Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4100-4109.doi: 10.3864/j.issn.0578-1752.2019.22.014

• GERMPLASM RESOURCES • Previous Articles     Next Articles

Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers

SHI TianTian1,HE JieLi2,GAO ZhiJun3,CHEN Ling4,WANG HaiGang4,QIAO ZhiJun4(),WANG RuiYun1,4()   

  1. 1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi
    2 College of Arts and Sciences, Shanxi Agricultural University, Taigu 030801, Shanxi
    3 Erdos Institute of Agriculture and Animal Husbandry, Erdos 017000, Inner Mongolia
    4 Institute of Crop Germplasms Resources of Shanxi Academy of Agricultural Sciences/Key Laboratory of Crop Gene Resources and Germplasm Enhancement on Loess Plateau, Ministry of Agriculture, Taiyuan 030031
  • Received:2019-06-13 Accepted:2019-08-17 Online:2019-11-16 Published:2019-11-16
  • Contact: ZhiJun QIAO,RuiYun WANG E-mail:nkypzs@126.com;wry925@126.com

Abstract:

【Objective】The objective of this study is to analyze the genetic diversity and relationship of common millet accessions (six different ecotopes at home and abroad) by microsatellite markers, to provide available data for classification, selection and utilization of elite germplasm resources. 【Method】 One hundred and forty-four SSRs (64 high motif nucleotide sequence repeat and 80 low ones) are used to identify polymorphisms in ninety-six common millet accessions (71 home accessions and 25 abroad accessions). Genetic diversity parameters were calculated using software PowerMarker 3.25 and PopGen 1.32. Genetic distance and Structure on accessions were classified with software MEGA 5.0 and Structure 2.2, respectively. PCA (principal component analysis) was conducted by software Ntsys 2.11. 【Result】 Using 144 EST-SSR markers, a total of 368 observed alleles (Na) were detected with 2-3 alleles (mean = 2.5556) per locus. The observed heterozygosity (Ho) ranged from 0.4070 (RYW15) to 0.9789 ( RYW85) with an average of 0.8288. The expected heterozygosity (He) ranged from 0.4369 ( RYW59) to 0.6693 ( RYW58) with an average of 0.5535. The Nei's gene diversity index ranged from 0.4344 (RYW59) to 0.6653 (RYW58) with a mean of 0.5505. The polymorphism information content (PIC) ranged from 0.1811 (RYW68) to 0.7508 (RYW58) with an average of 0.4279. The Shannon diversity index (I) range was 0.6474 to 1.0956 with an average of 0.8415. In the case of genetic diversity parameters, the PIC and I of common millet accessions from Northern spring-sowing region were the most abundant than that of others. On the contrary, the accessions from Northwest spring & summer-sowing region were the lowest. For the different geographical regions accessions, the range of genetic distance was 0.0111 to 0.1425 and the scope of genetic consistency was 0.8672 to 0.9889. The genetic distance of accessions between Loess Plateau spring & summer-sowing region and Northern spring-sowing region was the least and their genetic consistency was the highest. The genetic distance between Northwest spring & summer-sowing region and North of China summer-sowing region was the largest and their genetic consistency was the lowest. UPGMA analysis divided 96 accessions into three groups (GroupⅠ, Ⅱ and Ⅲ). Group I were mainly Northern spring-sowing region common millet, Group Ⅱ were mainly foreign accessions, and Group Ⅲ were mainly Loess Plateau spring & summer-sowing region and Northern spring-sowing region accessions. Structure cluster divided resources into four groups. The red group contained Loess Plateau spring & summer-sowing region and Northern spring-sowing region accessions, which represented the gene pool of Loess Plateau and North. The green group included Northern spring-sowing region accessions, which represented the North gene pool. The blue group were Loess Plateau spring & summer-sowing region accessions, which represented the gene pool of Loess Plateau. The yellow group represented foreign gene pool. In terms of diversity parameters, the PIC value of GroupⅡwas the highest at 0.4606 and the Group Ⅳ was the lowest at 0.3539. The PCA analysis classified all accessions into six clusters, which are related to their geographical region. 【Conclusion】144 SSRs can evaluate 96 common millet resources accurately. The genetic relationships are related to their geographical region. Genetic diversity of accessions from Northern spring-sowing region are more abundant.

Key words: common millet, SSR, cluster analysis, genetic structure, principal component analysis

Table 1

Ecotope distribution of common millet accessions in this study"

生态区 Ecotope 来源 Origin 数量 Accession number
北方春糜子区
NSP
中国青海 Qinghai, China 3 30
中国甘肃 Gansu, China 9
中国内蒙古 Inner Mongolia, China 12
中国山西 Shanxi, China 6
西北春夏糜子区 NWSS 中国新疆 Xinjiang, China 3 3
黄土高原春夏糜子区 LPSS 中国山西 Shanxi, China 13 26
中国陕西 Shaanxi, China 7
中国宁夏 Ningxia, China 6
东北春糜子区 NES 中国黑龙江 Heilongjiang, China 1 4
中国吉林 Jilin, China 2
中国辽宁 Liaoning, China 1
华北夏糜子区 NSU 中国河北 Hebei, China 6 8
中国河南 Henan, China 1
中国山东 Shandong, China 1
国外 Abroad 印度India 22 25
波兰Poland 3
合计Total 96

Table 2

Parameters of genetic diversity of common millet populations"

来源地
Origin
资源数
Sample
观测等位变异
Na
有效等位变异
Ne
Shannon多样性指数
I
观测杂合度
Ho
期望杂合度
He
多态性信息含量
PIC
北方春糜子区NSP 30 2.5069±0.5017 2.269±0.3391 0.8393±0.1623 0.8221±0.1358 0.5596±0.0649 0.4259
西北春夏糜子区NWSS 3 2.2778±0.4796 2.0895±0.4045 0.7530±0.1977 0.7928±0.2824 0.6097±0.1324 0.2898
黄土高原春夏糜子LPSS 26 2.5069±0.5017 2.2345±0.3050 0.8288±0.1516 0.8362±0.1255 0.5557±0.0593 0.3878
东北春糜子区NES 4 2.3333±0.5017 2.1077±0.4075 0.7657±0.2028 0.7894±0.2481 0.5824±0.1223 0.3196
华北夏糜子区NSU 8 2.4375±0.4978 2.1687±0.3530 0.7998±0.1683 0.8038±0.1752 0.5643±0.0827 0.3637
国外Abroad 25 2.5000±0.5017 2.2125±0.3135 0.8191±0.1520 0.8478±0.1320 0.5508±0.0628 0.3719

Table 3

Genetic distance and genetic identity of common millet resources with different population"

生态区
Ecotope
北方春糜子区
NSP
西北春夏糜子区
NWSS
黄土高原春夏糜子区
LPSS
东北春糜子区
NES
华北夏糜子区
NSU
国外
Abroad
北方春糜子区NSP 0.9264 0.9889 0.9420 0.9703 0.9800
西北春夏糜子区NWSS 0.0764 0.9320 0.9018 0.8983 0.9169
黄土高原春夏糜子区LPSS 0.0112 0.0704 0.9438 0.9715 0.9822
东北春糜子区NES 0.0598 0.1033 0.0578 0.9362 0.9311
华北夏糜子区NSU 0.0301 0.1072 0.0290 0.0660 0.9671
国外Abroad 0.0202 0.0867 0.0180 0.0714 0.0335

Fig. 1

Cluster diagram of 96 accessions of common millet"

Fig. 2

Modelling genepools’ number in common millet accessions by Structure"

Fig. 3

Population genetic structure graph of common millet germplasm resources (K=4) Numbers in the horizontal axis represent serial number of accession"

Table 4

Genetic diversity parameters of different common millet structure cluster"

群组
Cluster
资源数
Accessions
观测等位变异
Na
有效等位变异
Ne
Shannon多样性指数
I
观测杂合度
Ho
期望杂合度
He
多样性信息含量
PIC
26 2.4931±0.5017 2.2437±0.3440 0.8281±0.1632 0.8251±0.1352 0.5554±0.0676 0.4052
12 2.4931±0.5017 2.2379±0.3710 0.8285±0.1717 0.7677±0.1929 0.5663 ±0.0777 0.4606
18 2.5347±0.5005 2.2271±0.3292 0.8292±0.1563 0.8181±0.1429 0.5576±0.0663 0.4165
40 2.5069±0.5017 2.2264±0.2962 0.8256±0.1484 0.4495±0.1167 0.5434±0.0577 0.3539

Fig. 4

Principle component analysis of 96 common millet accessions"

[1] 张丽珍, 冀佩双, 罗旭枭, 穆虹彰, 秦雁鹏, 牛宇, 乔治军 . 糜黍淀粉理化性质及消化特性. 食品科学, 2016,37(19):76-81.
ZHANG L Z, JI P S, LUO X X, MU H Z, QIN Y P, NIU Y, QIAO Z J . Physicochemical properties and digestive properties of millet starch. Food Science, 2016,37(19):76-81. (in Chinese)
[2] VETRIVENTHAN M, AZEVEDO V C R, UPADHYAYA H D, NARESH D . Variability in the global proso millet ( Panicum miliaceum L.) germplasm collection conserved at the ICRISAT Genbank. Agriculture, 2019,9(5):112
[3] 王瑞云 . 糜子遗传多样性及进化研究进展. 北京: 中国农业出版社, 2017: 2-3.
WANG R Y. Genetic Diversity and Evolution Advancement in Common Millet (Panicum miliaceum L.). Beijing: China Agriculture Press, 2017: 2-3. (in Chinese)
[4] 刁现民, 程汝宏 . 十五年区试数据分析展示谷子糜子育种现状. 中国农业科学, 2017,50(23):4469-4474.
DIAO X M, CHENG R H . Current breeding situation of foxtail millet and common millet in China as revealed by exploitation of 15 years regional adaptation test data. Scientia Agricultura Sinica, 2017,50(23):4469-4474. (in Chinese)
[5] LU H Y, ZHANG J P, LIU K B, WU N Q, LI Y M, ZHOU K S, YE M L, ZHANG T Y, ZHANG H J, YANG X Y, SHEN L C, XU D K, LI Q . Earliest domestication of common millet ( Panicum miliaceum) in East Asia extended to 10,000 years ago. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(18):7367-7372.
[6] RAJPUT S G, TAMMY P H, DIPAK K S . Development and characterization of SSR markers in proso millet based on switchgrass genomics. American Journal of Plant Sciences, 2014,5(1):175-186.
[7] 胡兴雨, 陆平, 贺建波, 王纶, 王玉星, 张红生, 张宗文, 吴斌 . 黍稷农艺性状的主成分分析与聚类分析. 植物遗传资源学报, 2008,9(4):492-496.
HU X Y, LU P, HE J B, WANG L, WANG Y X, ZHANG H S, ZHANG Z W, WU B . Principal components and cluster analysis of agronomic traits of proso millet ( Panicum miliaceum). Journal of Plant Genetic Resources, 2008,9(4):492-496. (in Chinese)
[8] WANG R Y, HUNT H V, QIAO Z J, WANG L, HAN Y H . Diversity and cultivation of broomcorn millet ( Panicum miliaceum L.) in China: A Review. Economic Botany, 2016,70(3):332-342.
[9] ELEUCH L, JILAL A, GRANDO S, CECCARELLI S, SCHMISING M V K, TSUJIMOTO H, HAJER A, DAALOUL A, BAUM M . Genetic diversity and association analysis for salinity tolerance, heading date and plant height of barley germplasm using simple sequence repeat markers. Journal of Integrative Plant Biology, 2008(8):1004-1014.
[10] WEN Z X, DING Y L, ZHAO T N, GAI J Y . Genetic diversity and peculiarity of annual wild soybean ( G. soja Sieb. et Zucc.) from various eco-regions in China. Theoretical and Applied Genetics, 2009,119(2):371-381.
[11] LI R Y, ZHANG H, ZHOU X C, GUAN Y A, YAO F X, SONG G A, Wang J C, ZHANG C Q . Genetic diversity in Chinese sorghum landraces revealed by chloroplast simple sequence repeats. Genetic Resources and Crop Evolution, 2010,57(1):1-15.
[12] BADIANE F A, GOWDA B S, CISS N, DIOUF D, SADIO O, TIMKO M P . Genetic relationship of cowpea ( Vigna unguiculata) varieties from Senegal based on SSR markers. Genetics and Molecular Research, 2012,11(1):292-304.
[13] WANG C F, JIA G Q, ZHI H, NIU Z G, CHAI Y, LI W, WANG Y F, LI H Q, LU P, ZHAO B H, DIAO X M . Genetic diversity and population structure of Chinese foxtail millet [Setaria italica (L.) Beauv.] landraces. Genes Genomes Genetics, 2012,2(7):769-777.
[14] HU X Y, WANG J F, LU P, ZHANG H S . Assessment of genetic diversity in broomcorn millet ( Panicum miliaceum L.) using SSR markers. Journal of Genetics and Genomics, 2009,36(8):491-500.
[15] CHO Y I, CHUNG J W, LEE G A, MA K H, DIXIT A, GWAG J G, PARK Y J . Development and characterization of twenty-five new polymorphic microsatellite markers in proso millet ( Panicum miliaceum L.). Genes &Genomics, 2010,32(3):267-273.
[16] HUNT H V, CAMPANA M G, LAWES M C, PARK Y J, BOWER M A, HOWE C J, JONES M K . Genetic diversity and phylogeography of broomcorn millet ( Panicum miliaceum L.) across Eurasia. Molecular Ecology, 2011,20(22):4756-4771.
[17] 董俊丽, 王海岗, 陈凌, 王君杰, 曹晓宁, 王纶, 乔治军 . 糜子骨干种质遗传多样性和遗传结构分析. 中国农业科学, 2015,48(16):3121-3131.
DONG J L, WANG H G, CHEN L, WANG J J, CAO X N, WANG L, QIAO Z J . Analysis of genetic diversity and structure of proso millet core germplasm. Scientia Agricultura Sinica, 2015,48(16):3121-3131. (in Chinese)
[18] 王瑞云, 季煦, 陆平, 刘敏轩, 许月, 王纶, 王海岗, 乔治军 . 利用荧光SSR分析中国糜子遗传多样性. 作物学报, 2017,43(4):530-548.
WANG R Y, JI X, LU P, LIU M X, XU Y, WANG L, WANG H G, QIAO Z J . Analysis of genetic diversity in common millet ( Panicum miliaceum) using fluorescent SSR in China. Acta Agronomica Sinica, 2017,43(4):530-548. (in Chinese)
[19] HUNT H V, RUDZINSKI A, JIANG H E, WANG R Y, THOMAS M G, JONES M K . Genetic evidence for a western Chinese origin of broomcorn millet ( Panicum miliaceum). The Holocene, 2018,28(12):1968-1978.
[20] LIU M X, XU Y, HE J H, ZHANG S, WANG Y Y, LU P . Genetic diversity and population structure of broomcorn millet ( Panicum miliaceum L.) cultivars and landraces in China based on microsatellite markers. International Journal of Molecular Sciences, 2016,17(3):370.
[21] 连帅, 陆平, 乔治军, 张琦, 张茜, 刘敏轩, 王瑞云 . 利用SSR分子标记研究国内外黍稷地方品种和野生资源的遗传多样性. 中国农业科学, 2016,49(17):3264-3275.
LIAN S, LU P, QIAO Z J, ZHANG Q, ZHANG Q, LIU M X, WANG R Y . Genetic diversity in broomcorn millet ( Panicum miliaceum L.) from China and abroad by using SSR markers. Scientia Agricultura Sinica, 2016,49(17):3264-3275. (in Chinese)
[22] 王瑞云, 刘笑瑜, 王海岗, 陆平, 刘敏轩, 陈凌, 乔治军 . 用高基元微卫星标记分析中国糜子遗传多样性. 中国农业科学, 2017,50(20):3848-3859.
WANG R Y, LIU X Y, WANG H G, LU P, LIU M X, CHEN L, QIAO Z J . Evaluation of genetic diversity of common millet ( Panicum miliaceum) germplasm available in China using high motif nucleotide repeat SSR markers. Scientia Agricultura Sinica, 2017,50(20):3848-3859. (in Chinese)
[23] 薛延桃, 陆平, 乔治军, 刘敏轩, 王瑞云 . 基于SSR标记的黍稷种质资源遗传多样性及亲缘关系研究. 中国农业科学, 2018,51(15):2846-2859.
XUE Y T, LU P, QIAO Z J, LIU M X, WANG R Y . Genetic diversity and genetic relationship of broomcorn millet ( Panicum miliaceum L.) germplasm based on SSR markers. Scientia Agricultura Sinica, 2018,51(15):2846-2859. (in Chinese)
[24] JIANG Y M, Li H Q, ZHANG J N, XIANG J Y, CHENG R H, LIU G Q . Whole genomic EST-SSR development based on high-throughput transcript sequencing in proso millet ( Panicum miliaceum). International Journal of Agriculture & Biology, 2018,20(3):617-620.
[25] LIU K, MUSE S V . PowerMarker: Integrated analysis environment for genetic marker data. Bioinformatics, 2005,21:2128-2129.
[26] YEH F C, BOYLE T J . Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany, 1997,130:129-157.
[27] TAMURA K, PETERSON D, PETERSON N, STECHER G, NEI M, KUMAR S . MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biology and Evolution, 2011,28(10):2731-2739.
[28] FALUSH D, STEPHENS M, PRITCHARD J K . Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics, 2003,164(4):1567-1587.
[29] NEI M, LI W H . Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 1979,76(10):5269-5273.
[30] BONMAN J M, BABIKER E M, CUESTA-MARCOS A, ESVELT-KLOS K, BROWN-GUEDIRA G, CHAO S, SEE D, CHEN J, AKHUNOV E, ZHANG J, BOCKELMAN H E, GORDON T C . Genetic diversity among wheat accessions from the USDA national small grains collection. Crop Science, 2015,55(3):1243-1253.
[31] COURTOIS B, FROUIN J, GRECO R, BRUSCHI G, DROC G, HAMELIN C, RUIZ M, CLÉMENT G, EVRARD J C, VAN COPPENOLE S, KATSANTONIS D, OLIVEIRA M, NEGRÃO S, MATOS C, CAVIGIOLO S, LUPOTTO E, PIFFANELLI P, AHMADI N . Genetic diversity and population structure in a European collection of rice. Crop Science, 2012,52(4):1663-1675.
[32] VAN INGHELANDT D, MELCHINGER A E, LEBRETON C, STICH B . Population structure and genetic diversity in a commercial maize breeding program assessed with SSR and SNP markers. Theoretical and Applied Genetics, 2010,120(7):1289-1299.
[33] 王舒婷, 何杰丽, 石甜甜, 陈凌, 王海岗, 王瑞云, 乔治军 . 利用微卫星标记分析山西糜子的遗传多样性. 植物遗传资源学报, 2019,20(1):69-78.
WANG S T, HE J L, SHI T T, CHEN L, WANG H G, WANG R Y, QIAO Z J . Genetic diversity analysis of broomcorn millet ( Panicum miliaceum L.) of Shanxi Province using microsatellite markers. Journal of Plant Genetic Resources, 2019,20(1):69-78. (in Chinese)
[34] 刘笑瑜 . 利用高基元SSR分析中国糜子资源的遗传多样性[D]. 太谷: 山西农业大学, 2017.
LIU X Y . Analysis of genetic diversity of Chinese proso millet resources by high substrate SSR[D]. Taigu: Shanxi Agricultural University, 2017. (in Chinese)
[35] 张亚东, 彭婵, 李振芳, 杨彦伶, 胡兴宜 . 基因组SSR与EST-SSR标记在杨树不同种间的遗传差异. 东北林业大学学报, 2011,39(12):8-11, 117.
ZHANG Y D, PENG C, LI Z F, YANG Y L, HU X Y . Genetic diversity of genomic-SSR and EST-SSR markers in interspecies of poplar. Journal of Northeast Forestry University, 2011 39(12):8-11, 117. (in Chinese)
[36] 徐阳, 陈金慧, 李亚, 洪舟, 王颖, 赵亚琦, 王新民, 施季森 . 杉木EST-SSR与基因组SSR引物开发. 南京林业大学学报(自然科学版), 2014,38(1):9-14.
XU Y, CHEN J H, LI Y, HONG Z, WANG Y, ZHAO Y Q, WANG X M, SHI J S . Development of EST-SSR and genomic-SSR in Chinese fir. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014,38(1):9-14. (in Chinese)
[37] CHO Y G, ISHII T, TEMNYKH S, CHEN X, LIPOVICH L, MCCOUCH S R, PARK W D, AYRES N, CARTINHOUR S . Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice ( Oryza sativa). Theoretical and Applied Genetics, 2000,100(5):713-722.
[38] EUJAYL I, SORRELLS M, BAUM M, WOLTERS P, POWELL W . Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica, 2001,119(1):39-43.
[39] TUSKAN G A, GUNTER L E, YANG , YANG Z K, YIN T M, SEWELL M M, DIFAZIO S P . Characterization of microsatellites revealed by genomic sequencing of Populus trichocarpa. Canadian Journal of Forest Research-Revue, 2004,34(1):85-93.
[40] DUTTA S, KUMAWAT G, SINGH B P, GUPTA D K, SINGH S, DOGRA V, GAIKWAD K, SHARMA T R, RAJE R S, BANDHOPADHYA T K, DATTA S, SINGH M N, BASHASAB F, KULWAL P, WANJARI K B, VARSHNEY R K, COOK D R, SINGH N K . Development of genic-SSR markers by deep transcriptome sequencing in pigeonpea [Cajanus cajan (L.) Millspaugh]. Biomed Central Plant Biology, 2011,11(1):17.
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] ZHU YanSong,ZHANG YaFei,CHENG Li,YANG ShengNan,ZHAO WanTong,JIANG Dong. Identification of 60 Citrus Accessions Using Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2022, 55(22): 4458-4472.
[3] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[4] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[5] YANG Cheng,GONG GuiZhi,PENG ZhuChun,CHANG ZhenZhen,YI Xuan,HONG QiBin. Genetic Relationship Among Citrus and Its Relatives as Revealed by cpInDel and cpSSR Marker [J]. Scientia Agricultura Sinica, 2022, 55(16): 3210-3223.
[6] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] SUN Yue,YANG HuiMin,HE RongRong,ZHANG JunXiang. Implantation and Persistence of Inoculated Active Dry Yeast in Industrial Wine Fermentations [J]. Scientia Agricultura Sinica, 2021, 54(9): 2006-2016.
[9] NIE XingHua, ZHENG RuiJie, ZHAO YongLian, CAO QingQin, QIN Ling, XING Yu. Genetic Diversity Evaluation of Castanea in China Based on Fluorescently Labeled SSR [J]. Scientia Agricultura Sinica, 2021, 54(8): 1739-1750.
[10] LI KaiFeng,YIN YuHe,WANG Qiong,LIN TuanRong,GUO HuaChun. Correlation Analysis of Volatile Flavor Components and Metabolites Among Potato Varieties [J]. Scientia Agricultura Sinica, 2021, 54(4): 792-803.
[11] HU DongMei,JIANG Dong,LI YongPing,PENG Lei,LI DongYun,ZHU YanSong,YANG YunGuang. Identification of Bud Sport Mutation of Satsuma Mandarin by Target SSR-seq Technology [J]. Scientia Agricultura Sinica, 2021, 54(23): 5083-5096.
[12] WANG Yan,FAN BaoJie,CAO ZhiMin,ZHANG ZhiXiao,SU QiuZhu,WANG Shen,WANG XueQing,PENG XiuGuo,MEI Li,WU YuHua,LIU ShaoXing,TIAN ShengMin,XU JunJie,JIANG ChunZhi,WANG WeiJuan,LIU ChangYou,TIAN Jing. Quantitative Trait Locus Mapping of Bruchids Resistance Based on A Novel Genetic Linkage Map in Cowpea (Vigna unguiculata) [J]. Scientia Agricultura Sinica, 2021, 54(22): 4740-4749.
[13] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[14] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[15] Ge SONG,DongMei SHI,XiaoYing ZENG,GuangYi JIANG,Na JIANG,Qing YE. Quality Barrier Characteristics of Cultivated Layer for Sloping Farmland in Purple Hilly Region [J]. Scientia Agricultura Sinica, 2020, 53(7): 1397-1410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!