Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (19): 3380-3392.doi: 10.3864/j.issn.0578-1752.2019.19.009

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Effects of the Different Autumn Irrigation Years on Soil Bacterial Community in Hetao Irrigation District

ZHANG XiaoLi1,ZHANG HongYuan1,LU Chuang1,PANG HuanCheng1,JIN CunWang2,GAO Xi3,CHENG AiPing3,LI YuYi1()   

  1. 1 Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081
    2 Wuyuan County Agricultural and Animal Husbandry Technology Promotion Center, Wuyuan 015100, Inner Mongolia
    3 Yihe Canal Center of Yichang Experimental Station of Inner Mongolia Hetao Irrigation District, Wuyuan 015100, Inner Mongolia
  • Received:2019-03-25 Accepted:2019-06-10 Online:2019-10-01 Published:2019-10-11
  • Contact: YuYi LI E-mail:liyuyi@caas.cn

Abstract:

【Objective】 Considering the phenomenon that farmers voluntarily gave up the water irrigation in autumn, We investigated the effects of different autumn irrigation years on soil bacterial community composition in Inner Mongolia Hetao Irrigation District, so as to provide corresponding scientific support for the improvement of saline-alkali land and reformation of autumn irrigation system.【Method】 By selecting five types of typical plots, including wasteland (CK), always irrigation in autumn (AUI1), 2-3 years with autumn irrigation (AUI2), 3-4 years without autumn irrigation (AUI3) and 6-7 years without autumn irrigation (AUI4), the characteristics of soil bacteria in different autumn irrigation years were analyzed by high-throughput sequencing (Illumina HiSeq), and redundantly and correlation analysis of the soil chemical properties with bacterial communities and with community composition were followed.【Result】 The results showed that the salt content of AUI1 and AUI2 treatments were significantly reduced in 0-30 cm soil layer, compared with CK, AUI3 and AUI4, which were reduced by 128.82% and 29.04%, 108.76% and 17.72%, 108.44% and 17.55%, respectively. The salt content of AUI1 treatment was significantly reduced than that of other treatments in 30-40cm soil layer; the pH of AUI2 treatment was the lowest in each soil layer, and compared with CK, AUI1, AUI3 and AUI4 treatments, which reduced by 0.28, 0.32, 0.16 and 0.88 units, respectively (P<0.05). Compared with CK, AUI1, AUI3 and AUI4 treatments, the soil microbial biomass carbon content of AUI2 treatment were increased by 252.89%, 148.59%, 58.10% and 60.10%, respectively, and the soluble organic carbon content increased by 48.41%, 29.42%, 6.01% and 4.27%, respectively (P<0.05). The abundance index (ACE and Chao1) of AUI1 and AUI2 treatments were significantly higher than CK, AUI3 and AUI4 treatments (P<0.05). Proteobacteria, Acidobacteria and Bacteroidetes were the three dominant bacteria that were treated in different autumn years, accounting for 53.93% of all bacteria, while AUI2 and AUI3 treatment are beneficial to increase the Bacteroidetes and Acidobacteria relative abundance (P<0.05). Correlation analysis showed that Proteobacteria and Chloroflexi were significantly negatively correlated with soil microbial biomass carbon and soluble organic carbon, and the correlation coefficient with microbial biomass carbon were (r =-0.559** and -0.522*), the correlation coefficients with soluble organic carbon were (r =-0.795** and -0.820**), respectively; Actinobacteria, Thaumarchaeota, Firmicutes and Verrucomicrobia were significantly negatively correlated with soil salinity and significantly positively correlated with soil microbial biomass carbon and dissolved organic carbon. Factor analysis showed that soil salinity, pH, microbial biomass and soluble organic carbon were main environmental factors on the soil bacterial community structure, total explaining 97% of the community changes. The order of contribution rate was soil SC>pH>MBC>SOC.【Conclusion】 Comprehensive consideration, the 2-3 years with autumn irrigation (AUI2) treatment could not only effectively reduce the soil salinity and significantly increase the microbial biomass carbon and soluble organic carbon content in 0-40cm soil layer, but also improve the relative abundance of the dominant bacteria. In summary, the autumn irrigation (AUI2) was an optimization measure for the improvement of saline soil and water conservation in Hetao area.

Key words: autumn irrigation, soil bacterial, community structure, bacterial diversity, saline-alkali soil, IlluminaMiSeq, Inner Mongolia Hetao Irrigation District

Fig. 1

Schematic diagram of sample distribution"

Table 1

The soil salt, pH and active organic carbon content under different treatments in 0-40cm soil after sunflower harvest"

土层深度
Soil depth (cm)
处理
Treatment
全盐
Salt content (g·kg-1)
pH 微生物量碳
Microbial biomass C (mg·kg-1)
可溶性有机碳
Soluble organic C (mg·kg-1)
0-10 CK 2.62±0.14a 8.62±0.02b 12.98±0.11d 36.42±0.11e
AUI1 1.57±0.01d 8.52±0.03c 20.49±0.43b 57.83±0.35a
AUI2 1.69±0.01c 8.33±0.08d 23.17±0.23a 49.27±0.26b
AUI3 2.13±0.01b 8.44±0.08c 14.15±0.12c 43.26±0.28c
AUI4 2.23±0.01b 9.11±0.10a 20.36±0.13b 40.53±0.27d
10-20 CK 2.42±0.01a 8.59±0.03b 10.43±0.12e 36.76±0.24e
AUI1 0.76±0.01e 8.68±0.02b 30.27±0.17a 60.27±0.19a
AUI2 1.86±0.03d 8.27±0.04d 22.66±0.12b 51.19±0.21b
AUI3 2.11±0.01c 8.40±0.03c 16.10±0.11c 39.40±0.26d
AUI4 2.23±0.01b 9.11±0.10a 12.53±0.12d 41.62±0.25c
20-30 CK 2.12±0.03b 8.52±0.02c 3.53±0.08e 34.35±0.18e
AUI1 0.80±0.01e 8.67±0.01b 34.31±0.09a 43.71±0.19b
AUI2 1.99±0.01d 8.42±0.01d 18.84±0.11b 45.37±0.23a
AUI3 2.29±0.01a 8.54±0.03c 11.50±0.08c 35.64±0.21d
AUI4 2.05±0.02c 9.29±0.11a 9.95±0.11d 42.14±0.18c
30-40 CK 2.13±0.04c 8.73±0.06b 2.70±0.08e 36.45±0.19c
AUI1 0.72±0.01e 8.73±0.02b 19.55±0.06a 51.87±0.18a
AUI2 3.00±0.01a 8.31±0.05d 9.03±0.07b 40.51±0.21b
AUI3 2.69±0.01b 8.60±0.03c 5.13±0.11c 34.32±0.18d
AUI4 1.75±0.04d 9.34±0.03a 4.63±0.10d 40.22±0.15b

Fig. 2

Rarefaction curve analysis of OTUs"

Table 2

Diversity indices of bacterial community of different treatments"

处理
Treatment
香浓指数
Shannon index
辛普森指数
Simpson index
Chao1指数
Chao1 index
ACE指数
ACE index
CK 9.838±0.098a 0.995±0.003a 4263.408±101.738d 4291.645±62.989d
AUI1 9.769±0.204a 0.997±0.002a 5548.561±101.265a 5546.485±65.158a
AUI2 9.779±0.109a 0.997±0.003a 4860.985±118.970b 4828.625±51.736b
AUI3 9.879±0.097a 0.997±0.002a 4686.787±102.399c 4675.784±57.807c
AUI4 9.832±0.103a 0.997±0.001a 4313.685±103.203d 4319.209±65.483d

Fig. 3

Soil bacterial community at the phylum levels"

Fig. 4

Principal component analyses (PCA) of bacterial community composition in soils from different treatments (a), and redundancy analyses (RDA) of the correlations between soil parameters and bacterial community diversity (b) DOC: Soluble organic carbon; MBC: Microbial biomass carbon; SC: Salt; CK: Wasteland; AUI1: Always irrigation in autumn; AUI2: 2-3 years with autumn irrigation; AUI3: 3-4 years without autumn irrigation; AUI4: 6-7 years without autumn irrigation"

Table 3

Correlation analysis among physico-chemistry characteristics and bacteria on phylum"

微生物类群
Microbial Population
全盐
Salinity
pH 微生物量碳
Microbial biomass C
可溶性有机碳
Soluble organic C
变形菌门Proteobacteria 0.420 0.483 -0.559* -0.522*
酸杆菌门Acidobacteria 0.135 -0.356 -0.066 -0.133
拟杆菌门Bacteroidetes -0.249 0.141 0.341 0.421
芽单胞菌门Gemmatimonadetes 0.132 -0.445 0.103 0.154
放线菌门Actinobacteria -0.620* 0.187 0.618* 0.649**
奇古菌门Thaumarchaeota -0.719** -0.494 0.694** 0.631*
绿弯菌门Chloroflexi 0.765** 0.335 -0.795** -0.820**
浮霉菌门Planctomycetes 0.296 -0.506 -0.166 -0.193
疣微菌门Verrucomicrobia -0.679** -0.052 0.570* 0.532*
厚壁菌门Firmicutes -0.559* 0.083 0.436 0.438
[1] 冯保清, 崔静, 吴迪, 管孝艳, 王少丽 . 浅谈西北灌区耕地盐碱化成因及对策. 中国水利, 2019(9):43-46.
FENG B Q, CUI J, WU D, GUAN X Y, WANG S L . Preliminary studies on causes of salinization and alkalinization in irrigation districts of northwest China and countermeasures. China Water Conservancy, 2019(9):43-46. (in Chinese)
[2] 郭姝姝, 阮本清, 管孝艳, 王少丽, 李云鹏 . 内蒙古河套灌区近30年盐碱化时空演变及驱动因素分析. 中国农村水利水电, 2016(9):159-162, 167.
GUO S S, RUAN B Q, GUAN X Y, WANG S L, LI Y P . Analysis on spatial-temporal evolution of soil salinity and its driving factors in Hetao Irrigation District during recent 30 Years. China Rural Water and Hydropower, 2016(9):159-162, 167. (in Chinese)
[3] 杨劲松, 姚荣江, 王相平, 谢文萍 . 河套平原盐碱地生态治理和生态产业发展模式. 生态学报, 2016,36(22):7059-7063.
doi: 10.5846/stxb201610182130
YANG J S, YAO R J, WANG X P, XIE W P . Research on ecological management and ecological industry development model of saline- alkali land in the Hetao Plain, China. Acta Ecologica Sinica, 2016,36(22):7059-7063. (in Chinese)
doi: 10.5846/stxb201610182130
[4] 彭振阳, 伍靖伟, 黄介生 . 内蒙古河套灌区局部秋浇条件下农田水盐运动特征分析. 水利学报, 2016,47(1):110-118.
doi: 10.13243/j.cnki.slxb.20141279
PENG Z Y, WU J W, HUANG J S . Water and salt movement under partial irrigation in Hetao Irrigation District, Inner Mongolia. Journal of Hydraulic Engineering, 2016,47(1):110-118. (in Chinese)
doi: 10.13243/j.cnki.slxb.20141279
[5] 杨丽清, 刘燕凤, 刘坤 . 浅谈义长灌域春灌面积增大的成因. 内蒙古水利, 2017(4):66-67.
YANG L Q, LIU Y F, LIU K . Talking about the causes of the increase of spring irrigation area in Yichang irrigation area. Inner Mongolia Water Conservancy, 2017(4):66-67. (in Chinese)
[6] 刘媛超 . 内蒙古河套灌区秋浇灌水作用及秋浇节水潜力浅析. 内蒙古水利, 2017(5):51-52.
LIU Y C . Analysis of autumn irrigation and irrigation water potential and water saving potential of autumn irrigation in Hetao Irrigation District of Inner Mongolia. Inner Mongolia Water Resources, 2017(5):51-52. (in Chinese)
[7] 李凤霞, 王学琴, 郭永忠, 许兴, 杨建国, 季艳清 . 宁夏不同类型盐渍化土壤微生物区系及多样性. 水土保持学报, 2011,25(5):107-111.
LI F X, WANG X Q, GUO Y Z, XU X, YANG J G, JI Y Q . Microbial flora and diversity in different types of saline-alkali soil in Ningxia. Journal of Soil and Water Conservation, 2011,25(5):107-111. (in Chinese)
[8] 牛世全, 龙洋, 李海云, 达文燕, 胡山, 李渭娟, 朱学泰, 孔维宝 . 应用IlluminaMiSeq高通量测序技术分析河西走廊地区盐碱土壤微生物多样性. 微生物学通报, 2017,44(9):2067-2078.
doi: 10.13344/j.microbiol.china.160824
NIU S Q, LONG Y, LI H Y, DA W Y, HU S, LI W J, ZHU X Q, KONG W B . Microbial diversity in saline alkali soil from Hexi Corridor analyzed by Illumina MiSeq high-throughput sequencing system. Microbiology China, 2017,44(9):2067-2078. (in Chinese)
doi: 10.13344/j.microbiol.china.160824
[9] 孙佳杰, 尹建道, 解玉红, 杨永利, 舒晓武, 刘保东 . 天津滨海盐碱土壤微生物生态特性研究. 南京林业大学学报(自然科学版), 2010,34(3):57-61.
SUN J J, YIN J D, XIE Y H, YANG Y L, SHU X W, LIU B D . Study on microbial ecological characteristics of coastal saline-alkali soil in Tianjin. Journal of Nanjing Forestry University(Natural Science Edition), 2010,34(3):57-61. (in Chinese)
[10] 樊金萍, 张建丽, 王婧, 逄焕成, 李玉义, 李二珍, 靳存旺 . 节水灌溉对盐渍土盐分调控与土壤微生物区系的影响. 土壤学报, 2012,49(4):835-840.
FAN J P, ZHANG J L, WANG J, PANG H C, LI Y Y, LI E Z, JIN C W . Effects of water saving irrigation on salinity control and soil microbial. Flora in Saline Soil, 2012,49(4):835-840. (in Chinese)
[11] 张云, 张相柱 . 适宜河套灌区的四种田间节水灌溉技术. 内蒙古水利, 2018(10):33-34.
ZHANG Y, ZHANG X Z . Four field water-saving irrigation techniques suitable for Hetao Irrigation District. Inner Mongolia Water Resources, 2018(10):33-34. (in Chinese)
[12] 张晓红, 侯利, 刘永河, 郝爱枝 . 河套灌区坝楞试区葵花灌溉前后水盐变化研究. 内蒙古水利, 2018(6):8-10.
ZHANG X H, HOU L, LIU Y H, HAO A Z . Water and salt changes before and after sunflower irrigation in the dam test area of Hetao irrigation district. Inner Mongolia Water Resources, 2018(6):8-10. (in Chinese)
[13] 王美荣, 史海滨, 闫建文, 李仙岳, 窦旭, 丁宗江 . 水氮调控对休耕期土壤养分迁移及翌年土壤肥力的影响. 水土保持学报, 2019,33(2):146-154.
WANG M R, SHI H B, YAN J W, LI X Y, DOU X, DING Z J . Effects of water and nitrogen regulation on soil nutrient transfer during fallow period and soil fertility in the following year. Journal of Soil and Water Conservation, 2019,33(2):146-154. (in Chinese)
[14] 李新, 焦燕, 代钢, 杨铭德, 温慧洋 . 内蒙古河套灌区不同盐碱程度的土壤细菌群落多样性. 中国环境科学, 2016,36(1):249-260.
LI X, JIAO Y, DAI G, YANG M D, WEN H Y . Soil bacterial community diversity under different degrees of saline-alkaline in the Hetao area of Inner Mongolia. China Environmental Science, 2016, 36(1):249-260. (in Chinese)
[15] 景宇鹏, 李跃进, 年佳乐, 宋瑶 . 土默川平原不同盐渍化程度土壤微生物生态特征研究. 生态环境学报, 2013,22(7):1153-1159.
JING Y P, LI Y J, NIAN J L, SONG Y . Study on ecological characteristics of microbes under different soil salinization degrees in Tumochuan plain. Ecology and Environmental Sciences, 2013,22(7):1153-1159. (in Chinese)
[16] VANCE E D, BROOKES P C, JENKLMON D S . An extraction method for measuring soil microbial biomass C. Soil Biomass and Biochemistry, 1987,19(6):703-707.
[17] BOKULICH N A, SUBRAMANIAN S, FAITH J J, GEVERS D, GORDON J I, KNIGHT R . Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 2012,10(1):57-59.
[18] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P . The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2013,41(D1):D590-D596.
[19] SCHLOSS P D, WESTCOTT S L, RYABIN T, HALL J R, HARTMANN M, HOLLISTER E B . Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, 2009,75(23):7537-7541.
[20] 刘显泽, 岳卫峰, 倪宝锋, 陈爱萍 . 秋浇对内蒙古义长灌域地下水动态的影响. 北京师范大学学报(自然科学版), 2016,52(3):380-386.
LIU X Z, YUE W F, NI B F, CHEN A P . Impact of autumn irrigation on groundwater dynamics in Yichang Irrigation Sub-district, Inner Mongolia. Journal of Beijing Normal University(Natural Science), 2016,52(3):380-386. (in Chinese)
[21] 倪东宁, 李瑞平, 史海滨, 苗庆丰, 梁建财 . 秋灌对冻融期土壤水盐热时空变化规律影响及灌水效果评价. 干旱地区农业研究, 2015,33(4):141-145.
NI D N, LI R P, SHI H B, MIAO Q F, LAING J C . Temporal and spatial variation of soil water-salt-heat during freezing and thawing period and the irrigation effect under the autumn irrigation. Agricultural Research in the Arid Areas, 2015,33(4):141-145. (in Chinese)
[22] 王文达, 兰敬芳 . 内蒙古河套灌区耕地与盐荒地盐分变化规律研究. 现代农业科技, 2017(3):156-158.
WANG W D, LAN J F . Salinity change rule of cultivated land and salt wasteland in Hetao irrigation district in Inner Mongolia. Modern Agricultural Science and Technology, 2017(3):156-158. (in Chinese)
[23] 王军, 顿耀龙, 郭义强, 窦森 . 松嫩平原西部土地整理对盐渍化土壤的改良效果. 农业工程学报, 2014,30(18):266-275.
WANG J, DUN Y L, GUO Y Q, DOU S . Effects of land consolidation on improvement of salinity soil in Western Songnen Plain. Transactions of the Chinese Society of Agricultural Engineering, 2014,30(18):266-275. (in Chinese)
[24] 朱阳春, 张振华, 赵学勇, 连杰, 童非, 张娜 . 河套灌区土壤有机碳和总碳的空间异质性及相关性分析. 江苏农业学报, 2017,33(6):1294-1300.
ZHU Y C, ZHANG Z H, ZHAO X Y, LIAN J, TONG F, ZHANG N . Spatial heterogeneity and relationship between soil total organic carbon and total carbon in the Hetao irrigation district. Jiangsu Journal of Agriculture Science, 2017,33(6):1294-1300. (in Chinese)
[25] 康健, 孟宪法, 许妍妍, 栾婧, 隆小华, 刘兆普 . 不同植被类型对滨海盐碱土壤有机碳库的影响. 土壤, 2012,44(2):260-266.
KANG J, MENG X F, XU Y Y, LUAN J, LONG X H, LIU Z P . Effects of different vegetation types on soil organic carbon pool in coastal saline-alkali soils of Jiangsu Province. Soils, 2012,44(2):260-266. (in Chinese)
[26] 张慧敏, 郭慧娟, 侯振安 . 不同盐碱胁迫对土壤细菌群落结构的影响. 新疆农业科学, 2018,55(6):1074-1084.
ZHANG H M, GUO H J, HOU Z A . Effects of saline and alkaline stress on soil bacterial community structure. Xinjiang Agricultural Sciences, 2018,55(6):1074-1084. (in Chinese)
[27] ANDRONOV E E, PETROVA S N, PINAEV A G . Analysis of the structure of microbial community in soils with different degrees of salinization using T-RFLP and real-time PCR techniques. Eurasian Soil Science, 2012,45(2):147-156.
[28] NULL N . Correction: salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? PLoS ONE, 2014,9(11):e114658.
[29] CAMPBELL B J, KIRCHMAN D L . Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. The ISME Journal, 2013,7(1):210-220.
[30] ZHENG W, XUE D, LI X, DENG Y, RUI J, FENG K . The responses and adaptations of microbial communities to salinity in farmland soils: A molecular ecological network analysis. Applied Soil Ecology, 2017(120):239-246.
[31] GRIFFITHS B S, PHILIPPOT L . Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 2013,37(2):112-129.
[32] 丁新景, 黄雅丽, 敬如岩, 马风云, 安然, 田琪, 陈博杰 . 基于高通量测序的黄河三角洲4种人工林土壤细菌结构及多样性研究. 生态学报, 2018,38(16):5857-5864.
doi: 10.5846/stxb201703260522
DING X J, HUANG Y L, JING R Y, MA F Y, AN R, TIAN Q, CHEN B J . Soil bacterial structure and diversity of four artificial forests in the Yellow River Delta based on high-throughput sequencing. Acta Ecologica Sinica, 2018,38(16):5857-5864. (in Chinese)
doi: 10.5846/stxb201703260522
[33] 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 . 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 2017,54(5):1293-1302.
DING X J, JING R Y, HUANG Y L, CHEN B J, MA F Y . Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta. Acta Pedologica Sinica, 2017,54(5):1293-1302. (in Chinese)
[1] GONG XiaoYa,SHI JiBo,FANG Ling,FANG YaPeng,WU FengZhi. Effects of Flooding on Soil Chemical Properties and Microbial Community Composition on Farmland of Continuous Cropped Pepper [J]. Scientia Agricultura Sinica, 2022, 55(12): 2472-2484.
[2] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[3] ZHAO WeiSong,GUO QingGang,SU ZhenHe,WANG PeiPei,DONG LiHong,HU Qing,LU XiuYun,ZHANG XiaoYun,LI SheZeng,MA Ping. Characterization of Fungal Community Structure in the Rhizosphere Soil of Healthy and Diseased-Verticillium Wilt Potato Plants and Carbon Source Utilization [J]. Scientia Agricultura Sinica, 2021, 54(2): 296-309.
[4] ZHAO WeiSong,GUO QingGang,LI SheZeng,WANG PeiPei,LU XiuYun,SU ZhenHe,ZHANG XiaoYun,MA Ping. Effect of Wilt-Resistant and Wilt-Susceptible Cotton on Soil Bacterial Community Structure at Flowering and Boll Stage [J]. Scientia Agricultura Sinica, 2020, 53(5): 942-954.
[5] SHANG LiRong,WAN LiQiang,LI XiangLin. Effects of Organic Fertilizer on Soil Bacterial Community Diversity in Leymus chinensis Steppe [J]. Scientia Agricultura Sinica, 2020, 53(13): 2614-2624.
[6] ZHANG MengYang,XIA Hao,LÜ Bo,CONG Ming,SONG WenQun,JIANG CunCang. Short-Term Effect of Biochar Amendments on Total Bacteria and Ammonia Oxidizers Communities in Different Type Soils [J]. Scientia Agricultura Sinica, 2019, 52(7): 1260-1271.
[7] WeiSong ZHAO,QingGang GUO,SheZeng LI,YaJiao WANG,XiuYun LU,PeiPei WANG,ZhenHe SU,XiaoYun ZHANG,Ping MA. Control Efficacy of Broccoli Residues on Cotton Verticillium Wilt and Its Effect on Soil Bacterial Community at Different Growth Stages [J]. Scientia Agricultura Sinica, 2019, 52(24): 4505-4517.
[8] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[9] GUO Jing,LUO PeiYu,YANG JinFeng,LI DongDong,HUANG YueYue,HAN XiaoRi. Influence of Long-term Fertilization on Community Structures and Colonization of Arbuscular mycorrhizal Fungi in a Brown Soil [J]. Scientia Agricultura Sinica, 2018, 51(24): 4677-4689.
[10] ZHANG Cheng, FENG Yao, LIU YuanWang, CHENG DengMiao, ZHENG Yu, LI ZhaoJun. The Degradation of Typical Antibiotics and Their Effects on Soil Bacterial Diversity in Spinach Soil [J]. Scientia Agricultura Sinica, 2018, 51(19): 3736-3749.
[11] Kun CHEN, XiaoNan XU, Jing PENG, XiaoJie FENG, YaPeng LI, XiuMei ZHAN, XiaoRi HAN. Effects of Biochar and Biochar-Based Fertilizer on Soil Microbial Community Structure [J]. Scientia Agricultura Sinica, 2018, 51(10): 1920-1930.
[12] GAO ShengChao, GUAN DaWei, MA MingChao, ZHANG Wei, LI Jun, SHEN DeLong. Effects of Fertilization on Bacterial Community Under the Condition of Continuous Soybean Monoculture in Black Soil in Northeast China [J]. Scientia Agricultura Sinica, 2017, 50(7): 1271-1281.
[13] ZHOU Li, FU ZhiDan, DU Qing, CHEN Ping, YANG WenYu, YONG TaiWen. Effects of Reduced N Fertilization on Crop N Uptake, Soil Ammonia Oxidation and Denitrification Bacteria Diversity in Maize/Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2017, 50(6): 1076-1087.
[14] YANG QiYue, HUANG Yong, CHEN YaBing, LIU LuoChuan, LI Jian, LAN DaoLiang. Screening of Optimal DNA Extraction Methods and the Bacterial Community Composition of Yak Rumen Revealed by High 16S rRNA Throughput Sequencing [J]. Scientia Agricultura Sinica, 2017, 50(5): 932-941.
[15] CHENG YanHong, HUANG QianRu, WU Lin, HUANG ShangShu, ZHONG YiJun, SUN YongMing, ZHANG Kun, ZHANG XinLiang. Effects of Straw Mulching and Vetiver Grass Hedgerows on Soil Enzyme Activities and Soil Microbial Community Structure in Red Soil Sloping Land [J]. Scientia Agricultura Sinica, 2017, 50(23): 4602-4612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!