Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4016-4026.doi: 10.3864/j.issn.0578-1752.2019.22.007

• MOLECULAR GENETICS • Previous Articles     Next Articles

Identification and Expression Analysis of MYB Transcription Factors Related to Rust Resistance in Foxtail Millet

BAI Hui1,SONG ZhenJun2,WANG YongFang1,QUAN JianZhang1,MA JiFang1,LIU Lei1,LI ZhiYong1(),DONG ZhiPing1()   

  1. 1 Institute of Millet Crops, Hebei Academy of Agriculture and Forestry Sciences/National Foxtail Millet Improvement Center/Minor Cereal Crops Laboratory of Hebei Province, Shijiazhuang 050035
    2 College of Communication and Information Engineering, Shanghai Technical Institute of Electronic & Information, Shanghai 201411;
  • Received:2019-08-01 Accepted:2019-09-30 Online:2019-11-16 Published:2019-11-16
  • Contact: ZhiYong LI,ZhiPing DONG E-mail:lizhiyongds@126.com;dzping001@163.com

Abstract:

【Objective】 Millet rust is one of the important factors affecting the yield and quality of foxtail millet. Identification of MYB transcription factors related to rust resistance in foxtail millet lays a foundation for the study of the mechanism of rust resistance in foxtail millet. 【Method】 In this study, we used real-time PCR to detect the expression patterns of 9 MYB transcription factors (1) in roots, stems, leaves and panicles at booting stage; (2) during 120 hours post-inoculated with Uromyces setariae-italicae urediniospores in resistance (R) and susceptible (S) reactions; (3) during 24 hours after treatment with salicylic acid (SA) and methyl jasmonate (MeJA) in foxtail millet. Then their expression patterns in four reactions of R, S, SA and MeJA were compared, and the resistance-related MYB transcription factors were selected for detection of transactivation activity and subcellular localization. 【Result】 The highest expression of SiMYB100 was in leaves, and the highest expression of the other eight genes, especially SiMYB074, was in roots. The expression of five genes was correlated with disease resistance. SiMYB074 and SiMYB202 were induced by rust fungus infection and their expression levels at early stage of disease resistance were significantly higher than that in the susceptible reaction. The expression of SiMYB041 and SiMYB177 was down-regulated in the early stage of resistance reaction and increased to pre-inoculation level in the later stage, while their expression remained low in susceptible reaction. SiMYB100 showed opposite expression pattern in resistance and susceptible responses. In response to exogenous SA and MeJA, the expression of SiMYBs gene changed in varying degrees. The expression patterns of four genes (SiMYB074, SiMYB100, SiMYB174 and SiMYB202) in the R, SA and MeJA reactions were identical, but different from the S reaction. Five resistance-related SiMYBs genes have the transactivation activity and their encoding proteins are located in the nucleus. 【Conclusion】 The expression of five genes, SiMYB041, SiMYB074, SiMYB100, SiMYB177 and SiMYB202, was identified to be associated with resistance to rust disease in foxtail millet. SiMYB074 and SiMYB100 play certain roles in the growth and disease resistance of foxtail millet. Four genes, SiMYB074, SiMYB100, SiMYB174 and SiMYB202, may participate in early disease resistance of foxtail millet through SA and JA signaling pathways.

Key words: Setaria italica, MYB transcription factors, rust disease, real-time PCR, disease resistance

Fig. 1

Expression of SiMYB genes in the different parts of Yugu1 R: Root; S: Stem; L: Leaf; P: Panicle"

Fig. 2

Photograph of foxtail millet leaves taken at 14 days after inoculation with Uromyces setariae-italicae (Usi)"

Fig. 3

Comparison analysis of SiMYB genes expression patterns among resistance and susceptible responses in foxtail millet"

Fig. 4

Expression of SiMYB genes in Shilixiang leaves treated with SA and MeJA"

Fig. 5

Comparison of expression patterns of SiMYBs gene in early stage (12 h, 24 h) of resistance, susceptibility and exogenous SA and MeJA treatment"

Fig. 6

Analysis of transactivation activity and subcellular localization of SiMYBs A: Detection of transactivation activity of SiMYBs in yeast; B: Subcellular localization of SiMYBs in the rice protoplast cells"

[1] 赵立强, 潘文嘉, 马继芳, 瓮巧云, 董立, 全建章, 邢继红, 董志平, 董金皋 . 一个谷子新抗锈基因的AFLP标记. 中国农业科学, 2010,43(21):4349-4355.
ZHAO L Q, PAN W J, MA J F, WENG Q Y, DONG L, QUAN J Z, XING J H, DONG Z P, DONG J G . Identification of AFLP markers linked to a novel rust resistance gene in foxtail millet. Scientia Agricultura Sinica, 2010,43(21):4349-4355. (in Chinese)
[2] DUBOS C, STRACKE R, GROTEWOLD E, WEISSHAAR B, MARTIN C, LEPINIEC L . MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010,15(10):573-581.
[3] 左然, 徐美玲, 柴国华, 周功克 . 植物MYB转录因子功能及调控机制研究进展. 生命科学, 2012,24(10):1133-1140.
ZUO R, XU M L, CHAI G H, ZHOU G K . Function and regulation mechanism of plant MYB transcription factors. Chinese Bulletin of Life Sciences, 2012,24(10):1133-1140. (in Chinese)
[4] CHEN Y H, YANG X Y, HE K, LIU M H, LI J G, GAO Z F, LIN Z Q, ZHANG Y F, WANG X X, QIU X M, SHEN Y P, ZHANG L, DENG X H, LUO J C, DENG X W, CHEN Z L, GU H Y, QU L J . The MYB transcription factor superfamily of arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Molecular Biology, 2006,60(1):107-124.
[5] MATUS J T, AQUEA F, ARCE-JOHNSON P . Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes. BMC Plant Biology, 2008. 8:83.
[6] SUO J F, LIANG X E, PU L, ZHANG Y S, XUE Y B . Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimica et Biophysica Acta, 2003,1630(1):25-34.
[7] MUTHAMILARASAN M, KHANDELWAL R, YADAV C B, BONTHALA V S, KHAN Y, PRASAD M . Identification and molecular characterization of MYB transcription factor superfamily in C4 model plant foxtail millet (Setaria italica L.). PLoS ONE, 2014,9(10):e109920.
[8] 牛义岭, 姜秀明, 许向阳 . 植物转录因子MYB基因家族的研究进展. 分子植物育种, 2016,14(8):2050-2059.
NIU Y L, JIANG X M, XU X Y . Research advances on transcription factor MYB gene family in plant. Molecular Plant Breeding, 2016,14(8):2050-2059. (in Chinese)
[9] LEE M M, SCHIEFELBEIN J . Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. The Plant Cell, 2002,14(3):611-618.
[10] RYU K H, KANG Y H, PARK Y H, HWANG I, SCHIEFELBEIN J, LEE M M . The WEREWOLF MYB protein directly regulates CAPRICE transcription during cell fate specification in the Arabidopsis root epidermis. Development, 2005. 132(21):4765-4775.
[11] 牛耀芳 . 大气CO2浓度升高对拟南芥根毛发育与养分吸收的影响及根系对养分的响应机理[D]. 杭州: 浙江大学, 2013.
NIU Y F . Effect of elevated carbon dioxide on root hair development and nutrient uptake and the response mechanisms of root growth to nutrient supply in Arabidopsis thaliana[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
[12] 张德健, 夏仁学, 曹秀 . 根毛的生长发育及其遗传基础. 植物生理学报, 2015,51(1):9-20.
ZHANG D J, XIA R X, CAO X . Root hair development and its genetic basis. Plant Physiology Journal, 2015,51(1):9-20. (in Chinese)
[13] BYRNE M E, BARLEY R, CURTIS M, ARROYO J M, DUNHAM M, HUDSON A, MARTIENSSEN R A . Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature, 2000,408(6815):967-971.
[14] CHENG H, SONG S, XIAO L, SOO H M, CHENG Z, XIE D, PENG J . Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis. PLoS Genetics, 2009,5(3):e1000440.
[15] VAILLEAU F, DANIEL X, TRONCHET M, MONTILLET J L, TRIANTAPHYLIDÈS C, ROBY D . A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proceedings of the National Academy of Sciences of the United States of America, 2002,99(15):10179-10184.
[16] AL-ATTALA M N, WANG X, ABOU-ATTIA M A, DUAN X, KANG Z . A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Molecular Biology, 2014,84(4/5):589-603.
[17] LIU H, ZHOU X, DONG N, LIU X, ZHANG H, ZHANG Z . Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Functional & Integrative Genomics, 2011,11(3):431-443.
[18] 单天雷, 洪彦涛, 杜丽璞, 徐惠君, 魏学宁, 张增艳 . 抗根腐病的TaMYB86过表达转基因小麦的创制与分子功能鉴定. 作物学报, 2016,42(10):1429-1436.
SHAN T L, HONG Y T, DU L P, XU H J, WEI X N, ZHANG Z Y . Development and characterization of TaMYB86-overexpressing transgenic wheat lines with resistance to common root rot. Acta Agronomica Sinica, 2016,42(10):1429-1436. (in Chinese)
[19] CAO W L, CHU R Z, ZHANG Y, LUO J, SU Y Y, XIE L J, ZHANG H S, WANG J F, BAO Y M . OsJAMyb, a R2R3-type MYB transcription factor, enhanced blast resistance in transgenic rice. Physiological and Molecular Plant Pathology, 2015,92:154-160.
[20] LIU Z, LUAN Y S, LI J B, YIN Y L . Expression of a tomato MYB gene in transgenic tobacco increases resistance to Fusarium oxysporum and Botrytis cinerea. European Journal of Plant Pathology, 2016,144(3):607-617.
[21] DONG J, CHEN C, CHEN Z . Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 2003,51(1):21-37.
[22] 陈年来, 胡敏, 乔昌萍, 乃小英, 王锐 . BTH、SA和SiO2处理对甜瓜幼苗白粉病抗性及叶片HRGP和木质素含量的影响. 中国农业科学, 2010,43(3):535-541.
CHEN N L, HU M, QIAO C P, NAI X Y, WANG R . Effects of BTH, SA, and SiO2 treatment on disease resistance and leaf HRGP and lignin contents of melon seedlings. Scientia Agricultura Sinica, 2010,43(3):535-541. (in Chinese)
[23] 倪郁, 王婧, 宋超, 夏瑞娥, 孙正圆, 郭彦军, 李加纳 . 外源SA影响油菜叶表皮蜡质及菌核病抗性的机制. 作物学报, 2013,39(01):110-117.
NI Y, WANG J, SONG C, XIA R E, SUN Z Y, GUO Y J, LI J N . Effect of SA induction on leaf cuticular wax and resistance to Sclerotinia sclertiorurn in Brassica napus. Acta Agronomica Sinica, 2013,39(01):110-117. (in Chinese)
[24] 牛吉山, 刘瑞, 郑磊 . 小麦PR-1PR-2PR-5基因的白粉菌和水杨酸诱导表达分析及白粉病抗性研究. 麦类作物学报, 2007,27(6):1132-1137.
NIU J S, LIU R, ZHENG L . Expression analysis of wheat PR-1, PR-2, PR-5 activated by Bgt and SA, and powdery mildew resistance. Journal of Triticeae Crops, 2007,27(6):1132-1137. (in Chinese)
[25] 牛吉山, 刘靖, 倪永静, 尹钧 . 茉莉酸对PR-1PR-2PR-5Ta-JA2基因表达以及小麦白粉病抗性的诱导. 植物病理学报, 2011,41(3):270-277.
NIU J S, LIU J, NI Y J, YIN J . Induction of PR-1, PR-2, PR-5, Ta-JA2 and wheat powdery mildew resistance in response to MeJA treatment. Acta Phytopathologyca Sinica, 2011,41(3):270-277. (in Chinese)
[26] 牛吉山, 倪永静, 刘靖, 王正阳, 尹钧 . 茉莉酸甲酯对小麦白粉病抗性的诱导作用. 中国农学通报, 2010,26(4):254-257.
NIU J S, NI Y J, LIU J, WANG Z Y, YIN J . Inducing effect of JA on wheat powdery mildew resistance. Chinese Agricultural Science Bulletin, 2010,26(4):254-257. (in Chinese)
[27] 彭喜旭, 胡耀军, 唐新科, 周平兰, 邓小波, 王海华 . 茉莉酸和真菌病原诱导的水稻WRKY30转录因子基因的分离及表达特征. 中国农业科学, 2011,44(12):2454-2461.
PENG X X, HU Y J, TANG X K, ZHOU P L, DENG X B, WANG H H . Isolation and expression profiles of rice WRKY30 induced by jasmonic acid application and fungal pathogen infection. Scientia Agricultura Sinica, 2011,44(12):2454-2461. (in Chinese)
[28] ZHANG Y, XU S, DING P, WANG D, CHENG YT, HE J, GAO M, XU F, LI Y, ZHU Z, LI X, ZHANG Y . Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors. Proceedings of the National Academy of Sciences of the United States of America, 2010,107(42):18220-18225.
[29] 王美芳 . 转录因子WRKY1和WRKY2在激发子诱导的过敏反应和气孔关闭中的功能研究[D]. 南京: 南京农业大学, 2011.
WANG M F . The role of WRKY transcription factors in the elicitor-triggered hypersensitive response and stomatal closure in Nicotiana benthamiana[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)
[30] 梁克恭, 刘维, 王雅儒, 冯凌云, 崔光先, 宋燕春, 武小菲, 郑桂春, 董志平 . 粟品种资源抗粟锈病鉴定研究. 沈阳农业大学学报, 1992,23(1):13-18.
LIANG K G, LIU W, WANG Y R, FENG L Y, CUI G X, SONG Y C, WU X F, ZHENG G C, DONG Z P . Rust resistance evaluation for millet varieties. Journal of Shenyang Agricultural University, 1992,23(1):13-18. (in Chinese)
[31] YOO S D, CHO Y H, SHEEN J . Arabidopsis mesophyll protoplasts: A versatile cell system for transient gene expression analysis. Nature Protocols, 2007,2(7):1565-1572.
[32] BILAUD T, KOERING C E, BINET-BRASSELET E, ANCELIN K, POLLICE A, GASSER S M, GILSON E . The telobox, a Myb-related telomeric DNA binding motif found in proteins from yeast, plants and human. Nucleic Acids Research, 1996,24(7):1294-1303.
[33] 陈俊, 王宗阳 . 植物MYB类转录因子研究进展. 植物生理与分子生物学学报, 2002,28(2):81-88.
CHEN J, WANG Z Y . Progress in the study of plant MYB transcription factors. Journal of Plant Physiology and Molecular Biology, 2002,28(2):81-88. (in Chinese)
[34] LIBAULT M, BRECHENMACHER L, CHENG L, XU J L, XU D, STACEY G . Root hair systems biology. Trends in Plant Science, 2010,15(11):641-650.
[35] WANG L J, RAN L Y, HOU Y S, TIAN Q Y, LI C F, LIU R, FAN D, LUO K M . The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytologist, 2017,215(1):351-367.
[36] VLEESSCHAUWER D D, GHEYSEN GODELIEVE, HÖFTE MONICA . Hormone defense networking in rice: Tales from a different world. Trends in Plant Science, 2013,18(10):555-565.
[37] YANG Y N, QI M, MEI C S . Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress. The Plant Journal, 2004,40(6):909-919.
[38] HAMMOND-KOSACK K E, PARKER J E . Deciphering plant- pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 2003,14(2):177-193.
[39] LIU X Q, LI F, TANG J Y, WANG W H, ZHANG F X, WANG G D, CHU J F, YAN C Y, WANG T Q, CHU C C, LI C Y . Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. PLoS ONE, 2012,7(11):e50089.
[40] TONG X H, QI J F, ZHU X D, MAO B Z, ZENG L J, WANG B H, LI Q, ZHOU G X, XU X J, LOU Y G, HE Z H . The rice hydroperoxide lyase OsHPL3 functions in defense responses by modulating the oxylipin pathway. The Plant Journal, 2012,71(5):763-775.
[1] ZHAI XiaoHu,LI LingXu,CHEN XiaoZhu,JIANG HuaiDe,HE WeiHua,YAO DaWei. Quantitative Detection Technology of Porcine-Derived Materials in Meat by Real-time PCR [J]. Scientia Agricultura Sinica, 2023, 56(1): 156-164.
[2] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[3] WANG Kai,ZHANG HaiLiang,DONG YiXin,CHEN ShaoKan,GUO Gang,LIU Lin,WANG YaChun. Definition and Genetic Parameters Estimation for Health Traits by Using on-Farm Management Data in Dairy Cattle [J]. Scientia Agricultura Sinica, 2022, 55(6): 1227-1240.
[4] ZHANG Qi,DUAN Yu,SU Yue,JIANG QiQi,WANG ChunQing,BIN Yu,SONG Zhen. Construction and Application of Expression Vector Based on Citrus Leaf Blotch Virus [J]. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407.
[5] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[6] BaoHua CHU,FuGuo CAO,NingNing BIAN,Qian QIAN,ZhongXing LI,XueWei LI,ZeYuan LIU,FengWang MA,QingMei GUAN. Resistant Evaluation of 84 Apple Cultivars to Alternaria alternata f. sp. mali and Genome-Wide Association Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3613-3628.
[7] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[8] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[9] ZHU ChunYan,SONG JiaWei,BAI TianLiang,WANG Na,MA ShuaiGuo,PU ZhengFei,DONG Yan,LÜ JianDong,LI Jie,TIAN RongRong,LUO ChengKe,ZHANG YinXia,MA TianLi,LI PeiFu,TIAN Lei. Effects of NaCl Stress on the Chlorophyll Fluorescence Characteristics of Seedlings of Japonica Rice Germplasm with Different Salt Tolerances [J]. Scientia Agricultura Sinica, 2022, 55(13): 2509-2525.
[10] XU Chen,WANG WenJing,CAO Shan,LI RuXue,ZHANG BeiBei,SUN AiQing,ZHANG ChunQing. Mechanism of DA-6 Treatment Regulating Wheat Seed Vigor After Anthesis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1821-1834.
[11] Tao WANG,Yu HAN,Li PAN,Bing WANG,MaoWen SUN,Yi WANG,YuZi LUO,HuaJi QIU,Yuan SUN. Development of a TaqMan Real-Time PCR Targeting the MGF360-13L Gene of African Swine Fever Virus [J]. Scientia Agricultura Sinica, 2021, 54(5): 1073-1080.
[12] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[13] ZHANG Shuo,ZHI Hui,TANG ChanJuan,LUO MingZhao,TANG Sha,JIA GuanQing,JIA YanChao,DIAO XianMin. Cytological Characters Analysis and Low-Resolution Mapping of Stripe-Leaf MutantA36-S in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(14): 2952-2964.
[14] ZHAO ZiQi,ZHAO YaQi,LIN ChangPeng,ZHAO YongZe,YU YuXiao,MENG QingLi,ZENG GuangYing,XUE JiQuan,YANG Qin. Precise Evaluation of 48 Maize Inbred Lines to Major Diseases [J]. Scientia Agricultura Sinica, 2021, 54(12): 2510-2522.
[15] ZHANG LinLin,ZHI Hui,TANG Sha,ZHANG RenLiang,ZHANG Wei,JIA GuanQing,DIAO XianMin. Characterizations of Transcriptional and Haplotypic Variations of SiTOC1 in Foxtail Millet [J]. Scientia Agricultura Sinica, 2021, 54(11): 2273-2286.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!