Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (1): 172-182.doi: 10.3864/j.issn.0578-1752.2020.01.016

• SPECIAL FOCUS: MOLECULAR BIOLOGY OF CUCUMBER • Previous Articles     Next Articles

Screening and Identification of Cucumber Mutant Resistant to Powdery Mildew

Fei QI,Shu LIN,MengFei SONG,MengRu ZHANG,ShuYan CHEN,NaiXin ZHANG,JinFeng CHEN,QunFeng LOU()   

  1. College of Horticulture, Nanjing Agricultural University/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing 210095
  • Received:2019-06-03 Accepted:2019-10-23 Online:2020-01-01 Published:2020-01-19
  • Contact: QunFeng LOU E-mail:qflou@njau.edu.cn

Abstract:

【Objective】Powdery mildew is one of the most serious diseases that effects cucumber yield and quality. The discovery and research of materials resistant to powdery mildew can fundamentally solve the disease problem. To screen out materials of cucumber resistant to powdery mildew and enrich the breeding population, the Changchunmici mutants were investigated and analyzed in the study.【Method】Totally, 400 Changchunmici mutant lines were inoculated with powdery mildew at seedling stage, and resistant materials were screened preliminarily based on leaf lesion observation combined with disease index analysis. The selected resistant materials were further observed in the natural environment in the field environment. Physiological indexes of resistant materials in the seedling stages were analyzed, including the activities of superoxide dismutase, peroxidase and catalase activity, and physiological indicators such as the contents of chlorophyll a, chlorophyll b, carotenoids and soluble protein. The resistant materials were screened by natural pathogenesis in the field and were further analyzed for the photosynthetic indexes such as transpiration rate, intercellular carbon dioxide concentration, stomatal conductance and net photosynthetic rate. And the contents of ethylene, jasmonic acid and salicylate were determined, and expression of related genes in defense signaling pathways such as ethylene, jasmonic acid, salicylic acid, lignin, and disease-related proteins in leaves were analyzed by real-time PCR. 【Result】Compared with susceptible materials, the resistant materials had less plaque. The net photosynthetic rate and stomatal conductance of resistant materials were higher than those of wild-type Changchunmici, and the intercellular CO2 concentration of them was lower than that of Changchunmici. In terms of defensive hormones, the contents of ethylene, jasmonic acid and salicylate of resistant materials were higher than those in control. The expression of defense signal related genes in mature leaves of resistant materials was higher compared with susceptible materials. Two powdery mildew resistance materials, Mu-86-2 and Mu-58-9 were screened by inoculation of powdery mildew in seedling stage and natural disease. 【Conclusion】The new materials resistant to powdery mildew could be obtained by screening mutant libraries. The acquisition of these materials had the important value for the genetic research and new varieties breeding of cucumber resistance to powdery mildew.

Key words: cucumber, mutant, resistance to powdery mildew, screening and identification

Table 1

Analysis of disease index of primary screening resistant mutants"

编号Code 病情指数Disease index 抗性类型Disease resistance 编号Code 病情指数Disease index 抗性类型Disease resistance
Mu-86-2 2.22 抗R Mu-104-2 20.20 中抗MR
Mu-58-9 3.33 抗R Mu-106-3 22.22 中抗MR
Mu-50-10 4.18 抗R Mu-59-8 22.22 中抗MR
Mu-9-9 9.00 中抗MR Mu-150-3 23.23 中抗MR
Mu-60-5 10.00 中抗MR Mu-118-2 24.24 中抗MR
Mu-84-8 15.56 中抗MR

Fig. 1

Growth of Podosphaera fusca mycelium under microscopic observation after inoculation"

Fig. 2

SEM observation of different materials after inoculation with Podosphaera fusca"

Table 2

Effect of inoculation of Podosphaera fusca on the pigment content of cucumber mutant seedlings"

编号 Code 叶绿素a含量 Chlorophyll a content 叶绿素b含量 Chlorophyll b content 类胡萝卜素 Carotenoids content
CK 13.556±1.089abcd 4.713±1.081b 2.420±0.987b
Mu-86-2 14.869±0.521abc 5.536±0.179ab 2.946±0.195ab
Mu-58-9 16.723± 0.536a 6.298±0.504ab 2.887±0.484ab
Mu-50-10 11.825±3.908d 4.566±0.756ab 2.501±0.942b
Mu-9-9 11.597±2.778bcd 4.291±0.886b 2.526±0.450b
Mu-60-5 14.317±2.577abc 5.342±0.709ab 2.853±0.356ab
Mu-84-8 14.921±2.864abc 5.635±1.691ab 2.950±0.296ab
Mu-104-2 11.845±1.490cd 4.557±0.526b 2.609±0.475b
Mu-106-3 14.333±2.758abc 5.599±0.923ab 2.993±0.292ab
Mu-59-8 15.372±3.327abc 5.930±1.075ab 3.042±0.938a
Mu-150-3 14.749±0.876abc 5.594±0.886ab 2.858±0.466ab
Mu-118-2 15.839±1.838ab 6.100±0.822a 2.783±0.185ab

Table 3

Effects of inoculation of Podosphaera fusca on the activities of antioxidant enzymes in cucumber mutants"

编号Code POD活性POD activity (U·g-1·min-1) SOD活性SOD activity (U·g-1) CAT活性CAT activity (U·g-1·min-1)
CK 0.876±0.011bc 0.331±0.041bcde 13.104±0.381c
Mu-86-2 2.143±0.651a 0.450±0.108b 16.906±0.565ab
Mu-58-9 2.186±0.311a 0.415±0.028bc 18.800±2.630a
Mu-50-10 1.836±0.526b 0.588±0.024a 14.960±0.876bc
Mu-9-9 1.588±0.503b 0.309±0.003cde 13.120±0.155c
Mu-60-5 1.208±0.520b 0.358±0.085bcde 14.040±0.501bc
Mu-84-8 1.245±0.497b 0.302±0.115bcde 18.506±0.966a
Mu-104-2 0.832±0.119bc 0.327±0.049bcde 11.920±0.969d
Mu-106-3 0.589±0.237c 0.441±0.091bc 15.093±1.927ab
Mu-59-8 2.272±0.404a 0.247±0.046e 13.040±0.855c
Mu-150-3 0.977±0.228bc 0.268±0.087de 14.640±1.222bc
Mu-118-2 0.964±0.152bc 0.380±0.031bcd 14.340±0.650bc

Fig. 3

Soluble protein content of cucumber mutant seedlings after inoculation with Podosphaera fusca"

Fig. 4

Resistance of cucumber mutants in the field"

Table 4

Effect of photosynthetic indicators on mutant materials after field infection with Podosphaera fusca"

编号
Code
净光合速率
Net photosynthetic rate (μmol·m-2·s-1)
气孔导度
Stomatal conductance (mmol·m-2·s-1)
胞间CO2浓度
Intercellular CO2 concentration (μmol·mol-1)
蒸腾速率
Transpiration rate
(mmol·m-2·s-1)
CK 16.500±1.252b 0.569±0.042b 302.666±9.865a 10.866±0.351a
Mu-58-9 22.866±1.625a 1.173±0.188a 286.000±1.000b 10.666±0.650a
Mu-86-2 22.866±2.281a 0.824±0.155b 278.000±10.000b 10.123±0.849a
IL52 23.600±0.435a 0.789±0.074 b 295.666±3.780b 11.133±0.416a

Table 5

Effect of defensive hormone content on mutant materials after field infection with Podosphaera fusca"

编号
Code
茉莉酸含量
Jasmonic acid content (pmol·L-1)
水杨酸含量
Salicylic acid content (pmol·L-1)
乙烯含量
Ethylene content (ng·L-1)
CK 1346.912±25.758b 960.066±23.283d 159.509±3.868d
Mu-58-9 1696.515±31.178a 1114.259±19.026b 189.744±5.398b
Mu-86-2 1752.818±51.115a 1063.894±29.433a 194.694±6.823b
IL52 1692.587±47.625a 1009.656±10.652c 222.705±5.158a

Fig. 5

Expression of related genes in defense signaling pathways under natural pathogenesis in the field"

[1] BERG J A, APPIANO M, BIJSTERBOSCH G, VISSER R G F, SCHOUTEN H J, BAI Y L . Functional characterization of cucumber (Cucumis sativus L.) clade vmlogenes. BMC Plant Biology, 2017,17:80.
[2] 冯东昕, 李宝栋 . 主要瓜类作物抗白粉病育种研究进展. 中国蔬菜, 1996(1):55-59.
FENG D Y, LI B D . Research progress on breeding of main melon crops against powdery mildew. Chinese Vegetables, 1996(1):55-59. (in Chinese)
[3] 曲丽, 秦智伟 . 黄瓜白粉病病原菌及抗病性研究进展. 东北农业大学学报, 2007,38(6):835-841.
QU L, QIN Z W . Advance on cucumber resistance to powdery mildew. Journal of Northeast Agricultural University, 2007,38(6):835-841. (in Chinese)
[4] 刘秀波, 崔琦, 崔崇士 . 瓜类白粉病抗性育种研究进展. 东北农业大学学报, 2005,36(6):794-798.
LIU X B, CUI Q, CUI C S . Advance on the resistance to powdery mildew in cucurbit. Journal of Northeast Agricultural University, 2005,36(6):794-798. (in Chinese)
[5] NIE J T, WANG Y L, HE H L, GUO C L, ZHU W Y, PAN J, LI D D, LIAN H L, PAN J S, CAI R . Loss-of-function mutations incsmlo1confer durable powdery mildew resistance in cucumber (Cucumis sativus L.). Frontiers in Plant Science, 2015,6:612.
[6] THOMAS C E . Influence of dew on downy mildew of cantaloups in South Texas. Phytopathology, 1977,77(11):1368-1369.
[7] JAHN M, MUNGER H M, MCCREIGHT J D. Breeding cucurbit crops for powdery mildew resistance//The Powdery Mildews: A Comprehensive Treatise. American Phytopathological Society (APS Press), 2002: 239-248.
[8] 周凤珍, 王永健 . 黄瓜白粉病抗病鉴定方法的研究. 蔬菜, 1987(1):10-11.
ZHOU F Z, WANG Y J . Study on identification method of resistance to cucumber powdery mildew. Vegetables, 1987(1):10-11. (in Chinese)
[9] 阚光锋, 张广民, 房保海, 刘萍 . 烟草野火病菌(Pseudomonas syringae pv. tabaci)对烟草细胞内5种防御酶系统的影响. 山东农业大学学报(自然科学版), 2002,33(1):28-31.
ZHAI G F, ZHANG G M, FANG B H, LIU P . The effects of Pseudomonas syringae pv. tabaci on the defendant enzymes in tobacco cells. Journal of Shandong Agricultural University (Natural Science Edition), 2002,33(1):28-31. (in Chinese)
[10] 邱金龙, 金巧玲, 王钧 . 活性氧与植物抗病反应. 植物生理学通讯, 1998,34(1):56-63.
QIU J L, JIN Q L, WANG J . Active oxygen and plant defense responses. Plant Physiology Communications, 1998,34(1):56-63. (in Chinese)
[11] 陈少裕 . 膜脂过氧化对植物细胞的伤害. 植物生理学通讯, 1991,27(2):84-90.
CHEN S Y . Injury of membrane lipid peroxidation to plant cell. Plant Physiology Communications, 1991,27(2):84-90. (in Chinese)
[12] 梁芳芳 . 霜霉病胁迫对黄瓜幼苗叶片光合作用的影响[D]. 郑州: 河南农业大学, 2010.
LIANG F F . Effects of downy mildew stress on photosynthesis in cucumber seedling leaves[D]. Zhengzhou: Henan Agricultural University, 2010. (in Chinese)
[13] NEJAT N, ROOKES J, MANTRI N L, CAHILL D M . Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Critical Reviews in Biotechnology, 2017,37(2):229-237.
[14] THOMMA B P H J, EGGERMONT K, PENNINCKX I A M A, MAUCH-MANI B, VOGELSANG R, CAMMUE B P A, BROEKAERT W F . Separate jasmonate-dependent and salicylate- dependent defense-response pathways in arabidopsis are essential for resistance to distinct microbial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 1998,95:15107-15111.
[15] MCGRATH M T . Fungicide resistance in cucurbit powdery mildew: Experiences and challenges. Plant Disease, 2001,85:236-245.
[16] SAKATA Y, KUBO N, MORISHITA M, KITADANI E, SUGIYAMA M, HIRAI M . QTL analysis of powdery mildew resistance in cucumber (Cucumis sativus L.). Theoretical and Applied Genetics, 2006,112:986.
[17] ZHANG K J, WANG X, ZHU W W, QIN X D, XU J, CHENG C Y, KOU Q F LI J, CHEN J X, . Complete resistance to powdery mildew and partial resistance to downy mildew in a Cucumis hystrix introgression line of cucumber were controlled by a co-localized locus. Theoretical & Applied Genetics, 2018,131(10):1-15.
[18] 康振生 . 植物病原真菌超微结构. 北京:中国科学技术出版社, 1996.
KANG Z S. Ultrastructure of Phytopathogenic Fungi. Beijing: China Science and Technology Press, 1996. (in Chinese)
[19] 李宗霆, 周燮 . 植物激素及其免疫检测技术. 南京: 江苏科学技术出版社, 1996.
LI Z T, ZHOU X. Plant Hormones and Their Immunoassay Technology. Nanjing: Jiangsu Science and Technology Press, 1996. (in Chinese)
[20] 马华 . 黄瓜—酸黄瓜渐渗系抗蔓枯病鉴定及相关抗性机制研究[D]. 南京: 南京农业大学, 2015.
MA H . Identification of cucumber-sour cucumber introgression resistance and related resistance mechanism[D]. Nanjing: Nanjing Agricultural University, 2015. (in Chinese)
[21] 周梦韩, 汪静, 孟新刚, 王俊刚 . 感染白粉病菌初期黄瓜叶片生理指标的变化. 北方园艺, 2013(3):133-135.
ZHOU M H, WANG J, MENG X G, WANG J G . Physiological indexes changes of cucumber after infected bySphaerotheca fuliginea at the beginning period. Northern Horticulture, 2013(3):133-135. (in Chinese).
[22] 沈喜, 李红玉, 文雅, 孟雪琴, 周功克, 张立新, 梁厚果 . 白粉病菌侵染对黄瓜叶片光合电子传递及其psⅡ功能蛋白d1表达的影响. 植物病理学报, 2003,33(6):546-549.
SHEN X, LI H Y, WEN Y, MENG X Q, ZHOU G K, ZHANG L X, LIANG H G . Influence of cucumber powdery mildew (Sphaerotheca fuliginea) infection on photosynthetic electron transport and protein d1 expression of cucumber(Cucumis sativus) leaf. Chinese Journal of Plant Pathology, 2003,33(6):546-549. (in Chinese)
[23] 张子山, 张立涛, 高辉远, 贾裕娇, 部建雯, 孟庆伟 . 不同光强与低温交叉胁迫下黄瓜psⅠ与psⅡ的光抑制研究. 中国农业科学, 2009,42(12):4288-4293.
ZHANG Z S, ZHANG L T, GAO H Y, JIA Y J, BU J W, MENG Q W . Research of photoinhibition of psI and psII in leaves of cucumber under chilling stress combined with different light intensities. Scientia Agricultura Sinica, 2009,42(12):4288-4293. (in Chinese).
[24] HAO Y H, LIN C M, FAN H Y, YU Y, LI N, CHEN S L . Proteomic analysis of Cucumis sativus cotyledons after glucohexaose treatment as a part of ros accumulation related resistance mechanism. Proteome Science, 2014,12:34-43.
[25] 张梅, 刘瑶, 丛慧芳, 孙治军, 王红艳, 王洪磊 . 草莓抗白粉病生理生化指标研究. 中国农学通报, 2011,27(28):249-253.
ZHANG M, LIU Y, CONG H F, SUN Z J, WANG H Y, WANG H L . Study on index of physiological and biochemical in resistance to strawberry powdery mildew. Chinese Agricultural Science Bulletin, 2011,27(28):249-253. (in Chinese)
[26] VANACKER H, HARBINSON J, RUISCH J, CARVER T L W, FOYER C H . Antioxidant defences of the apoplast. Protoplasma, 1998,205:129-140.
[27] GILL S S, TUTEJA N . Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 2010,48:909-930.
[28] BLOKHINA O, VIROLAINEN E, FAGERSTEDT K V . Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany (London), 2003,91:179-194.
[29] GLAZEBROOK J . Genes controlling expression of defense responses in Arabidopsis-2001 status. Current Opinion in Plant Biology, 2001,4:301-308.
[30] COOPER W, BOUZAYEN M, HAMILTON A, BARRY C, ROSSALL S, GRIERSON D . Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit by Colletotrichum gloeosporioides. Plant Pathology, 2010,47(3):308-316.
[31] MAYERS C N, LEE K C, MOORE C A, WONG S M, CARR J P . Salicylic acid-induced resistance to cucumber mosaic virus in squash and Arabidopsis thaliana: Contrasting mechanisms of induction and antiviral action. Molecular Plant-Microbe Interactions, 2007,18:428-434.
[32] 石延霞, 于洋, 傅俊范, 李宝聚 . 病原菌诱导后黄瓜叶片中脂氧合酶活性与茉莉酸积累的关系. 植物保护学报, 2008,35(6):486-490.
SHI Y X, YU Y, FU J F, LI B J . Relationship between LOX activity and JA accumulation in cucumber leaves induced by pathogen. Acta Phytophylacica Sinica, 2008,35(6):486-490. (in Chinese)
[33] LIEBERMAN M . Biosynthesis and action of ethylene. Annual Review of Plant Physiology, 1985,30:533-591.
[34] 武健东, 洪玲, 江海洋, 朱苏文 . 玉米抗病相关基因NPR1的同源克隆及表达分析. 安徽农业大学学报, 2015,42(5):651-656.
WU J D, HONG L, JIANG H Y, ZHU S W . Cloning and expression analysis of the disease-related gene NPR1 in maize. Journal of Anhui Agricultural University, 2015,42(5):651-656. (in Chinese)
[35] 鲁秀梅, 张宁, 夏美玲, 钱春桃, 陈劲枫 . 不同抗性甜瓜接种蔓枯病菌后内源激素含量变化及其相关基因的表达分析. 南京农业大学学报, 2018,41(2):248-255.
LU X M, ZHANG N, XIA M L, QIAN C T, CHEN J F . Changes of endogenous hormone contents and expression analysis of related genes in melon with different resistance after inoculated with Didymella bryoniae. Journal of Nanjing Agricultural University, 2018,41(2):248-255. (in Chinese)
[36] 高庆华, 曾祥然, 贾霖, 牛东东, 李雪姣, 关明俐, 贾盟, 兰金苹, 窦世娟, 李莉云, 刘丽娟, 刘国振 . 水稻病程相关蛋白质在逆境胁迫下的表达研究. 生物化学与生物物理进展, 2013,40(11):1140-1147.
GAO Q H, ZENG X R, JIA L, NIU D D, LI X J, GUAN M X, JIA M, LAN J P, DOU S J, LI L Y, LIU L J, LIU G Z . The expression profiling of rice pathogenesis-related proteins in seedling stage under environmental stresses. Progress in Biochemistry and Biophysics, 2013,40(11):1140-1147. (in Chinese)
[1] LI QingLin,ZHANG WenTao,XU Hui,SUN JingJing. Metabolites Changes of Cucumber Xylem and Phloem Sap Under Low Phosphorus Stress [J]. Scientia Agricultura Sinica, 2022, 55(8): 1617-1629.
[2] JIANG QiQi,XU JianJian,SU Yue,ZHANG Qi,CAO Peng,SONG ChenHu,LI ZhongAn,SONG Zhen. Construction and Application of Infectious Clone of Citrus Yellow Mosaic Virus [J]. Scientia Agricultura Sinica, 2022, 55(24): 4840-4850.
[3] KANG Chen,ZHAO XueFang,LI YaDong,TIAN ZheJuan,WANG Peng,WU ZhiMing. Genome-Wide Identification and Analysis of CC-NBS-LRR Family in Response to Downy Mildew and Powdery Mildew in Cucumis sativus [J]. Scientia Agricultura Sinica, 2022, 55(19): 3751-3766.
[4] YUAN JingLi,ZHENG HongLi,LIANG XianLi,MEI Jun,YU DongLiang,SUN YuQiang,KE LiPing. Influence of Anthocyanin Biosynthesis on Leaf and Fiber Color of Gossypium hirsutum L. [J]. Scientia Agricultura Sinica, 2021, 54(9): 1846-1855.
[5] CHEN Xi,LIU YingJie,DONG YongHao,LIU JinYan,LI Wei,XU PengJun,ZANG Yun,REN GuangWei. Effects of CMV-Infected Tobacco on the Performance, Feeding and Host Selection Behavior of Myzus persicae [J]. Scientia Agricultura Sinica, 2021, 54(8): 1673-1683.
[6] ZHENG Wei,SHI Zheng,LONG Mei,LIAO YunCheng. Photosynthetic and Physiological Characteristics Analysis of Yellow- Green Leaf Mutant in Wheat of Jimai5265yg [J]. Scientia Agricultura Sinica, 2021, 54(21): 4539-4551.
[7] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[8] LI FeiFei,WANG BeiBei,LAI YingFang,YANG FeiYing,YOU MinSheng,HE WeiYi. Knockout of Single Allele of fl(2)d Significantly Decreases the Fecundity and Fertility inPlutella xylostella [J]. Scientia Agricultura Sinica, 2021, 54(14): 3029-3042.
[9] WANG JunZheng,ZHANG Qi,GAO ZiXing,MA XueQiang,QU Feng,HU XiaoHui. Effects of Two Microbial Agents on Yield, Quality and Rhizosphere Environment of Autumn Cucumber Cultured in Organic Substrate [J]. Scientia Agricultura Sinica, 2021, 54(14): 3077-3087.
[10] LI ZhaoWei,LING DongLan,SUN CongYing,ZENG HuiLing,LIU KaiJi,LAN YingShan,FAN Kai,LIN WenXiong. CRISPR/Cas9 Targeted Editing of OsIAA11 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(13): 2699-2709.
[11] ZHAO Xue,WANG Feng,WANG WenJing,LIU XiaoFeng,BIAN ShiQuan,LIU YanHua,LIU XinMin,DU YongMei,ZHANG ZhongFeng,ZHANG HongBo. Splicing Property Analyses of the NRSE1 Element from Tobacco PR3b mRNA After Fusion Expression with GUS Gene [J]. Scientia Agricultura Sinica, 2020, 53(8): 1524-1531.
[12] KunNeng ZHOU,JiaFa XIA,Peng YUN,YuanLei WANG,TingChen MA,CaiJuan ZHANG,ZeFu LI. Transcriptome Research of Erect and Short Panicle Mutant esp in Rice [J]. Scientia Agricultura Sinica, 2020, 53(6): 1081-1094.
[13] LI ZhengGang,NONG Yuan,TANG YaFei,SHE XiaoMan,YU Lin,LAN GuoBing,DENG MingGuang,HE ZiFu. Molecular Characteristic and Pathogenicity Analyses of Cucumber green mottle mosaic virus (CGMMV) Infecting Bottle Gourd in Lianzhou, Guangdong [J]. Scientia Agricultura Sinica, 2020, 53(5): 955-964.
[14] ZHOU Qi,LIU XiaoPing,BO KaiLiang,MIAO Han,DONG ShaoYun,GU XingFang,ZHANG ShengPing. Cloning and Analysis of Folate Synthesis Key Genes in Cucumber [J]. Scientia Agricultura Sinica, 2020, 53(18): 3764-3776.
[15] HeXu CAI,KaiLiang BO,Qi ZHOU,Han MIAO,ShaoYun DONG,XingFang GU,ShengPing ZHANG. GWAS Analysis of Hypocotyl Length and Candidate Gene Mining in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2020, 53(1): 122-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!