA K. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.). Molecular Breeding, 2012, 30:317-323.
doi: 10.1007/s11032-011-9621-7
[19] DIAZ A, ZIKHALI M, TURNER A S, ISAAC P, LAURIE D A. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PLoS ONE, 2012, 7(3):e33234.
doi: 10.1371/journal.pone.0033234
[20] YAN L, HELGUERA M, KATO K, FUKUYAMA S, SHERMAN J, DUBCOVSKY J. Allelic variation at the VRN-1 promoter region in polyploid wheat. Theoretical and Applied Genetics, 2004, 109:1677-1686.
doi: 10.1007/s00122-004-1796-4
[21] FU D L, SZUCS P, YAN L, HELGUERA M, SKINNER J S, ZITZEWITZ J V, HAYES P M, DUBCOVSKY P M. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Molecular Genetics and Genomics, 2005, 274:442-443.
doi: 10.1007/s00438-005-0045-0
[22] BEALES J, TURNER A, GRIFFITHS S, SNAPE J W, LAURIE D A. A pseudo-response regulator is mis expressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 115:721-733.
doi: 10.1007/s00122-007-0603-4
[23] WILHELM E P, TURNER A S, LAURIE D A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theoretical and Applied Genetics, 2009, 118:285-294.
doi: 10.1007/s00122-008-0898-9
[24] NISHIDA H, YOSHIDA T, KAWAKAMI K, FUJITA M, BO L, AKASHI Y, LAURIE D A, KATO K. Structural variation in the 5’ upstream region of photoperiod-insensitive alleles ppd-A1a and ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Molecular Breeding, 2013, 31(1):27-37.
doi: 10.1007/s11032-012-9765-0
[25] LAGUDAH E S, KRATTINGER S G, HERRERA-FOESSEL S, SINGH R P, HUERTA-ESPINO J, SPIELMEYER W, BROWN- GUEDURA G, SELTER L L, KELLER B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theoretical and Applied Genetics, 2009, 119:889-898.
doi: 10.1007/s00122-009-1097-z
[26] KRATTINGER S G, LAGUDAH E S, SPIELMEYER W, SINGH R P, HUERTA-ESPINO J, MCFADDEN H, BOSSOLINI E, SELTER L L, KELLER B. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science, 2009, 323(5919):1360-1363.
doi: 10.1126/science.1166453
[27] PURNHAUSER L, BONA L, LANG L. Occurrence of 1BL.1RS wheat-rye chromosome translocation and of Sr36/Pm6 resistance gene cluster in wheat cultivars registered in Hungary. Euphytica, 2011, 179:287-295.
doi: 10.1007/s10681-010-0312-y
[28] LI G Q, ZHOU J Y, JIA H Y, GAO Z X, FAN M, LUO Y J, ZHAO P T, XUE S L, LI N, YUAN Y, MA S W, KONG Z X, JIA L, AN X, JIANG G, LIU W X, CAO W J, ZHANG R R, FAN J C, XU X W, LIU Y F, KONG Q Q, ZHENG S H, WANG Y, QIN B, CAO S Y, DING Y X, SHI J X, YAN H S, WANG X, RAN C F, MA Z Q. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nature Genetics, 2019, 51:1106-1112.
doi: 10.1038/s41588-019-0426-7
[29] XUE S L, XU F, TANG M Z, ZHOU Y, LI G Q, AN X, LIN F, XU H B, JIA H Y, ZHANG L X, KONG Z X, MA Z Q. Precise mapping Fhb5, a major QTL conditioning resistance to fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123:1055-1063.
doi: 10.1007/s00122-011-1647-z
[30] 付路平. 小麦茎秆木质素含量相关基因TaCOMT克隆、功能标记开发和关联分析[D]. 北京: 中国农业科学院, 2016.
FU L P. Cloning, functional marker development and association analysis of TaCOMT, a gene related to lignin content in wheat stems[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
[31] ZHANG J J, XU Y J, CHEN W, DELL B, VERGAUWEN R, BIDDULPH B, KHAN N, LUO H, APPELS R, DEN ENDE W V. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought. New Phytologist, 2015, 205:293-305.
doi: 10.1111/nph.2014.205.issue-1
[32] WEI B, JING R L, WANG C S, CHEN J B, MAO X G, CHANG X P, JIA J Z. Dreb1 genes in wheat (Triticum aestivum L.): Development of functional markers and gene mapping based on SNPs. Molecular Breeding, 2009, 23:13-22.
doi: 10.1007/s11032-008-9209-z
[33] NAKAMURA S, ABE F, KAWAHIGASHI H, NAKAZONOK K, TAGIRI A, MATSUMOTO T, UTSUGI S, OGAWA T, HANDA H, ISHIDA H, MORI M, KAWAURA K, OGIHARA Y, MIURA H. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination. The Plant Cell, 2011, 23:3215-3229.
doi: 10.1105/tpc.111.088492
[34] MACKAY I J, BANSEPT-BASLER P, BARBER T, BENTLEY A R, COCKRAM J, GOSMAN N, GREENLAND A J, HORSNELLl R, HOWELLS R, OSULLIVAN D M, ROSE G A, HOWELL P J. An eight-parent multiparent advanced generation inter-cross population for winter-sown wheat: Creation, properties, and validation. Genes Genomes Genetics, 2014, 4(9):1603-1610.
[35] ZHANG Y J, MIAO X L, XIA X C, HE Z H. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker. Theoretical and Applied Genetics, 2014, 127:855-866.
doi: 10.1007/s00122-014-2262-6
[36] YANG Y, MA Y Z, XU Z S, CHEN X M, HE Z H, YU Z, WILKINSON M, JINES H D, SHEWRY P R, XIA L Q. Isolation and characterization of Viviparous-1 genes in wheat cultivars with distinct ABA sensitivity and pre-harvest sprouting tolerance. Journal of Experimental Botany, 2007, 58(11):2863-2871.
doi: 10.1093/jxb/erm073
[37] RODRIGUEZ-SUAREZ C, ATIENZA S G. Hordeum chilense genome, a useful tool to investigate the endosperm yellow pigment content in the Triticeae. BMC Plant Biology, 2012, 12:200.
doi: 10.1186/1471-2229-12-200
[38] CHEN X Y, CAO X Y, ZHANG Y J, ISLAM S, ZHANG J J, YANG R C, LIU J J, LI G Y, APPELS R, KEEBLE-GAGNERE G, JI W Q, HE Z H, MA W J. Genetic characterization of cysteine-rich type-b avenin-like protein coding genes in common wheat. Scientific Reports, 2016, 6:30692.
doi: 10.1038/srep30692
[39] UAUY C, DISTELFELD A, FAHIMA T, BLECHL A, DUBCOVSKY J. A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 2006, 314(5803):1298-1301.
doi: 10.1126/science.1133649
[40] SI H Q, ZHAO M L, ZHANG X, YAO G L, SUN G L, MA C X. Cloning and characterization of low-molecular-weight glutenin subunit alleles from Chinese wheat landraces (Triticum aestivum L.). The Scientific World Journal, 2014, 2014:371045.
[41] WANG L, ZHAO X, HE Z, XIA X. Characterization of low- molecular-weight glutenin subunit genes at Glu-B3 and Glu-D3 loci and development of functional markers in common wheat//Proceedings of the 11th International Wheat Genetics Symposium. Sydney: Sydney University Press, 2008.
[42] CORMIER F, THROUDE M, RAVEL C, GOUIS J C, LEVEUGLE M, LAFARGE S, EXBRAYAT F, DURANTON N, PRAUD S. Detection of NAM-A1 natural variants in bread wheat reveals differences in haplotype distribution between a worldwide core collection and European elite germplasm. Agronomy, 2015, 5:143-151.
doi: 10.3390/agronomy5020143
[43] HE X Y, HE Z H, ZHANG L P, SUN D J, MORRIS C F, FUERST E P, XIA X C. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007, 115:47-58.
doi: 10.1007/s00122-007-0539-8
[44] HE X Y, ZHANG Y L, HE Z H, WU Y P, XIA Y G, MA C X, XIA X C. Characterization of phytoene synthase 1 gene (Psy1) located on common wheat chromosome 7A and development of a functional marker. Theoretical and Applied Genetics, 2008, 116:213-221.
doi: 10.1007/s00122-007-0660-8
[45] HIMI E, NODA K. Red grain colour gene (R) of wheat is a MYB-type transcription factor. Euphytica, 2005, 143:239-242.
doi: 10.1007/s10681-005-7854-4
[46] HIMI E, MAEKAWA M, MIURA H, NODA K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theoretical and Applied Genetics, 2011, 122:1561-1576.
doi: 10.1007/s00122-011-1555-2
[47] ZIKHALI M, WINGEN L U, GRIFFITHS S. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). Journal of Experimental Botany, 2016, 67(1):287-299.
doi: 10.1093/jxb/erv458
[48] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 杨恩年, 刘于斌, 蒲宗君. 川麦44及其9个衍生品种比较分析. 西南农业学报, 2018, 31(12):2472-2477.
ZHENG J M, LUO J T, WAN H S, LI S Z, YANG M Y, LI J, YANG E N, LIU Y B, PU Z J. Chinese wheat variety improvement and pedigree analysis, Chuanmai 44 and its 9 derivative varieties comparative analysis. Southwest Agricultural Journal, 2018, 31(12):2472-2477. (in Chinese)
[49] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 刘于斌, 蒲宗君. 利用小麦660K SNP芯片分析川麦44在其衍生后代中的遗传贡献. 麦类作物学报, 2019, 39(11):1293-1300.
ZHENG J M, LUO J T, WAN H S, LI S Z, YANG M Y, LI J, LIU Y B, PU Z J. Using wheat 660K SNP chip to analyze the genetic contribution of Chuanmai 44 in its derived progeny. Journal of Triticeae Crops, 2019, 39(11):1293-1300. (in Chinese)
[50] YE X L, LI J, CHENG Y K, YAO F J, LONG L, WANG Y Q, WU Y, LI J, WANG J R, JIANG Q T, KANG H Y, LI W, QI P F, LAN X J, MA JIAN, LIU Y X, JIANG Y F, WEI Y M, CHEN X M, LIU C J, ZHENG Y L, CHEN G Y. Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm under stripe rust stress. BMC Genomics, 2019, 20:640.
doi: 10.1186/s12864-019-6005-6
[51] LUO J T, ZHAO L B, ZHENG J M, LI Y Z, ZANG L Q, LIU D C, PU Z J, HAO M. Karyotype mosaicism in early generation synthetic hexaploid wheats. Genome, 2020, 63(7):329-336.
doi: 10.1139/gen-2019-0148
[52] HAO M, ZHANG L Q, ZHAO L B, DAI S F, LI A L, YANG W Y, XIE D, LI Q C, NING S Z, YAN Z H, WU B H, LAN X J, YUAN Z W, HUANG L, WANG J R, ZHENG K, CHENG W S, YU M, CHEN X J, CHEN M P, WEI Y M, ZHANG H G, KISHII M, HAWKESFORD M J, MAO L, ZHENG Y L, LIU D C. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. Theoretical and Applied Genetics, 2019, 132:2285-2294.
doi: 10.1007/s00122-019-03354-9
[53] 蒲宗君, 饶世达, 杨武云, 张增艳, 蒲至恩. 优质高产小麦新品种川麦44的选育研究. 中国农学通报, 2006, 22(1):120-123.
PU Z J, RAO S D, YANG W Y, ZHANG Z Y, PU Z E. Breeding of a new wheat variety Chuanmai 44 with high quality and high yield. Chinese Agricultural Science Bulletin, 2006, 22(1):120-123. (in Chinese)
[54] ALHABBAR Z, YANG R, JUHASZ A, XIN H, SHE M, ANWAR M, SULTANA N, DIEPEVEEN D, MA W, ISLAM S. NAM gene allelic composition and its relation to grain-filling duration and nitrogen utilisation efficiency of Australian wheat. PLoS ONE, 2018, 13(10):e0205448.
doi: 10.1371/journal.pone.0205448
[55] ORLOVSKAYA O A, VAKULA S I, KHOTYLEVA L V, KILCHEVSKY A V. Estimation of NAM-A1 haplotypes effect on the level of quantitative traits and grain protein content in wheat. Faktori Eksperimental Noi Evolucii Organizmiv, 2020, 26:114-119.
doi: 10.7124/FEEO.v26
[56] MOLDESTAD A, FERGESTAD E M, HOEL B, SKJELVAG A O, UHLEN A K. Effect of temperature variation during grain filling on wheat gluten resistance. Journal of Cereal Science, 2011, 53(3):347-354.
doi: 10.1016/j.jcs.2011.02.005
[57] WIESER H, KIEFFER R, LELLEY T. The influence of 1B/1R chromosome translocation on gluten protein composition and technological properties of bread wheat. Journal of the Science of Food and Agricultural, 2000, 80:1646.
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[11] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[12] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[13] WANG Ling,CAI Yi,WANG GuiChao,WANG Di,SHENG YunYan. Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206.
[14] QU KeXin,HAN Lu,XIE JianGuo,PAN WenJing,ZHANG ZeXin,XIN DaWei,LIU ChunYan,CHEN QingShan,QI ZhaoMing. Mapping QTL for Soybean Fatty Acid Composition Based on RIL and CSSL Population [J]. Scientia Agricultura Sinica, 2021, 54(15): 3168-3182.
[15] FAN Tao,LI Zhi,JIANG Qing,CHEN ShuLin,OU Xia,CHEN YongYan,REN TianHeng. Development and Effect Evaluation of KASP Markers Closely Linked to Major QTLs of Spike Number Per Unit Area and Grain Length in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(14): 2941-2951.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!