Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (23): 4750-4763.doi: 10.3864/j.issn.0578-1752.2020.23.003


Effects of Exogenous ABA on Pre-Harvest Sprouting Resistance and Quality of White and Red Wheat Cultivars

ZHANG Xue,YANG HongKun,ZHENG Ting,XIAO Yun,MO Piao,FAN GaoQiong()   

  1. College of Agronomy, Sichuan Agricultural University/Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture, Chengdu 611130
  • Received:2020-02-24 Accepted:2020-06-23 Online:2020-12-01 Published:2020-12-09
  • Contact: GaoQiong FAN


【Objective】Pre-harvest sprouting (PHS) resulted from higher rainfall during the harvest period is one of the crucial reasons degrade food uses quality of wheat flour in Southwest wheat production region of China. This study was carried out to investigate the inhibition effect of exogenous abscisic acid (ABA) to pre-harvest sprouting, and the changes in grain quality with respecting to PHS sensitivity was also measured. 【Method】Two cultivators with pre-harvest sprouting resistance (sensitive: white-seeded wheat Zhongkemai 138; insensitive: red-seeded wheat Mianmai 367) were used as experimental materials. The anti-photodegraded ABA (0, 50, and 100 mg·L -1) were sprayed at 15 (initial filling stage), 30 (late filling stage) and 35 days (physiological maturity stage) after anthesis (DAA) to investigate the changes in germination traits, α-amylase activity and grain quality. 【Result】 (1) The application of 50-100 mg·L -1 ABA at 30 DAA could inhibit PHS, with the optimum spraying time achieved at 30 DAA. In normal years (2018), the wheat spraying with 50 mg·L -1ABA was better than other treatments as compared to the control, the germination rate of Zhongkemai 138 was reduced by 13.8 and 3.8 percentage points at physiological maturity and dough stage, respectively, and the PHS sensitivity cultivator (Mianmai 367)was decreased by 23.5 and 9.7 percentage points, respectively, as compared with control. In 2019 (rainy season), spraying with 100 mg·L -1 ABA performed better than other treatments with the germination rate of Zhongkemai 138 was reduced by 22.5 and 19.6 percentage points during the physiological maturity and dough stage, respectively, as compared with control, and PHS sensitivity cultivator (Mianmai 367) was reduced by 10.0 and 12.0 percentage points than that of control, respectively. Meanwhile, the inhibitory effects of ABA were all released at 60 days after harvest, and did not affect subsequent seed germination. (2) Exogenous application of ABA could reduce α-amylase activity and inhibited α-amylase activity, which further delayed the hydrolysis of starch in 35-45 DAA. Compared with the control, the α-amylase activity and soluble sugar content were decreased by 30.1%, and 41.9%, respectively, and the starch content was 10.2 percentage points higher when the 100 mg·L -1 ABA was spraying at 30 DAA. (3) The application of 100 mg·L -1 ABA improved the precipitation value by 4.3%-8.8%, and exogenous application of ABA showed a greater impact on the starch content with the amylopectin content and total starch content increased by 8.1 and 7.6 percentage points, and the amylose/amylopectin ratio decreased by 18.2%. Further, the pasting properties of flour were also improved with the falling value, peak viscosity and disintegration value was 20.9%-24.2%, 26.5%-51.4% and 12.4%-43.4% higher than that of CK, respectively. 【Conclusion】The application of 50-100 mg·L -1 ABA at 30 DAA could effectively reduce pre-harvest sprouting by inhibiting α-amylase induced starch hydrolysis without decline the protein quality, and thereby improved the pasting properties of wheat flour by enhancing amylopectin and total starch contents, reducing the ratio of amylase and amylopectin. Therefore, the application of 50-100mg·L -1 ABA at 30 DAA was highly recommended for farmers to enhance the pre-harvest sprouting resistance and reducing the losses in food uses quality in Southwest wheat production region of China.

Key words: abscisic acid, wheat, pre-harvest sprouting, grain quality

Fig. 1

Daily and cumulative rainfall after flowering of wheat in 2018 and 2019"

Table 1

ANOVA of ABA concentration and spraying period on spike and grain germination traits of white and red wheat cultivar"

Spike germination rate in field
生理成熟期 Physiological maturity (35DAA) 蜡熟期 Dough stage (45DAA)
Spike germination rate
Grain germination rate
Spike germination rate
Grain germination rate
2018 品种Cultivar (A) 15860.1** 29.5* 524.3** 650.8** 1.2ns
喷施时期Spraying period (B) 69.4** 222.6** 219.6** 543.9** 0.7ns
ABA浓度ABA concentration (C) 371.5** 145.8** 234.0** 59.0** 15.9**
品种×喷施时期 A×B 4.5ns 63.6** 22.8** 0.0ns 2.4ns
品种×ABA浓度 A×C 36.0** 5.0* 36.4** 4.4* 1.9ns
喷施时期×ABA浓度 B×C 1.7ns 0.4ns 3.6ns 8.6** 3.1ns
品种×喷施时期×ABA浓度A×B×C 3.8* 0.4ns 9.8** 5.2* 5.0*
2019 品种Cultivar (A) 1774.4** 921.0** 33.1* 200.5** 1.0ns
喷施时期Spraying period (B) 8.2* 99.7** 6.6* 21.9** 16.8**
ABA浓度ABA concentration (C) 306.4** 483.0** 96.4** 154.1** 40.8**
品种×喷施时期 A×B 4.7* 6.2* 2.3ns 3.3ns 0.2ns
品种×ABA浓度 A×C 14.8** 11.9** 14.8** 6.2** 5.9**
喷施时期×ABA浓度 B×C 9.3** 3.4* 2.7ns 4.8** 2.5ns
品种×喷施时期×ABA浓度A×B×C 9.0** 2.5ns 1.5ns 1.0ns 3.4*

Table 2

Effects of ABA concentration and spraying period on spike germination and grain germination of white and red wheat cultivar"

Spike germination
rate in field
生理成熟期Physiological maturity (35DAA) 蜡熟期Dough stage (45DAA)
Spike germination rate (%)
Grain germination rate (%)
Spike germination rate (%)
Grain germination rate (%)
ZKM138 MM367 ZKM138 MM367 ZKM138 MM367 ZKM138 MM367 ZKM138 MM367
2018 喷施时期
Spraying period
B1 45.4a 2.9b 11.3b 10.6b 32.9b 12.7b 72.4b 62.0b 91.7a 91.0a
B2 47.3a 3.9a 17.5a 12.4a 51.2a 19.3a 82.9a 72.5a 96.2a 91.3a
ABA concentration
CK 51.9a 7.2a 22.7a 16.7a 49.8a 30.0a 85.1a 81.2a 95.3a 95.2a
C1 42.8b 0.9c 8.8c 7.2c 36.0c 6.5c 70.0c 53.2c 91.5b 85.5b
C2 44.4b 2.1b 11.7b 10.7b 40.3b 11.5b 77.9b 67.3b 95.0a 92.8a
平均Mean 46.4a 3.4b 14.4a 11.5b 42.1a 16.0b 77.6a 67.3b 93.9a 91.2a
2019 喷施时期
Spraying period
B3 65.7a 17.1b 29.6a 19.7b 38.6ab 29.9a 76.0a 66.6a 83.6a 82.9a
B1 65.6a 16.8b 23.2b 17.3c 34.4b 28.7a 67.1b 62.1b 73.0b 73.2b
B4 66.5a 24.2a 30.4a 22.0a 43.8a 30.9a 79.7a 67.8a 87.7a 85.7a
ABA concentration
CK 81.3a 32.4a 38.6a 28.6a 49.1a 35.0a 87.2a 75.0a 92.2a 85.9a
C1 67.6b 14.8b 27.9b 17.5b 41.1b 29.4b 72.3b 65.7b 79.4b 82.0a
C2 48.9c 11.0c 16.7c 12.8c 26.6c 25.0c 63.3c 55.8c 72.6c 73.9b
平均Mean 65.9a 19.4b 27.7a 19.7b 38.9a 29.8b 74.3a 65.5b 81.4a 80.6a

Fig. 2

Effects of ABA concentration and spraying period on dynamic changes of amylase activity in wheat CK: Water; C1: 50 mg·L-1ABA; C2: 100 mg·L-1ABA. The three-line table in the figure was the analysis of variance of α-amylase activity 45 days after anthesis. FC: F value between cultivar, FSP: F value between spraying period, FABAC: F value between ABA concentration. ** indicated significant difference at 0.01 level. The same as below"

Fig. 3

Effects of ABA concentration and spraying period on dynamic changes of total starch and soluble sugar in wheat The column showed the total starch content and the broken line shows the soluble sugar content"

Fig. 4

Effects of ABA concentration and spraying period on release time of seed germination inhibition effect in wheat Values followed by different letters within a bar chart indicated significantly different at 0.05 level. DAH: Days after harvest; DAA: Days after anthesis"

Table 3

ANOVA of ABA concentration and spraying period on protein and starch quality of wheat"

Protein content
Sedimentation value
Wet gluten
Falling number
Peak viscosity
Breakdown value
2018 品种Cultivar (A) 0.0ns 243.6** 521.1** 6348.7** 6900.5** 1313.9**
喷施时期Spraying period (B) 7.8* 3.8ns 3.4ns 116.0** 8.5* 1.3ns
ABA浓度ABA concentration (C) 0.3ns 8.7** 0.1ns 174.9** 81.1** 15.9**
品种×喷施时期 A×B 2.2ns 1.2ns 3.4ns 98.0** 12.3* 4.1ns
品种×ABA浓度 A×C 0.1ns 10.7** 14.1** 5.5* 8.0** 14.4**
喷施时期×ABA浓度 B×C 5.0* 20.8** 2.1ns 11.6** 0.3ns 1.0ns
品种×喷施时期×ABA浓度A×B×C 1.0ns 17.4** 9.0** 0.9ns 1.8ns 0.5ns
2019 品种Cultivar (A) 7.1ns 108.5** 2.1ns 21952.0** 1116.8** 1249.7**
喷施时期Spraying period (B) 7.6* 9.2** 5.9* 44.1** 96.8** 125.3**
ABA浓度ABA concentration (C) 1.7ns 26.1** 62.2** 68.3** 91.6** 80.3**
品种×喷施时期 A×B 1.2ns 8.1* 29.3** 18.0** 10.5** 16.3**
品种×ABA浓度 A×C 3.4* 20.8** 1.0ns 38.8** 6.7** 4.4*
喷施时期×ABA浓度 B×C 7.2** 13.9** 12.1** 4.7** 6.2** 5.7**
品种×喷施时期×ABA浓度A×B×C 3.8* 17.1** 0.5ns 6.1** 5.4** 5.5**

Table 4

Effects of ABA concentration and spraying period on protein and starch quality of wheat"

Protein content
Sedimentation value (mL)
Wet gluten
Falling number (s)
Peak viscosity (RVU)
崩解值 Breakdown value (RVU)
2018 品种
ZKM138 8.0a 13.5a 10.6a 281a 137.2a 95.8a
MM367 8.0a 10.2b 5.8b 168b 83.9b 69.5b
Spraying period
B1 8.1a 12.1a 8.3a 232a 114.1a 83.7a
B2 7.8b 11.6a 8.1a 219b 107.0b 81.6a
ABA concentration
CK 8.0a 11.7b 8.2a 198c 96.6c 77.6c
C1 8.0a 11.7b 8.2a 233b 112.9b 83.3b
C2 8.0a 12.2a 8.2a 246a 122.2a 87.2a
平均Mean 8.0 11.9 8.2 225 110.6 82.7
2019 品种
ZKM138 9.2a 13.0b 13.3a 65b 11.1b 13.7b
MM367 9.1a 17.2a 13.2a 123a 32.4a 34.0a
Spraying period
B3 9.1b 15.1ab 12.8b 105a 25.0a 26.9a
B1 9.0b 15.8a 13.5a 90b 21.1b 23.3b
B4 9.4a 14.5b 13.4 a 87b 19.1c 21.4c
ABA concentration
CK 9.2a 14.8b 12.1c 86c 17.3c 19.6c
C1 9.1a 14.4b 13.3b 91b 21.8b 23.9b
C2 9.2a 16.1a 14.4a 104a 26.2a 28.1a
平均Mean 9.2 15.1 13.3 94 21.8 23.9

Table 5

Effects of ABA concentration and spraying period on the contents of total starch and its components in wheat flour"

Amylase content (%)
支链淀粉含量Amylopectin content (%) 直/支比
Amylase/Amylopectin ratio
Starch content (%)
ZKM138 13.2b 54.6a 0.24b 67.8a
MM367 15.2a 42.5b 0.36a 57.5b
Spraying period
B3 14.2a 48.9a 0.30b 63.0a
B1 14.1a 50.7a 0.29c 64.6a
B4 14.2a 46.1b 0.32a 60.4b
ABA concentration
CK 14.4a 44.4c 0.33a 58.8c
C1 14.2b 48.8b 0.30b 62.7b
C2 13.9c 52.5a 0.27c 66.4a
品种Cultivar (A) 1080.0** 191.3** 157.8** 129.8**
喷施时期Spraying period (B) 1.8ns 15.6** 27.1** 13.7**
ABA浓度ABA concentration (C) 27.4** 65.0** 79.5** 51.3**
品种×喷施时期 A×B 9.0** 1.9ns 0.4ns 2.5ns
品种×ABA浓度 A×C 4.3* 4.6* 1.7ns 5.1*
喷施时期×ABA浓度 B×C 1.9ns 2.4ns 5.4** 2.0ns
品种×喷施时期×ABA浓度A×B×C 1.6ns 3.2* 2.7ns 2.6ns
[1] MALAKSHAH A A, DHUMAL K, PIRDASHTI H, SAPTARSHI P . Screening of different wheat (Triticum aestivium L.) genotypes for pre-harvest sprouting resistance. International Journal of Biosciences, 2014,5:189-198.
[2] 原亚萍, 陈孝, 肖世和 . 小麦穗发芽的研究进展. 麦类作物学报, 2003,23(3):136-139.
doi: 10.7606/j.issn.1009-1041.2003.03.107
YUAN Y P, CHEN X, XIAO S H . Advances in the study on wheat pre-harvest sprouting. Journal of Triticeae Crops, 2003,23(3):136-139. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2003.03.107
[3] SWIECA M, DZIKI D, GAWLIK D . Starch and protein analysis of wheat bread enriched with phenolics-rich sprouted wheat flour. Food Chemistry, 2017,228:643-648.
doi: 10.1016/j.foodchem.2017.02.052 pmid: 28317775
[4] 于立河, 刘德福, 郭伟, 薛盈文, 曾玲玲, 张健, 侯海鹏 . 收获期降雨对春小麦品质的影响. 麦类作物学报, 2007,27(4):658-660.
doi: 10.7606/j.issn.1009-1041.2007.04.157
YU L H, LIU D F, GUO W, XUE Y W, ZENG L L, ZHANG J, HOU H P . Effects of raining during harvest season on quality of spring wheat. Journal of Triticeae Crops, 2007,27(4):658-660. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2007.04.157
[5] 刘爽, 李俊, 王琴, 朱欣果, 刘磊, 胡晓蓉, 万洪深, 杨武云, 秦文 . 西南麦区小麦抗穗发芽品种资源筛选. 西南农业学报, 2014,27(3):931-937.
LIU S, LI J, WANG Q, ZHU X G, LIU L, HU X R, WAN H S, YANG W Y, QIN W . Germplasm screening for resistance to pre-harvest sprouting in southwest China. Southwest China Journal of Agricultural Sciences, 2014, 27(3):931-937. (in Chinese)
[6] 闫长生, 张海萍, 海林, 张秀英, 胡琳, 胡汉桥, 蒲宗君, 肖世和 . 中国小麦品种穗发芽抗性差异的研究. 作物学报, 2006,32(4):580-587.
YAN C S, ZHANG H P, HAI L, ZHANG X Y, HU L, HU H Q, PU Z J, XIAO S H . Differences of preharvest sprouting resistance among Chinese wheat cultivars. Acta Agronomica Sinica, 2006,32(4):580-587. (in Chinese)
[7] 于春泉, 阮仁武, 余国东, 张世平, 宗学凤, 张建奎 . 小麦抗穗发芽种质筛选与新品系的抗穗发芽性鉴定. 西南大学学报(自然科学版, 2010,32(4):36-40.
YU C Q, RUAN R W, YU G D, ZHANG S P, ZONG X F, ZHANG J K . Screening of pre-harvest sprouting resistant germplasm resources of wheat and evaluation of pre-harvest sprouting resistance in some new strains. Journal of Southwest University(Natural Science Edition), 2010,32(4):36-40. (in Chinese)
[8] DEKKERS B J W, HE H Z, HANSON J, WILLEMS L A J, JAMAR D C L, CUEFF G, RAJJOU L, HILHORST H W M, BENTSINK L T . The Arabidopsis delay of germination 1 gene affects abscisic acid insensitive 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. Plant Journal, 2016,85(4):451-465.
doi: 10.1111/tpj.13118 pmid: 26729600
[9] DEKKERS B J W, BENTSINK L . Regulation of seed dormancy by abscisic acid and delay of germination1. Seed Science Research, 2015,25:1-17.
doi: 10.1017/S0960258515000033
[10] 王熹, 陶龙兴, 谈惠娟, 黄效林, 杨长登 . 外源脱落酸和马来酰肼对杂交水稻F1穗上种子发芽的抑制效应. 植物生理与分子生物学学报, 2005,31(4):396-402.
pmid: 16121011
WANG X, TAO L X, TAN H J, HUANG X L, YANG C D . Inhibitory effects of exogenous abscisic acid and maleic hydrazide on panicle sprouting in hybrid rice F1. Journal of Plant Physiology and Molecular Biology, 2005,31(4):396-402. (in Chinese)
pmid: 16121011
[11] 江玲, 万建民 . 植物激素ABA和GA调控种子休眠和萌发的研究进展. 江苏农业学报, 2007,23(4):360-365.
JIANG L, WAN J M . Advances in seed dormancy and germination regulated by plant hormones ABA and GA. Jiangsu Journal of Agricultural Sciences, 2007,23(4):360-365. (in Chinese)
[12] 丁君辉, 李耀国, 童建华 . 脱落酸对水稻种子萌发的影响. 作物研究, 2012,26(4):328-330, 349.
DING J H, LI Y G, TONG J H . Effect of ABA on germination of rice seeds. Crop Research, 2012,26(4):328-330, 349. (in Chinese)
[13] 雍太文, 杨文钰, 王小春 . 利用外源ABA控制杂交水稻穗萌的研究. 中国农学通报, 2003,19(1):21-23, 29.
YONG T W, YANG W Y, WANG X C . Research in the exogenous ABA on the pre-harvest sprouting of hybrid rice seed. Chinese Agricultural Science Bulletin, 2003,19(1):21-23, 29. (in Chinese)
[14] 杨光宇, 殷贵鸿, 郑继周, 田灵芝, 孙以信 . 小麦穗发芽抑制剂及最佳施药期的研究初报. 麦类作物学报, 2000,20(2):93-95.
doi: 10.7606/j.issn.1009-1041.2000.02.100
YANG G Y, YIN G H, ZHENG J Z, TIAN L Z, SUN Y X . The premilinary report of preharvest sprouting inhibiting agent and it's best spraying period. Journal of Triticeae Crops, 2000,20(2):93-95. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2000.02.100
[15] 张玲娥, 张萍 . 植物生长调节剂对冬小麦籽粒灌浆期源库关系的调控. 核农学报, 2005,19(3):228-231.
ZHANG L E, ZHANG P . Adjustment of plant growth regulations in source-sink relationship during grain filling of winter wheat. Acta Agriculturae Nucleatae Sinica, 2005,19(3):228-231. (in Chinese)
[16] 李文阳, 尹燕枰, 闫素辉, 戴忠民, 梁太波, 王振林 . 不同粒型小麦品种籽粒内源激素变化与籽粒灌浆特征的比较. 华北农学报, 2007,22(1):5-8.
doi: 10.3321/j.issn:1000-7091.2007.01.002
LI W Y, YIN Y P, YAN S H, DAI Z M, LIANG T B, WANG Z L . Hormonal changes in relation to filling characters in developing grains of two wheat cultivars differing in grain size. Journal of North China Agronomy, 2007, 22(1):5-8. (in Chinese)
doi: 10.3321/j.issn:1000-7091.2007.01.002
[17] 戴忠民 . 喷施6BA和ABA对冬小麦籽粒胚乳细胞增殖和淀粉积累的影响. 麦类作物学报, 2008,28(3):134-139.
DAI Z M . Effects of 6BA and ABA on endosperm cell propagation and starch accumulation in grains of winter wheat. Journal of Triticeae Crops, 2008,28(3):134-139. (in Chinese)
[18] 董明辉, 刘晓斌, 陆春泉, 赵步洪, 杨建昌 . 外源ABA和GA对水稻不同粒位籽粒主要米质性状的影响. 作物学报, 2009,35(5):899-906.
doi: 10.3724/SP.J.1006.2009.00899
DONG M H, LIU X B, LU C Q, ZHAO B H, YANG J C . Effects of exogenous ABA and GA on the main quality characteristics of grains at different positions of panicle in rice. Acta Agronomica Sinica, 2009,35(5):899-906. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00899
[19] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S . Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice. Plant Growth Regulation, 2003,41(3):185-195.
doi: 10.1023/B:GROW.0000007503.95391.38
[20] 崔志青, 贺德先, 蔡铁, 王成雨, 王广昌, 孟范玉, 韩占江, 李娜娜, 王振林 . 喷施ABA对小麦籽粒谷蛋白组分含量及GMP粒度分布的影响. 中国农业科学, 2010,43(12):2595-2602.
CUI Z Q, HE D X, CAI T, WANG C Y, WANG G C, MENG F Y, HAN Z H, LI N N, WANG Z L . Effects of spraying ABA on glutenin fraction content and GMP size distribution in wheat grain. Scientia Agricultura Sinica, 2010,43(12):2595-2602. (in Chinese)
[21] 朱冬梅, 李曼, 李东升, 吴素兰, 张晓, 张伯桥 . 长江中下游麦区小麦新品种穗发芽抗性及鉴定方法研究. 核农学报, 2018,32(4):795-801.
ZHU D M, LI M, LI D S, WU S L, ZHANG X, ZHANG B Q . Evaluation and determination method of pre-harvest sprouting resistance of new wheat cultivars in middle and lower reaches of Yangtze River. Journal of Nuclear Agricultural Sciences, 2018,32(4):795-801. (in Chinese)
[22] 马文洁, 张传量, 宋晓朋, 冯洁, 崔紫霞, 孙道杰 . 不同麦区小麦品种穗发芽抗性及其与穗部性状的相关性. 麦类作物学报, 2016,36(10):1269-1274.
MA W J, ZHANG C L, SONG X P, FENG J, CUI Z X, SUN D J . Pre-harvest sprouting resistance in wheat from different wheat regions and its correlation with ear characteristics. Journal of Triticeae Crops, 2016,36(10):1269-1274. (in Chinese)
[23] 肖世和, 闫长生, 张海萍, 孙果忠 . 小麦穗发芽研究. 北京: 中国农业科学技术出版社, 2004: 219-221.
XIAO S H, YAN C S, ZHANG H P, SUN G Z. Study on Wheat Spike Germination. Beijing: China Agricultural Science and Technology Press, 2004: 219-221. (in Chinese)
[24] 高俊凤 . 植物生理学实验指导. 北京: 高等教育出版社, 2006.
GAO J F. Plant Physiology Experiment Guide. Beijing: Higher Education Press, 2006. ( in Chinese)
[25] 田翔, 王海岗, 曹晓宁, 王君杰, 乔治军 . 全自动凯氏定氮仪在农作物粗蛋白检测中的应用. 山西农业科学, 2014,42(3):233-235.
TAIN X, WANG H G, CAO X N, WANG J J, QIAO Z J . Determination of the crop protein by Kjeltec automatic azotometer. Journal of Shanxi Agricultural Sciences, 2014,42(3):233-235. (in Chinese)
[26] 国家质量技术监督局. 小麦和小麦粉面筋含量第2部分:仪器法测定湿面筋: GB/T 5506.2- 2008. 北京: 中国标准出版社, 2008.
State Bureau of Quality Technical Supervision. Wheat and wheat flour-Gluten content-Part 2: Determination of wet gluten by mechanical means: GB/T 5506.2-2008. Beijing: Standards Press of China, 2008. ( in Chinese)
[27] 国家质量技术监督局. 小麦、黑麦及其面粉、杜伦麦及其粗粒粉降落数值的测定: GB/T 10361-2008. 北京: 中国标准出版社, 2008.
State Bureau of Quality Technical Supervision. Wheat, rye and respective flours, durum wheat and durum wheat semolina-Determination of the falling number according to Hagberg-Perten: GB/T 10361-2008. Beijing: Standards Press of China, 2008. ( in Chinese)
[28] 国家质量技术监督局. 小麦、黑麦及其粉类和淀粉糊化特性测定快速粘度仪法: GB/T 24853-2010. 北京: 中国标准出版社, 2010.
State Bureau of Quality Technical Supervision. General pasting method for wheat or rye flour or starch-Using the rapid visco analyzer: GB/T 24853-2010. Beijing: Standards Press of China, 2010. ( in Chinese)
[29] 国家质量技术监督局. 稻米直链淀粉含量的测定: GB/T 15683-1995. 北京: 中国标准出版社, 1995.
State Bureau of Quality Technical Supervision. Rice-Determination of amylose content: GB/T 15683-1995. Beijing: Standards Press of China, 1995. ( in Chinese)
[30] 刘一灵, 李振华, 刘仁祥 . 植物激素ABA调控种子发育与萌发的研究进展. 种子, 2014,33(10):47-50.
LIU Y N, LI Z H, LIU R X . The research of ABA regulation in seed development and germination. Seed, 2014,33(10):47-50. (in Chinese)
[31] 杨剑平 . 拟南芥种子脱水过程中ABA作用的研究综述. 湖北农学院学报, 1995,15(2):133-136.
YANG J P . Review on the role of ABA in Arabidopsis seed dehydration. Journal of Hubei Agricultural College, 1995,15(2):133-136. (in Chinese)
[32] 孙果忠, 张秀英, 闫长生, 肖世和 . 不同穗发芽抗性的小麦胚对ABA敏感性及抗性机制研究. 麦类作物学报, 2005,25(2):27-32.
doi: 10.7606/j.issn.1009-1041.2005.02.053
SUN G Z, ZHANG X Y, YAN C S, XIAO S H . Embryonic ABA sensitivity and resistant mechanism of sprouting resistance and susceptible cultivars. Journal of Triticeae Crop, 2005,25(2):27-32. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2005.02.053
[33] 周述波, 贺立红, 林伟, 戴高兴 . 外源GA3、ABA对杂交水稻亲本穗上发芽的生理影响. 湖北农业科学, 2011,50(21):19-22.
ZHOU S B, HE L H, LIN W, DAI G X . Effects of exogenous GA3 and ABA on physiological change of preharvest sprouting in hybrid rice. Hubei Agricultural Sciences, 2011,50(21):19-22. (in Chinese)
[34] 吴颖, 胡汉桥, 王罡, 张艳贞, 季静 . 春小麦α-淀粉酶活性及其与穗发芽抗性的关系. 吉林农业大学学报, 2002,24(4):22-25.
WU Y, HU H Q, WANG G, ZHANG Y Z, JI J . Relationship between α-amylase activity and resistance of pre-harvest sprouting in spring wheat. Journal of Jilin Agricultural University, 2002,24(4):22-25. (in Chinese)
[35] 张笑, 赵纯钦, 黄静, 徐登安, 张赤红, 陈静 . 外源脱落酸、水杨酸对小麦种子萌发及生理特性的影响. 应用与环境生物学报, 2014,20(1):139-143.
ZHANG X, ZHAO C Q, HUANG J, XU D A, ZHANG C H, CHEN J . Effect of exogenous abscisic acid and salicylic acid on germination and physiological characteristics of wheat seed. Chinese Journal of Applied & Environmental Biology, 2014,20(1):139-143. (in Chinese)
[36] 张正斌, 谈成, 徐明华, 牟会荣 . 外源脱落酸和冠菌素对小麦籽粒萌芽的影响. 安徽农业科学, 2013,41(13):5649-5652.
ZHANG Z B, TAN C, XU M H, MOU H R . Effects of abscisic acid and coronatine on sprouting of winter wheat grain. Journal of Anhui Agricultural Sciences, 2013,41(13):5649-5652. (in Chinese)
[37] 任江萍, 陈焕丽, 王振云, 尹钧, 李永春, 牛洪斌, 宋晓 . 小麦穗发芽与籽粒内可溶性糖和α-淀粉酶活性的品种差异. 西北农业科学, 2007,16(1):22-25.
REN J P, CHEN H L, WANG Z Y, YIN J, LI Y C, NIU H B, SONG X . Difference of pre-harvest sprouting and soluble sugar content and α-amylase activity in grains of some wheat varieties during grain developing. Acta Agriculturae Boreali-Occidentalis Sinica, 2007,16(1):22-25. (in Chinese)
[38] STAROSKE N, UDO C, KUMLEHN J, HENSEL G, RADCHUK R, ERBAN A, KOPKA J, WESCHKE W, WEBER H . Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. Journal of Experimental Botany, 2016,67(9):2675-2687.
doi: 10.1093/jxb/erw102 pmid: 26951372
[39] 赵虎成, 王伯初, 刘堰, 蔡绍皙 . 逆境胁迫下植物基因的表达与调控. 重庆大学学报(自然科学版), 2000,23(5):146-148.
ZHAO H C, WANG B C, LIU Y, CAI S X . Expression and regulation of the plant gene under enviro mend stress. Journal of Chongqing University(Natural Science Edition), 2000,23(5):146-148. (in Chinese)
[40] 刘锐, 魏益民, 邢亚楠, 张波, 张影全 . 小麦淀粉与面条质量关系的研究进展. 麦类作物学报, 2013,33(5):1058-1063.
doi: 10.7606/j.issn.1009-1041.2013.05.037
LIU R, WEI Y M, XING Y N, ZHANG B, ZHANG Y Q . Review on the relationship between starch and noodle quality in wheat. Journal of Triticeae Crops, 2013,33(5):1058-1063. (in Chinese)
doi: 10.7606/j.issn.1009-1041.2013.05.037
[41] SEIB P A . Reduced-amylose wheats and Asian noodles. Cereal Foods World, 2000,45(11):504-512.
[42] 文廷刚, 于洪喜, 王伟中, 杨文飞, 钱新民 . 不同生长期喷施植物生长调节剂对小麦籽粒品质的影响. 金陵科技学院学报, 2017,33(4):53-57.
WEN Y G, YU H X, WANG W Z, YANG W F, QIAN X M . Effects of PGRs treatment applied at different growth periods on grain quality in wheat. Journal of Jinling Institute of Technology, 2017,33(4):53-57. (in Chinese)
[43] 王枟刘, 闫素辉, 王其飞, 陶胜, 刘颂 . 施氮水平对稻茬晚播小麦籽粒淀粉含量与糊化特性的影响. 安徽科技学院学报, 2015(3):6-9.
WANG Y L, YAN S H, WANG Q F, TAO S, LIU S . Effects of nitrogen rate on starch content and pasting properties in grain of late sowing wheat in rice-wheat rotation. Journal of Anhui Science and Technology University, 2015(3):6-9. (in Chinese)
[44] 马丽荣 . 马铃薯淀粉代谢相关基因表达与淀粉品质研究[D]. 银川: 宁夏大学, 2015.
MA L R . Study on gene expression involving in starch metabolism and starch quality in potato[D]. Yinchuan: Ningxia University, 2015. ( in Chinese)
[45] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S . Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology, 2004,135(3):1621-1629.
doi: 10.1104/pp.104.041038 pmid: 15235118
[46] YANG J C, ZHANG J H, WANG Z Q, ZHU Q S . Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiology, 2001,127(1):315-323.
doi: 10.1104/pp.127.1.315 pmid: 11553759
[47] CHEN K, LI G J, BRESSAN R, SONG C P . Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020,62(1):25-54.
doi: 10.1111/jipb.12899 pmid: 31850654
[48] PENG D L, CAI T, YIN Y P, YANG W B, NI Y L, YANG D Q, WANG Z L . Exogenous application of abscisic acid or gibberellin acid has different effects on starch granule size distribution in grains of wheat. Journal of Integrative Agriculture, 2013,12(9):1551-1559.
doi: 10.1016/S2095-3119(13)60557-2
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] YAN YanGe, ZHANG ShuiQin, LI YanTing, ZHAO BingQiang, YUAN Liang. Effects of Dextran Modified Urea on Winter Wheat Yield and Fate of Nitrogen Fertilizer [J]. Scientia Agricultura Sinica, 2023, 56(2): 287-299.
[3] XU JiuKai, YUAN Liang, WEN YanChen, ZHANG ShuiQin, LI YanTing, LI HaiYan, ZHAO BingQiang. Nitrogen Fertilizer Replacement Value of Livestock Manure in the Winter Wheat Growing Season [J]. Scientia Agricultura Sinica, 2023, 56(2): 300-313.
[4] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[5] WANG HaoLin,MA Yue,LI YongHua,LI Chao,ZHAO MingQin,YUAN AiJing,QIU WeiHong,HE Gang,SHI Mei,WANG ZhaoHui. Optimal Management of Phosphorus Fertilization Based on the Yield and Grain Manganese Concentration of Wheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1800-1810.
[6] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[7] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[8] LIU Shuo,ZHANG Hui,GAO ZhiYuan,XU JiLi,TIAN Hui. Genetic Variations of Potassium Harvest Index in 437 Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(7): 1284-1300.
[9] WANG YangYang,LIU WanDai,HE Li,REN DeChao,DUAN JianZhao,HU Xin,GUO TianCai,WANG YongHua,FENG Wei. Evaluation of Low Temperature Freezing Injury in Winter Wheat and Difference Analysis of Water Effect Based on Multivariate Statistical Analysis [J]. Scientia Agricultura Sinica, 2022, 55(7): 1301-1318.
[10] GOU ZhiWen,YIN Wen,CHAI Qiang,FAN ZhiLong,HU FaLong,ZHAO Cai,YU AiZhong,FAN Hong. Analysis of Sustainability of Multiple Cropping Green Manure in Wheat-Maize Intercropping After Wheat Harvested in Arid Irrigation Areas [J]. Scientia Agricultura Sinica, 2022, 55(7): 1319-1331.
[11] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
[12] QIN YuQing,CHENG HongBo,CHAI YuWei,MA JianTao,LI Rui,LI YaWei,CHANG Lei,CHAI ShouXi. Increasing Effects of Wheat Yield Under Mulching Cultivation in Northern of China: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(6): 1095-1109.
[13] CAI WeiDi,ZHANG Yu,LIU HaiYan,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Early Detection on Wheat Canopy Powdery Mildew with Hyperspectral Imaging [J]. Scientia Agricultura Sinica, 2022, 55(6): 1110-1126.
[14] ZONG Cheng, WU JinXin, ZHU JiuGang, DONG ZhiHao, LI JunFeng, SHAO Tao, LIU QinHua. Effects of Additives on the Fermentation Quality of Agricultural By-Products and Wheat Straw Mixed Silage [J]. Scientia Agricultura Sinica, 2022, 55(5): 1037-1046.
[15] MA HongXiang, WANG YongGang, GAO YuJiao, HE Yi, JIANG Peng, WU Lei, ZHANG Xu. Review and Prospect on the Breeding for the Resistance to Fusarium Head Blight in Wheat [J]. Scientia Agricultura Sinica, 2022, 55(5): 837-855.
Full text



No Suggested Reading articles found!