Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (22): 4002-4015.doi: 10.3864/j.issn.0578-1752.2019.22.006

• MOLECULAR GENETICS • Previous Articles     Next Articles

Comparative Transcriptome Analysis of Different Salt Tolerance Sorghum (Sorghum bicolor L. Moench) Under Salt Stress

ZHANG Fei,WANG YanQiu,ZHU Kai,ZHANG ZhiPeng,ZHU ZhenXing,LU Feng(),ZOU JianQiu()   

  1. Sorghum Institute, Liaoning Academy of Agricultural Sciences, Shenyang 110161
  • Received:2019-06-14 Accepted:2019-08-12 Online:2019-11-16 Published:2019-11-16
  • Contact: Feng LU,JianQiu ZOU E-mail:lufeng740202023@163.com;jianqiuzou@126.com

Abstract:

【Objective】Soil salinization is one of the important abiotic stress factors that restricts crop production. Understanding the salt-tolerant mechanism of sorghum may provide a novel avenue to utilize saline soil for sorghum production. The objective of this study was to explore gene regulation mechanisms and metabolic pathways that related to salt tolerance of sorghum by transcriptome sequencing. 【Method】 The salt-tolerant genotype Bayeqi and salt-sensitive genotype PL212 were planted in plastic pots. At five-leaf stage (20 days after sowing), plants were treated with 180 mmol L -1 NaCl. Forty-eight hours after treatment, leaves treated by NaCl and unstressed control were sampled and were used for RNA extraction and transcriptome sequencing. Sequencing results were verified by qRT-PCR. 【Result】 Results showed that a total of 1 338 deferentially expressed genes, including 819 up-regulated and 519 down-regulated genes were detected. Cluster analysis revealed that in response to salt stress, five dependent oxygenase superfamily proteins, four cysteine-rich RLKs, three Glutathione S-transferase and three heavy metal transport/detoxification superfamily protein-related genes were significant up-regulated and/or down-regulated, and one K + ion transporter gene was also found to play an important role in salt-tolerance regulation. GO analysis found that 4 528 valid GO annotation entries were obtained from 15 418 genes, and salt-tolerant and salt-sensitive materials showed significant difference in biological processes, cellular components and molecular functions under salt stress treatment. The salt-tolerant materials exhibited obviously higher metabolic processes and cellular processes than salt-sensitive materials. Compared with salt-sensitive materials, multiple biological processes and localization processes were increased in salt-tolerant genotype, which might be the reasons of salt-tolerance. KEGG analysis showed that the salt-tolerant and salt-sensitive materials had more differential gene expression in phenylpropanoid biosynthesis, phenylalanine metabolism and flavonoid biosynthesis under control and salt stress conditions, which may be an important reason for the weak salt tolerance of sensitive materials. 【Conclusion】 The expression of salt-tolerant genes in sorghum is involved in many aspects of biological processes, cellular components and molecular functions. The gene expression in multiple processes and localization processes contributes to the salt tolerance, while excessive gene expression in phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis likely contributes to the damage under salt stress.

Key words: sorghum, salt tolerance, transcriptome, differential gene expression, physiological regulation

Table 1

Sequencing data quality statistics"

样品
Sample
序列长度
Length (bp)
Bases
(Billion)
Q20比例
Q20 percentage (%)
Q30比例
Q30 percentage (%)
G和C占总碱基数量百分比
GC(%)
CK-耐盐 CK-tolerant 147.45 64.89 96.09 90.20 52.18
CK-盐敏感 CK-sensitive 147.57 61.35 95.85 89.74 53.44
Salt-耐盐 Salt-tolerant 147.64 61.72 95.85 89.73 52.38
Salt-盐敏感 Salt-sensitive 147.41 61.95 95.93 89.89 53.28

Table 2

Statistics on the number and proportion of genes in different expression levels"

项目
Item
样品
Sample
RPKMRPKM value
0—0.1 0.1—1 1—3 3—15 15—60 >60
基因数量
Number of genes
CK-耐盐CK-tolerant 2125 6815 4570 8046 4345 1371
CK-盐敏感CK-sensitive 2392 6985 4621 9605 3890 1377
Salt-耐盐Salt-tolerant 2075 6687 4537 8024 4436 1364
Salt-盐敏感Salt-sensitive 2258 6864 4625 7811 3927 1281
基因表达比例
Gene expression ratio (%)
CK-耐盐CK-tolerant 7.79 24.98 16.75 29.49 15.96 5.03
CK-盐敏感CK-sensitive 8.90 26.00 17.20 28.30 14.48 5.03
Salt-耐盐Salt-tolerant 7.65 24.65 16.73 29.58 16.36 5.03
Salt-盐敏感Salt-sensitive 8.44 25.64 17.28 29.18 14.67 4.79

Fig. 1

Volcano map of differential gene"

Table 3

Differentially expressed genes between four sorghum samples under salt stress"

样品比较 Sample-VS-Sample 上调基因 Up-regulated genes 下调基因 Down-regulated genes
CK-耐盐VS CK-盐敏感 CK-tolerant VS CK-sensitive 346 134
Salt-耐盐VS Salt-盐敏感 Salt-tolerant VS Salt-sensitive 353 200
Salt-耐盐VS CK-耐盐 Salt-tolerant VS CK-tolerant 62 122
Salt-盐敏感VS CK-盐敏感 Salt-sensitive VS CK-sensitive 58 63

Fig. 2

Venn diagram of differential gene expression of sorghum cultivars under salt treatment and control"

Fig. 3

Sorghum differentially expressed genes associated with salt stress"

Table 4

Sorghum salt tolerance related genes and functional description"

基因ID Gene_ID log2FC KOG KEGG/ec Best-hit-Arabi-name Arabi-symbol 功能描述 Arabi-decline
Sobic.001G314300.v3.1 2.29 KOG0143 1.14.11.9 AT5G24530.1 DMR6 铁离子转运蛋白
Fe ion transport protein
Sobic.006G190000.v3.1 1.91 KOG0143 1.14.11.9 AT5G24530.1 DMR6 铁离子转运蛋白
Fe ion transport protein
Sobic.001G526900.v3.1 1.40 KOG0143 1.14.11.9 AT5G24530.1 DMR6 铁离子转运蛋白
Fe ion transport protein
Sobic.001G166401.v3.1 1.27 KOG0143 AT3G19000.1 铁离子转运蛋白
Fe ion transport protein
Sobic.009G044400.v3.1 1.19 KOG0143 1.14.17.4 AT1G77330.1 铁离子转运蛋白
Fe ion transport protein
Sobic.001G215900.v3.1 1.29 KOG1187 2.7.11.1 AT1G70520.1 CRK2 富含半胱氨酸的蛋白激酶
Cysteine-rich protein kinase
Sobic.002G327700.v3.1 1.18 KOG1187 2.7.11.1 AT4G23310.1 CRK23 富含半胱氨酸的蛋白激酶
Cysteine-rich protein kinase
Sobic.002G327800.v3.1 1.23 KOG1187 2.7.11.1 AT4G05200.1 CRK25 富含半胱氨酸的蛋白激酶
Cysteine-rich protein kinase
Sobic.008G099300.v3.1 1.72 2.7.11.1 AT4G00970.1 CRK41 富含半胱氨酸的蛋白激酶
Cysteine-rich protein kinase
Sobic.003G164800.v3.1 1.33 KOG0867 2.5.1.18 AT3G62760.1 ATGSTF13 谷胱甘肽S-转移酶家族蛋白
Glutathione S-transferase family protein
Sobic.001G318900.v3.1 2.12 KOG0406 2.5.1.18 AT1G10360.1 ATGSTU18,GST29, GSTU18 谷胱甘肽S-转移酶TAU 18
Glutathione S-transferase TAU 18
Sobic.001G318200.v3.1 2.02 KOG0406 2.5.1.18 AT1G10360.1 ATGSTU18,GST29,GSTU18 谷胱甘肽S-转移酶TAU 18
Glutathione S-transferase TAU 18
Sobic.006G113800.v3.1 2.24 AT5G48290.1 重金属运输/解毒超家族蛋白
Heavy metal transport/detoxification superfamily protein
Sobic.006G114200.v3.1 1.93 AT5G48290.1 重金属运输/解毒超家族蛋白
Heavy metal transport/detoxification superfamily protein
Sobic.006G257700.v3.1 1.53 KOG1603 AT1G01490.1 重金属运输/解毒超家族蛋白
Heavy metal transport/detoxification superfamily protein
Sobic.002G220600.v3.1 1.09 AT2G30070.1 ATKT1,ATKT1P,ATKUP1,KT1,KUP1 钾转运蛋白
Potassium transport protein
Sobic.002G416600.v3.1 1.97 1.11.1.7 过氧化物酶超家族蛋白
Peroxidase superfamily protein

Fig. 4

Histogram of sorghum salt tolerance gene GO analysis"

Table 5

Sorghum salt tolerance gene distribution and annotation to genes"

基因本体
Gene ontology term
集群频率
(出现集群/总集群数量)
Cluster frequency(Appears number/total number)
基因组使用频率
Genome frequency of use
修正P
Corrected P-value
注释到基因集群
Annotated gene cluster

Membrane
12 /14
85.7%
1862/15418,
12.1%
5.37e-09 Sobic.004G073400.v3.1, Sobic.002G329600.v3.1, Sobic.007G210500.v3.1, Sobic.004G182300.v3.1, Sobic.006G003700.v3.1, Sobic.002G339100.v3.1, Sobic.002G367700.v3.1, Sobic.005G037300.v3.1, Sobic.002G220600.v3.1, Sobic.006G021900.v3.1, Sobic.002G201900.v3.1, Sobic.010G146100.v3.1
膜部分
Membrane part
9/14
64.3%
1043 /15418
6.8%
3.37e-07 Sobic.002G201900.v3.1, Sobic.006G021900.v3.1, Sobic.005G037300.v3.1, Sobic.004G182300.v3.1, Sobic.007G210500.v3.1, Sobic.002G329600.v3.1, Sobic.004G073400.v3.1, Sobic.002G339100.v3.1, Sobic.006G003700.v3.1
膜整体
Integral to membrane
8 /14
57.1%
829 /15418
5.4%
1.21e-06 Sobic.004G182300.v3.1, Sobic.004G073400.v3.1, Sobic.007G210500.v3.1, Sobic.002G339100.v3.1, Sobic.006G003700.v3.1, Sobic.006G021900.v3.1, Sobic.002G201900.v3.1, Sobic.005G037300.v3.1
膜固有
Intrinsic to membrane
8 /14
57.1%
841 /15418
5.5%
1.35e-06 Sobic.002G201900.v3.1, Sobic.006G021900.v3.1, Sobic.005G037300.v3.1, Sobic.004G182300.v3.1, Sobic.007G210500.v3.1, Sobic.004G073400.v3.1, Sobic.002G339100.v3.1, Sobic.006G003700.v3.1

Fig. 5

KEGG enrichment scatter plot of differential gene The ordinate is the enriched GO term, and the abscissa is the number of the differential genes. Different colors are used to distinguish biological processes, cellular components, and molecular functions"

Fig. 6

qRT-PCR validation of partially selected gene expression ** indicate P < 0.01, *indicate P < 0.05. The difference is not significant, so it is not marked in the figure"

[1] 王佳丽, 黄贤金, 钟太洋 . 盐碱地可持续利用研究综述. 地理学报, 2011(66):673-684.
WANG J L, HUANG X J, ZHONG T Y . A review of the sustainable use of saline-alkali soils. Acta Geographica Sinica, 2011(66):673-684. (in Chinese)
[2] MUNNS R, TESTER M . Mechanisms of salinity tolerance. Annual Review of Plant Biology, 2008(59):651-681.
[3] REDDY P S, REDDY D S, SIVASAKTHI K . Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Frontiers in Plant Science, 2016(7):529-536.
[4] KAFI M, ASADI H, GANJEALI A . Possible utilization of high-salinity waters and application of low amounts of water for production of the halophyteKochia scoparia as alternative fodder in saline agroecosystems. Agricultural Water Management, 2010(97):139-147.
[5] LI M, YUYAMA N, LUO L . In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum. Molecular Breeding, 2009(24):41-47.
[6] GUAN Y A, WANG H L, QIN L . QTL mapping of bio-energy related traits in sorghum. Euphytica, 2011(182):431-440.
[7] LIU J, ZHU J K . A calcium sensor homolog required for plant salt tolerance. Science, 1998(280):1943-1945.
[8] GUO Y, HALFTER U, ISHITANI M . Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. The Plant Cell, 2002(13):1383-1400.
[9] ROXAS V P, LODHI S A, GARRETT D K . Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/ glutathione peroxidase, Plant Cell Physiology, 2000,41(11):1229-1234.
[10] 安静, 张荃 . 拟南芥液泡膜Na+/H+ 逆向转运蛋白的研究进展 . 生命科学, 2006,18(3):273-278.
AN J, ZHANG Q . Advances in the study of Na+/H+ antiporter in the tonoplast of Arabidopsis thaliana. Life Science, 2006,18(3):273-278. (in Chinese)
[11] ZHANG C Z, YANG H H, LI H, DAI H . Detection of strawberry RNA and DNA viruses by RT-PCR using total nucleic acid as a template. Phytopathology, 2007(155):431-436.
[12] ROMUALDI C, BORTOLUZZI S, D'ALESSI F, DANIELI G A . IDEG6: A web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiology Genomics, 2003(12):159-162.
[13] 赵丽娜, 张芙蓉, 莫霏, 黄隆堂, 张屹东 . 甜瓜盐碱逆境生理响应及相关基因研究进展. 上海农业学报, 2016,32(6):176-180.
ZHAO L N, ZHANG F R, MO F, HUANG L T, ZHANG Y D . Research progress on the physiological response and related genes of melon-alkali stress in melon. Journal of Shanghai Agricultural Sciences, 2016,32(6):176-180. (in Chinese)
[14] 董蔚, 邬培祥, 杨宁, 刘锡江, 宋玉光 . 紫花苜蓿盐胁迫响应WRKY转录因子的克隆及表达特征分析. 植物生理学报, 2018,54(9):1481-1489.
DONG W, WU P X, YANG N, LIU X J, SONG Y G . Cloning and expression analysis of WRKY transcription factors in response to salt stress of alfalfa. Chinese Journal of Plant Physiology, 2018,54(9):1481-1489. (in Chinese)
[15] 黄芳, 徐珍珍, 孟珊, 刘静, 汪保华, 沈新莲 . 盐胁迫下棉花LTR-反转座子的转录激活及在耐盐相关基因发掘中的应用. 江苏农业学报, 2017,33(6):1220-1226.
HUANG F, XU Z Z, MENG S, LIU J, WANG B H, SHEN X L . Transcriptional activation of cotton LTR-reflexion under salt stress and its application in salt tolerance related genes discovery. Jiangsu Journal of Agricultural Sciences, 2017,33(6):1220-1226. (in Chinese)
[16] 张国儒, 庞胜群, 郭晓珊, 单淑玲 . 加工番茄耐盐突变体耐盐相关基因的转录组分析. 分子植物育种, 2018,16(18):5884-5896.
ZHANG G R, PANG S Q, GUO X S, SHAN S L . Transcriptome analysis of salt-tolerant genes in tomato salt-tolerant mutants. Molecular Plant Breeding, 2018,16(18):5884-5896. (in Chinese)
[17] 岳小红, 曹靖, 耿杰, 李瑾, 张宗菊, 张琳捷 . 盐分胁迫对啤酒大麦幼苗生长、离子平衡和根际pH变化的影响. 生态学报, 2018,38(20):7373-7380.
YUE X H, CAO J, GENG J, LI J, ZHANG Z J, ZHANG L J . Effects of salt stress on growth, ion balance and rhizosphere pH of malting barley seedlings. Acta Ecologica Sinica, 2018,38(20):7373-7380. (in Chinese)
[18] HERNANDEZ M, FERNANDEZ-GARCIA N, DIAZ-VIVANCOS P . A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. Journal of Experimental Botany, 2010(61):521-535.
[19] XU D, DUAN X, WANG B . Expression of a late embryogenesis abundant protein gene, HVA1, from barley conferred tolerance to water deficit and salt stress in transgenic rice. Plant Physiology, 1996,110(1):249-257.
[20] 端木慧子, 陶鑫, 王建慧, 韦恒, 李海英, 马春泉 . 甜菜M14品系盐胁迫转录组数据库的转录因子分析. 黑龙江大学工程学报, 2017,8(4):48-54.
DUANMU H Z, TAO X, WANG J H, WEI H, LI H Y, MA C Q . Transcription factor analysis of salt stress transcriptome database of sugar beet M14 strain. Journal of Engineering of Heilongjiang University, 2017,8(4):48-54. (in Chinese)
[21] 张晓钗, 李亮, 何宁芳, 龚雪晴, 主朋月, 王晓阳 . 不同盐度胁迫下杜氏盐藻全转录组测序及注释. 微生物学报, 2019,3(1):1-20.
ZHANG X C, LI L, HE N F, GONG X Q, ZHU P Y, WANG X Y . Sequencing and annotation of the whole transcriptome of Dunaliella salina under different salinity stresses. Journal of Microbiology, 2019,3(1):1-20. (in Chinese)
[22] 王春霞, 王全九, 刘建军, 苏李君, 单鱼洋, 庄亮 . 灌水矿化度及土壤含盐量对南疆棉花出苗率的影响. 农业工程学报, 2010,26(9):28-33.
WANG C X WANG Q J, LIU J J, SU L J, SHAN Y Y, ZHUANG L . Effects of irrigation salinity and soil salinity on cotton emergence rate in southern Xinjiang. Journal of Agricultural Engineering, 2010,26(9):28-33. (in Chinese)
[23] 陈冠旭, 秦贵龙, 李恩广, 赵春梅, 乔利仙, 王晶珊, 隋炯明 . 花生蛋白磷酸2C家族基因的鉴定和盐胁迫响应分析. 华北农学报, 2018,33(3):71-77.
CHEN G X, QIN G L, LI E G, ZHAO C M, QIAO L X, WANG J S, SUI J M . Identification and salinity stress-responsive analysis of PP2C genes in peanut. Acta Agriculturae Boreali-Sinica, 2018,33(3):71-77. (in Chinese)
[24] WAMBUA J M, MAKOBE M N, NJUE E M . Hydroponic screening of sorghum (Sorghum bicolor L. Moench) cultivars for salinity tolerance. Journal of Agriculture Science & Technology, 2017,12(2):269-277.
[25] NETONDO G W, ONYANGO J C, BECK E . Sorghum and salinity II gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 2004,44:806-811.
[26] QUINTERO F J, OHTA M, SHI H . Reconstitution in yeast of theArabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences of the USA , 2002(99):9061-9066.
[27] 戴漪晨, 黄铎, 王福玲, 林汉明 . 组学在大豆耐盐研究中的应用. 土壤与作物, 2015,4(1):1-11.
DAI Y C, HUANG D, WANG F L, LIN H M . Application of omics in salt tolerance research of soybean. Soil and Crop, 2015,4(1):1-11. (in Chinese)
[28] 白子彧, 丁博, 李杨, 陈小强, 李迎霞, 杜亚军, 郭雨, 谢晓东 . 小麦盐应答基因TaSR1的生物信息学鉴定及表达验证. 麦类作物学报, 2017,37(3):307-311.
BAI Z Y, DING B, LI Y, CHEN X Q, LI Y X, DU Y J, GUO Y, XIE X D . Bioinformatics identification and expression verification of wheat salt response gene TaSR1. Journal of Triticeae Crops, 2017,37(3):307-311. (in Chinese)
[29] BLUMWALD E, POOLE R J . Na+/H+ antiport in isolated tonoplast vesicles from storage tissue ofBeta vulgaris. Plant Physiology , 1985(78):163-167.
[30] LIANG Y, SUN W, ZHU Y G . Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environmental Pollution, 2007(147):422-428.
[31] 彭振, 何守朴, 龚文芳, 潘兆娥, 贾银华, 卢艳丽, 杜雄明 . 陆地棉幼苗NaCl胁迫下转录因子的转录组学分析. 作物学报, 2017,43(3):354-370.
PENG Z, HE S P, GONG W F, PAN Z E, JIA Y H, LU Y L, DU X M . A Transcriptomic analysis of transcription factors in upland cotton seedlings under NaCl stress. Acta Agronomica Sinica, 2017,43(3):354-370. (in Chinese)
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] WANG JinSong,DONG ErWei,LIU QiuXia,WU AiLian,WANG Yuan,WANG LiGe,JIAO XiaoYan. Effects of Row Spacing and Plant Density on Grain Yield and Quality of Grain-Feeding Sorghum [J]. Scientia Agricultura Sinica, 2022, 55(16): 3123-3133.
[6] SHI XiaoLong,GUO Pei,REN JingYao,ZHANG He,DONG QiQi,ZHAO XinHua,ZHOU YuFei,ZHANG Zheng,WAN ShuBo,YU HaiQiu. A Salt Stress Tolerance Effect Study in Peanut Based on Peanut//Sorghum Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(15): 2927-2937.
[7] BIAN LanXing,LIANG LiKun,YAN Kun,SU HongYan,LI LiXia,DONG XiaoYan,MEI HuiMin. Effects of Trichoderma on Root and Leaf Ionic Homeostasis and Photosystem II in Chinese Wolfberry Under Salt Stress [J]. Scientia Agricultura Sinica, 2022, 55(12): 2413-2424.
[8] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[9] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[10] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[11] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[12] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[13] LI ShunGuo,LIU Meng,LIU Fei,ZOU JianQiu,LU XiaoChun,DIAO XianMin. Current Status and Future Prospective of Sorghum Production and Seed Industry in China [J]. Scientia Agricultura Sinica, 2021, 54(3): 471-482.
[14] MENG Rui,LIU Ye,ZHAO Shuang,FANG WeiMin,JIANG JiaFu,CHEN SuMei,CHEN FaDi,GUAN ZhiYong. Effects of Rootstock and Scion Interaction on Salt Tolerance of Grafted Chrysanthemum Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(3): 629-642.
[15] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!