Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (17): 2921-2928.doi: 10.3864/j.issn.0578-1752.2019.17.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Evaluation of Rice Germplasms for Grain Resistant Starch Content and Its Environmental Stability

ZHANG ChunLong,Channarong PHONGSAI,ZHANG JiangLi,YUYang,SU YaoHua,YANG Mi,GAO Liang,PU ShiHuang,LI Juan,JIN ShouLin,TAN XueLin,WEN JianCheng()   

  1. Rice Research Institute of Yunnan Agricultural University, Kunming 650201
  • Received:2019-02-27 Accepted:2019-05-27 Online:2019-09-01 Published:2019-09-10
  • Contact: WEN JianCheng E-mail:jcwen1117@163.com

Abstract:

【Objective】 It is beneficial for improving the health of chronic patients to eat high resistant starch (RS) content rice, but variety with high grain RS content is still very rare. Evaluations of rice germplasms for grain RS contents and its environmental stability were carried out in this study, and the results could provide a reference for the discovery of rice germplasm resources with high RS contents and its production. 【Method】 Grain RS contents in rice germplasms were detected by the Megazyme method, and used the PAST software to complete the frequency distribution of these contents. The environmental stability of rice RS contents were tested by planting at multiple locations within one year, and its variance analysis were performed with DPS software. Grain amylase contents were tested according to the national standard GB/T15683-2008. 【Result】 The initial evaluations on RS contents of 1206 rice germplasms demonstrated that for most these rice with RS content were very low, and about 87.6% of the rice were less than 2.5%, only about 0.2% were higher than 10%. There was a significant positive correlation between rice RS and amylose content, but high RS variety was not discovered in high amylose germplasms. However, three varieties with RS content higher than 10% were screened in low amylose content germplasms, and one of them was a good quality soft rice variety Diangu2, which has RS and amylose content of 10.12% and 12.3%, respectively. It carried out regional tests for eighteen varieties with different RS contents planting at three very differ environmental conditions. The result of environmental stability analysis indicated that the contents of thirteen varieties were affected by differences in planting area, of the others were affected. Totally, the contents were affected by genotype, planting environment and genotype-by-environment interactions. 【Conclusion】 In this research, most rice resources have low RS content, and also detected a significant positive correlation between rice grain RS and amylase content. Therefore, it is possible to develop rice variety with high RS starch and good taste, according the high RS varieties were identified in low amylose content germplasms. The RS content was mainly affected by genotype, so the varieties with high RS contents were high at different environments, and the lows’ were still low. Then, the varieties with high RS content can grow in its suitable areas to produce rice, and the contents could not be significantly affected.

Key words: rice (Oryza sativa L.), germplasm resource, resistant starch, amylose, environmental stability

Table 1

Average value of grain RS contents in rice germplasms"

种质 Accession 年份 Year 样本数 Number of samples 平均值 Mean (%) 变幅 Range (%)
软米Soft rice 2015 47 1.09 0.01—12.70
2016 63 0.25 0.00—10.12
香稻Aroma rice 2015 34 0.96 0.02—5.31
2016 84 0.09 0.00—3.12
杂交稻亲本Parents of hybrid rice 2015 42 0.52 0.01—12.84
2016 95 0.17 0.00—2.80
2018 338 0.96 0.00—5.23
杂交稻Hybrid rice 2015 101 1.37 0.02—6.33
2016 102 0.12 0.00—0.98
2017 178 1.89 0.24—4.39
2018 122 2.19 0.03—6.66
合计 Total 1206 1.01 0.00—12.84

Fig. 1

Frequency distribution of grain RS contents in rice germplasms"

Fig. 2

Distribution of grain RS and amylose contents in rice germplasms"

Table 2

Average variation of rice grain RS contents under at three very environmental conditions"

编号
Number
抗性淀粉含量 RS content (%) 稳定性分析 Stability analysis
元阳 Yuanyang 勐海 Menghai 广南 Guangnan 平均值 Mean FF value PP value
GE1 12.70 12.86 13.32 12.96 5.0696 0.0265
GE2 10.12 10.34 9.81 10.09 9.8893 0.0022
GE3 6.32 7.43 7.58 7.11 0.4244 0.5162
GE4 5.64 5.46 5.70 5.60 2.3932 0.1250
GE5 4.95 4.67 4.99 4.87 4.4032 0.0383
GE6 2.03 4.08 4.40 3.50 0.9075 0.3430
GE7 2.14 4.25 4.25 3.55 7.4400 0.0075
GE8 0.17 0.26 0.33 0.25 0.1012 0.7510
GE9 0.12 0.33 0.35 0.27 0.0177 0.8943
GE10 0.30 0.43 0.45 0.39 0.0036 0.9522
GE11 0.14 0.36 0.37 0.29 0.0414 0.8392
GE12 0.40 0.59 0.60 0.53 0.0323 0.8577
GE13 0.15 0.34 0.43 0.31 0.0609 0.8056
GE14 0.13 0.20 0.23 0.19 0.0092 0.9238
GE15 0.23 0.46 0.48 0.39 0.0318 0.8587
GE16 0.86 1.66 1.56 1.36 2.5379 0.1142
GE17 0.24 1.54 2.42 1.40 9.5812 0.0025
GE18 0.15 0.30 0.37 0.28 0.0293 0.8644
平均Mean 2.60 3.09 3.20 2.96

Table 3

Variance analysis of genotype and environmental interactions for rice grain RS contents growing at three different environmental conditions"

变异来源 Source of variation 自由度 df 平方和 SS 均方 MS FF value PP value
区组 Block 6 0.3414 0.0569 1.4380 0.2074
环境 Environment (E) 2 11.0282 5.5141 8.9501 0.0008
品种 Genotype (G) 17 2223.2205 130.7777 212.2693 0.0000
品种×环境 G×E 34 20.9472 0.6161 15.5717 0.0000
误差 Error 102 4.0356 0.0396
总和 Total 161 2259.5728
[1] 田丹青, 沈希宏, 舒小丽, 吴殿星 . 稻米淀粉的理化特性及其应用现状和进展. 核农学报, 2010,24(1):93-97.
TIAN D Q, SHEN X H, SHU X L, WU D X . Physicochemical properties of rice starch and its application status and progress. Journal of Nuclear Agricultural Sciences, 2010,24(1):93-97. (in Chinese)
[2] 黎舒佳, 高谨, 李家洋, 王永红 . 独脚金内酯调控水稻分蘖的研究进展. 植物学报, 2015,50(5):539-548.
doi: 10.11983/CBB15076
LI S J, GAO J, LI J Y, WANG Y H . Advances in studies on the regulation of rice tiller by strigolactone. The Plant Journal, 2015,50(5):539-548. (in Chinese)
doi: 10.11983/CBB15076
[3] ENGLYST H N, CUMMINGS J H . Digestion of the polysaccharides of some cereal foods in the human small-intestine. American Journal of Clinical Nutrition, 1985,42(5):778-787.
[4] KWAK J H, PAIK J K, KIM H I, KIM O Y, SHIN D Y, KIM H J, LEE J H, LEE J H . Dietary treatment with rice containing resistant starch improves markers of endothelial function with reduction of postprandial blood glucose and oxidative stress in patients with prediabetes or newly diagnosed type 2 diabetes. Atherosclerosis, 2012,224(2):457-464.
[5] 施标, 孙志敏, 白建江, 杨瑞芳, 张晓峰, 朴钟泽 . “优糖米”对Ⅱ型糖尿病人餐后血糖的影响. 中国粮油学报, 2014,29(1):1-6.
SHI B, SUN Z M, BAI J J, YANG R F, ZHANG X F, PIAO Z Z . The effect of “Youtangmi” on postprandial blood glucose in type Ⅱ diabetic patients. Journal of the Chinese Cereals, 2014,29(1):1-6. (in Chinese)
[6] 方长云, 胡贤巧, 卢林, 段彬伍 . 稻米抗性淀粉的研究进展. 核农学报, 2015,29(3):513-520.
doi: 10.11869/j.issn.100-8551.2015.03.0513
FANG C Y, HU X Q, LU L, DUAN B W . Research progress on rice resistant starch. Journal of Nuclear Agricultural Sciences, 2015,29(3):513-520. (in Chinese)
doi: 10.11869/j.issn.100-8551.2015.03.0513
[7] ROEDIGER W E, MILLARD S H, BIRD A R . Focused gut-mucosal nutrition for diarrheal disease: Improved nutrient therapy. Asia Pacific Journal of Clinical Nutrition, 2001,10(1):67-80.
[8] BIRT D F, BOYLSTON T, HENDRICH S, JANE J L, HOLLIS J, LI L, MCCLELLAND J, MOORE S, PHILLIPS G J, ROWLING M, SCHALINSKE K, SCOTT M P, WHITLEY E M, WHITLEY E M . Resistant starch: Promise for improving human health. Advances in Nutrition, 2013,4(6):587-601.
[9] MORITA T, KASAOKA S, HASE K, KIRIYAMA S . Oligo-L- methionine and resistant protein promote cecal butyrate production in rats fed resistant starch and fructooligosaccharide. The Journal of Nutrition, 1999,129(7):1333-1339.
[10] MILLER J B, PANG E, BRAMALL L . Rice-a high or low glycemic index food. American Journal of Clinical Nutrition, 1992,56(6):1034-1036.
[11] NIBA L L . Resistant starch: A potential functional food in gradient.Nutrition & Food Science, 2002(32):62-67.
[12] 杨朝柱, 李春寿, 舒小丽, 张志转, 张磊, 赵海军, 马传喜, 吴殿星 . 富含抗性淀粉水稻突变体的淀粉特性. 中国水稻科学, 2005,19(6):516-520.
YANG C Z, LI C SH, SHU X L, ZHANG Z Z, ZHANG L, ZHAO H J, MA C X, WU D X . Starch properties of rice mutant enriched with resistant starch. Chinese Journal of Rice Science, 2005,19(6):516-520. (in Chinese)
[13] 孙志敏, 白建江, 朱辉明, 孙春龙, 朴钟泽, 郝再彬 . 混配比例及加工方式对“降糖1号”稻米产品抗性淀粉含量的影响. 核农学报, 2012,26(2):318-323.
SUN Z M, BAI J J, ZHU H M, SUN C L, PIAO Z Z, HAO Z B . Effect of mixing ratio and processing method on resistant starch content of “Jiangtang 1 hao” rice product. Journal of Nuclear Agricultural Sciences, 2012,26(2):318-323. (in Chinese)
[14] 罗曦, 黄锦峰, 朱永生, 谢鸿光, 吴方喜, 张木清, 张建福, 谢华安 . 水稻功米3号高抗性淀粉性状的遗传分析. 农业生物技术学报, 2014,22(1):10-16.
LUO X, HANG J F, ZHU Y S, XIE H G, WU F X, ZHANG M Q, ZHANG J F, XIE H A . Genetic analysis of high-resistance starch traits in rice Gongmi No.3. Journal of Agricultural Biotechnology, 2014,22(1):10-16. (in Chinese)
[15] 白建江, 张建明, 朴钟泽, 方军, 李刚燮, 王亚, 杨瑞芳 . 应用CRISPR/Cas9系统编辑水稻SBE3基因获得高抗性淀粉水稻新品系. 分子植物育种, 2018,16(5):1510-1516.
BAI J J, ZHANG J M, PIAO Z Z, FANG J, LI G X, WANG Y, YANG R F . Application of CRISPR/Cas9 system to edit rice SBE3 gene to obtain high resistance starch rice new line. Molecular Plant Breeding, 2018,16(5):1510-1516. (in Chinese)
[16] 魏明亮, 杜娟, 曾亚文, 杨树明, 普晓英, 杨涛 . 云南稻微核心种质及其回交高代糙米功能成分含量的遗传变异. 湖南农业大学学报(自然科学版), 2013,39(2):121-126.
WEI M L, DU J, ZENG Y W, YANG S M, PU X Y, YANG T . Genetic variation of functional components in Yunnan rice micro-core germplasm and its backcross high-grade brown rice. Journal of Hunan Agricultural University: Natural Science Edition, 2013,39(2):121-126. (in Chinese)
[17] ZHOU H J, WANG L J, LIU G F, MENG X B, JING Y H, SHU X L, KONG X L, SUN J, YU H, SMITH S M, WU D X, LI J Y . Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Sciences of the USA, 2016,113(45):12-18. (in Chinese)
[18] 杨树明, 曾亚文, 方晓东, 杜娟, 普晓英, 杨涛, 王雨辰, 普正贵 . 氮肥和栽插密度对功能型水稻不用基因型的产量和抗性淀粉含量的影响. 西南农业学报, 2009,22(3):681-684.
YANG S M, ZENG Y W, FANG X D, DU J, PU X Y, YANG T, WANG Y C, PU Z G . Effects of nitrogen fertilizer and planting density on the yield and resistant starch content of functional rice without genotype. Southwest Agricultural Journal, 2009,22(3):681-684. (in Chinese)
[19] 张荟, 罗曦, 魏林艳, 蔡秋华, 张建福, 谢华安 . 不同基因型水稻的抗性淀粉含量与稻米品质性状的相关性及差异性. 福建农业学报, 2016,31(9):917-922.
ZHANG H, LUO X, WEI L Y, CAI Q H, ZHANG J F, XIE H A . Correlation and difference between resistant starch content and rice quality traits in different genotypes of rice. Fujian Journal of Agricultural Sciences, 2016,31(9):917-922. (in Chinese)
[20] 焦桂爱, 唐绍清, 罗炬, Fitzgerald M, Roferos L T, 胡培松 . 水稻抗性淀粉突变体抗性淀粉结构的比较研究. 中国水稻科学, 2006,20(6):645-648.
JIAO G A, TANG S Q, LUO J, FITZGERALD M, ROFEROS L T, HU P S , Comparative study on the structure of rice resistant starch mutant resistant starch. Chinese Journal of Rice Science, 2006,20(6):645-648. (in Chinese)
[21] 杨瑞芳, 白建江, 方军, 曾威, 朴钟泽, 李刚夑 . 分子标记辅助选择选育高抗性淀粉水稻新品种. 核农学报, 2015,29(12):2259-2267.
doi: 10.11869/j.issn.100-8551.2015.12.2259
YANG R F, BAI J J, FANG J, ZENG W, PIAO Z Z, LI G X . Molecular marker-assisted selection of new varieties of high- resistance starch rice. Journal of Nuclear Agricultural Sciences, 2015,29(12):2259-2267. (in Chinese)
doi: 10.11869/j.issn.100-8551.2015.12.2259
[22] YANG C Z, SHU X L, ZHANG L L, WANG X Y, ZHAO H J, MA C X, WU D X . Starch properties of mutant rice high in resistant starch. Journal of Agricultural & Food Chemistry, 2006,54(2):523-528.
[23] HU P, ZHAO H J, DUAN Z Y, ZHANG L L, WU D X . Starch digestibility and the estimated glycemic score of different types of rice differing in amylose contents. Journal of Cereal Science, 2004,40(3):231-237.
[24] 曾亚文, 杜娟, 杨树明, 普晓英, 王雨辰, 杨涛, 孙正海, 辛培尧 . 云南稻核心种质糙米功能成分栽培型差异及其地带性特征. 光谱学与光谱分析, 2010,30(12):3388-3394.
ZENG Y W, DU J, YANG S M, PU X Y, WANG Y C, YANG T, SUN Z H, XIN P Y . Differences in cultivation characteristics of functional components of brown rice in Yunnan rice germplasm and their zonal characteristics. Spectroscopy and Spectral Analysis, 2010,30(12):3388-3394. (in Chinese)
[25] 蹇华丽, 高群玉, 梁世中 . 直链淀粉含量对抗性淀粉形成影响的研究. 粮食与油脂, 2002,10:5-7.
QIAN H L, GAO Q Y, LIANG S Z . The effect of amylose content on the formation of resistant starch. Grain and Fat, 2002,10:5-7. (in Chinese)
[26] ESCARPA A, GONZÁLEZ M C, MANAS E J . Resistant starch formation: Standardization of a high-pressure-autoclace process. Journal of Agricultural Food Chemistry, 1996,44(3):924-928.
[27] CHEN M H, BERGMAN C J, MCCLUNG A M . Resistant starch: Variation among high amylose rice varieties and its relationship with apparent amylose content, pasting properties and cooking methods.Food Chemistry, 2017(4):180-189.
[28] FITZGERALD M A, RAHMAN S, RESURRECCION A P, CONCEPCION J, DAYGON V D, DIPTI S S, KABIR K A, KLINGNER B, MORELL M K, AND BIRD A R . Identification of a major genetic determinant of glycaemic index in rice. Rice, 2011,4(2):66-74.
[29] BAO J S, ZHOU X, XU F F, HE Q, AND PARK Y J . Genome-wide association study of the resistant starch content in rice grains: Genome-wide association study of resistant starch in rice. Starch/Stärke, 2017,60(41):10302-10311.
[30] 朱哲, 刘良忠, 黄婷, 王幻, 王松树 . 直链淀粉含量及淀粉平均聚合度对抗性淀粉含量影响的研究. 湖北农业科学, 2017,56(2):320-324.
ZHU Z, LIU L Z, HUANG T, WANG H, WANG S S . Study on the effect of amylose content and average degree of starch polymerization on resistant starch content. Hubei Agricultural Science, 2017,56(2):320-324. (in Chinese)
[31] 杨涛, 杨武振, 王荔 . 02428×合系35 RILs群体糙米和发芽糙米γ -氨基丁酸、抗性淀粉的遗传分析. 植物遗传资源学报, 2015,16(1):205-209.
YANG T, YANG W Z, WANG L . Genetic analysis of γ-aminobutyric acid and resistant starch in brown rice and germinated brown rice of 02428×Hexi35 RILs population. Journal of Plant Genetic Resources, 2015,16(1):205-209. (in Chinese)
[1] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[2] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[5] CHEN XueSen,WANG Nan,ZHANG ZongYing,MAO ZhiQuan,YIN ChengMiao. Understanding and Thinking About Some Problems of Fruit Tree Germplasm Resources and Genetic Breeding [J]. Scientia Agricultura Sinica, 2022, 55(17): 3395-3410.
[6] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[7] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[8] ZHANG BeiJu,CHEN SongShu,LI KuiYin,LI LuHua,XU RuHong,AN Chang,XIONG FuMin,ZHANG Yan,DONG LiLi,REN MingJian. Construction and Application of Detection Model for Amylose and Amylopectin Content in Sorghum Grains Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2022, 55(1): 26-35.
[9] ZHANG HengDong,HUANG Min,ZOU YingBin,CHEN JiaNa,SHAN Shuang Lv. Amylose Accumulation Properties in the Grains of Noodle Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1354-1364.
[10] HAN ZhanYu,WU ChunYan,XU YanQiu,HUANG FuDeng,XIONG YiQin,GUAN XianYue,ZHOU LuJian,PAN Gang,CHENG FangMin. Effects of High-Temperature at Filling Stage on Grain Storage Protein Accumulation and Its Biosynthesis Metabolism for Rice Plants Under Different Nitrogen Application Levels [J]. Scientia Agricultura Sinica, 2021, 54(7): 1439-1454.
[11] ZHANG XiangYu,GUO Jia,WANG San,CHEN CongPing,SUN ChangHui,DENG XiaoJian,WANG PingRong. Gene Mapping and Candidate Gene Analysis of Grain Width Mutant gw87 in Rice [J]. Scientia Agricultura Sinica, 2021, 54(12): 2487-2498.
[12] YANG Tao,HUANG YaJie,LI ShengMei,REN Dan,CUI JinXin,PANG Bo,YU Shuang,GAO WenWei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits in Sea-Island Cotton Germplasm Resources [J]. Scientia Agricultura Sinica, 2021, 54(12): 2499-2509.
[13] SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste [J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
[14] KE FuLai,ZHU Kai,LI ZhiHua,SHI YongShun,ZOU JianQiu,WANG YanQiu. Formation Regulating and Micro-Structure of Sorghum Starch with Different Types of Endosperm [J]. Scientia Agricultura Sinica, 2020, 53(14): 2774-2785.
[15] ZHAO ChunFang,YUE HongLiang,HUANG ShuangJie,ZHOU LiHui,ZHAO Ling,ZHANG YaDong,CHEN Tao,ZHU Zhen,ZHAO QingYong,YAO Shu,LIANG WenHua,LU Kai,WANG CaiLin. Eating Quality and Physicochemical Properties in Nanjing Rice Varieties [J]. Scientia Agricultura Sinica, 2019, 52(5): 909-920.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!