Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (14): 2468-2483.doi: 10.3864/j.issn.0578-1752.2019.14.007

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Different Forms of Nitrogen Migration in Typical Red Soil to Long-Term Different Fertilization Systems

SHEN FengMin1,JIANG GuiYing1(),ZHANG YuJun1,2,LIU Fang1,LIU ShiLiang1(),LIU KaiLou3   

  1. 1College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002
    2Zhengzhou Institute of Urban Landscape and Architecture, Zhengzhou 450051
    3Jiangxi Institute of Red Soil, Jinxian 331717, Jiangxi
  • Received:2019-01-22 Accepted:2019-04-11 Online:2019-07-16 Published:2019-07-26
  • Contact: GuiYing JIANG,ShiLiang LIU E-mail:jgy9090@126.com;shlliu70@163.com

Abstract:

【Objective】 This study was aimed to explore the characteristics of different nitrogen forms migration under different fertilizations in typical red soil, so as to provide theoretical basis for rational amount of applied nitrogen in red soil region. 【Method】 Based on the long-term experiment site located at Jinxian, Jiangxi province, four typical treatments were chosen as: (1) no fertilization (CK); (2) mineral nitrogen, phosphorus, potassium (NPK); (3) NPK combined with straw (NPKS); (4) NPK combined with pig manure and straw (NPKSM). Four levels of soil samples of 0-10 cm, 10-20 cm, 20-40 cm and 40-60cm were collected from each treatment. Soil total nitrogen (TN), alkali-hydrolyzable nitrogen (AN), nitrate nitrogen (NO3 --N), ammonium nitrogen (NH4 +-N), dissolved organic nitrogen (DON) and microbial biomass nitrogen (SMBN) were measured and analyzed. 【Result】 The results showed that the content of nitrogen forms under different treatments decreased with soil depth, while the different nitrogen forms demonstrated different characteristics in different soil layers. The available nitrogen forms (e.g. AN, NO3 --N, NH4 +-N, DON and SMBN) were concentrated at 0-20 cm soil layers, and their content obviously decreased in 20-60 cm compared with 0-20 cm under all treatments. The TN content in 0-40 cm layers was no significantly change. The fertilizer treatments (i.e. NPK, NPKS and NPKSM) could improve all nitrogen forms content compared with CK, which was the highest under NPKSM treatment. The TN content was little change under the same treatment in 0-40 cm, while the TN content was ordered as NPKSM>NPKS>NPK>CK in 0-60 cm. The AN content under the same treatment was obviously decreased with soil depths. Therein, compared with the AN content in 10-20 cm, which in 20-40 cm was decreased by 42% (CK), 50% (NPK), and 44% (NPKS, NPKSM), respectively. The NO3 --N and NH4 +-N content were highest under NPKSM treatment in each soil layers. Therein, the drop of NH4 +-N between 40-60 cm and 0-10 cm was higher than that of NO3 --N, which ordered as 54% (NPKS)>51% (CK)>48% (NPK)>36% (NPKSM). The DON content was significantly different among the treatments in 0-20 cm, and which was higher under the treatment with mineral fertilizer combined with organic fertilizer. The DON content under CK and NPK treatments in 40-60 cm was increased slightly, while significantly decreased under NPKS and NPKSM treatments. The SMBN was significantly different among treatments in 10-20 cm layer compared with other soil layers, and ordered as NPKSM>NPKS>NPK>CK. The proportion of each form of nitrogen to total nitrogen was decreased with soil depth. There was significantly positive correlation between TN, AN, NO3 --N, DON and SMBN at 0-20 cm (P≤0.05), among which TN, DON, AN and SMBN existed very significant positive correlation (P≤0.01). The early, late rice grain yield, straw yield, total biomass, and their nitrogen accumulation were significantly higher under fertilization treatments (i.e. NPK, NPKS, and NPKSM) than that under CK treatment, which was the highest under NPKSM treatment. Moreover, the residual mineral nitrogen and apparent nitrogen loss were also highest under NPKSM treatment. 【Conclusion】 In red soil, the effect of fertilization on nitrogen form focused on the upper layer (e.g. 0-20 cm). All the nitrogen forms content under all treatments decreased with soil depths. All forms of nitrogen content at 0-60 cm was improved under NPKSM. Meanwhile, the crop yield and their nitrogen accumulation were significantly increased under NPKSM treatment, so did with the residual mineral nitrogen and apparent nitrogen loss.

Key words: long-term fertilization, red soil, various forms of nitrogen, migration, rice

Table 1

Mineral and organic fertilizer application rate under different treatments (kg·hm-2)"

处理 Treatment N P2O5 K2O 猪粪 Pig manure 紫云英 Green manure 秸秆 Straw
CK
NPK 90 45 75
NPKS 90 45 75 22500 4500
NPKSM 90 45 75 22500 22500 4500

Fig. 1

Soil total nitrogen content in different soil layers under different treatments Different small letters showed significant differences among treatments under the same soil layer (P≤0.05); Different capital letters showed significant differences among different soil layers under the same treatment (P≤0.05). The same as below"

Fig. 2

Soil alkali-hydrolyzable nitrogen content in different soil layers under different treatments"

Fig. 3

Soil nitrate nitrogen content in different soil layers under different treatments"

Fig. 4

Soil ammonium nitrogen content in different soil layers under different treatments"

Fig. 5

Soil dissolved organic nitrogen content in different soil layers under different treatments"

Fig. 6

Soil microbial biomass nitrogen in different soil layers under different treatments"

Fig. 7

The proportion of different nitrogen form to total nitrogen in different soil layers under different treatments"

Table 2

The correlations among different nitrogen forms"

TN AN NO3--N NH4+-N DON SMBN
TN 1.000
AN 0.994** 1.000
NO3--N 0.986* 0.979* 1.000
NH4+-N 0.710 0.638 0.643 1.000
DON 0.995** 0.992** 0.965* 0.724 1.000
SMBN 0.999** 0.987** 0.982* 0.746 0.994** 1.000

Table 3

Early rice and late rice yield under different treatments (kg·hm-2)"

处理
Treatment
早稻Early rice
晚稻Late rice
稻谷产量
Grain yield
稻草产量
Straw yield
总生物量
Total biomass
稻谷产量
Grain yield
稻草产量
Straw yield
总生物量
Total biomass
CK 2463c 2985c 5448c 4271bc 5177bc 9448c
NPK 4023b 4877b 8900b 4744b 5751b 10495b
NPKS 3915b 4633b 8548b 4807b 5689b 10497b
NPKSM 5272a 6239a 11512a 5858a 6933a 12791a

Table 4

N contents and accumulation in grain and straw of early and late rice under different treatments"

处理
Treatment
氮含量 N content (g·kg-1) 氮吸收量 N accumulation (kg·hm-2)
稻谷Grain 稻草Straw 稻谷Grain 稻草Straw 植株 Total
早稻 Early rice
CK 10.44b 4.22a 22.11d 10.83d 32.94d
NPK 11.22b 4.69a 38.82c 19.66b 58.48c
NPKS 13.87a 4.29a 46.70b 17.09c 63.79b
NPKSM 13.61a 4.42a 61.71a 23.71a 85.42a
晚稻 Late rice
CK 11.33a 3.83b 41.61c 17.05c 58.67c
NPK 10.09a 4.44a 41.17c 21.96b 63.13bc
NPKS 11.43a 4.37a 47.28b 21.38b 68.66b
NPKSM 11.79a 4.48a 59.38a 26.71a 86.09a

Table 5

Nitrogen balance in double-rice system (kg·hm-2)"

处理
Treatment
氮投入 Nitrogen input 氮输出Nitrogen output 氮表观损失
Apparent N loss
化肥
Mineral fertilizer
稻草
Straw
紫云英
Green manure
猪粪
Pig manure
起始无机氮
Initial Nmin
作物吸收
Crop uptake
残留无机氮
Residual Nmin
CK 233.04c 91.60c 180.00c -38.56d
NPK 90.0 247.68c 121.61b 203.04c 13.03c
NPKS 90.0 35.2 135.5 329.28b 132.44b 383.18b 74.35b
NPKSM 90.0 35.2 135.5 140.9 371.83a 171.51a 425.78a 176.14a
[1] 朱兆良, 文启孝 . 中国土壤氮素. 南京: 江苏科学技术出版社, 1992: 213-249.
ZHU Z L, WEN Q X . China Soil Nitrogen. Nanjing: Jiangsu Science and Technology Press, 1992: 213-249. (in Chinese)
[2] SHRESTHA R K, COOPERBAND L R, MACGUIDWIN A E . Strategies to reduce nitrate leaching into groundwater in potato grown in sandy soils: case study from North Central USA. American Journal of Potato Research, 2010,87(3):229-244.
doi: 10.1007/s12230-010-9131-x
[3] ZHAO C S, HU C X, HUANG W, SUN X C, TAN Q L, DI H J . A lysimeter study of nitrate leaching and optimum nitrogen application rates for intensively irrigated vegetable production systems in Central China. Journal of Soils Sediments, 2010 ( 10):9-17.
[4] 孙波, 潘贤章, 王德建, 韩晓增, 张玉铭, 郝明德, 陈欣 . 我国不同区域农田养分平衡对土壤肥力时空演变的影响. 地球科学进展, 2008,23(11):1201-1208.
SUN B, PAN X Z, WANG D J, HAN X Z, ZHANG Y M, HAO M D, CHEN X . Effect of nutrient balance on spatial and temporal change of soil fertility in different agriculture area in China. Advances in Earth Science, 2008,23(11):1201-1208. (in Chinese)
[5] 马力, 杨林章, 肖和艾, 殷士学, 夏立忠, 李运东, 刘国华 . 长期施肥和秸秆还田对红壤水稻土氮素分布和矿化特性的影响. 植物营养与肥料学报, 2011,17(4):898-905.
doi: 10.11674/zwyf.2011.0405
MA L, YANG L Z, XIAO H A, YIN S X, XIA L Z, LI Y D, LIU G H . Effects of long-term fertilization and straw returning on distribution and mineralization of nitrogen in paddy soils in subtropical China. Plant Nutrition and Fertilizer Science, 2011,17(4):898-905. (in Chinese)
doi: 10.11674/zwyf.2011.0405
[6] 王火焰, 周健民 . 根区施肥—提高肥料养分利用率和减少面源污染的关键和必需措施. 土壤, 2013,45(5):785-790.
WANG H Y, ZHOU J M . Root-zone fertilizationA key and necessary approach to improve fertilizer use efficiency and reduce non-point source pollution from the cropland. Soils, 2013,45(5):785-790. (in Chinese)
[7] 彭令发, 郝明德, 来璐, 李丽霞 . 黄土旱塬区长期施肥对土壤剖面养分分布的影响. 水土保持通报, 2003,23(1):36-38.
PENG L F, HAO M D, LAI L, LI L X . Effect of Long-term fertilization on nutrients distribution of soil profiles in arid highland of Loess Plateau. Bulletin of Soil and Water Conservation, 2003,23(1):36-38. (in Chinese)
[8] 包耀贤, 吴发启, 贾玉奎 . 黄土丘陵沟壑区坝地和梯田土壤氮素特征与演变. 西北农林科技大学学报, 2008,36(3):97-104.
BAO Y X, WU F Q, JIA Y K . Characteristic is and evolution of soil nitrogen in dam land and terrace in Loess Hilly Region. Journal of Northwest A & F University, 2008,36(3):97-104. (in Chinese)
[9] 包耀贤, 吴发启, 刘明虎, 宋芳云 . 渭北旱塬梯田土壤氮素特征及影响因素分析. 干旱地区农业研究, 2008,26(5):109-114.
BAO Y X, WU D Q, LIU M H, SONG F Y . Analysis on characteristics and influencing factors of soil nitrogen for terrace in the Weibei dryland. Agricultural Research in the Arid Areas, 2008,26(5):109-114. (in Chinese)
[10] 段鹏鹏, 丛耀辉, 徐文静, 张玉玲, 虞娜, 张玉龙 . 氮肥与有机肥配施对设施土壤可溶性氮动态变化的影响. 中国农业科学, 2015,48(23):4717-4727.
DUAN P P, CONG Y H, XU W J, ZHANG Y L, YU N, ZHANG Y L . Effect of combined application of nitrogen fertilizer and manure on the dynamic of soil soluble N in greenhouse cultivation. Scientia Agricultura Sinica, 2015,48(23):4717-4727. (in Chinese)
[11] 吴建富, 张美良, 刘经荣, 王海辉 . 不同肥料结构对红壤稻田氮素迁移的影响. 植物营养与肥料学报, 2001,7(4):368-373.
doi: 10.11674/zwyf.2001.0402
WU J F, ZHANG M L, LIU J R, WANG H H . Effect of different structure of fertilizer on the migration of nitrogen in red rice soil. Plant Nutrition and Fertilizer Science, 2001,7(4):368-373. (in Chinese)
doi: 10.11674/zwyf.2001.0402
[12] 白雪原, 红梅, 武岩, 翟丽霞, 美丽 . 施肥对河套灌区土壤铵态氮、硝态氮的影响. 北方农业学报, 2016,44(3):15-17.
BAI X Y, HONG M, WU Y, ZHAI L X, MEI L . Effects of fertilizer on NH4 +-N and NO3 --N of soil in Hetao irrigation area . Journal of Northern Agriculture, 2016,44(3):15-17. (in Chinese)
[13] 秦明周 . 红壤丘陵区农业土地利用对土壤肥力的影响及评价. 山地学报, 1999,17(1):71-75.
QIN M Z . Assessment on influence of agricultural land use on soil nutrient fertility in red soil hills region. Journal of Mountain Science, 1999,17(1):71-75. (in Chinese)
[14] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000: 25.
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000: 25. (in Chinese)
[15] 吴金水 . 土壤微生物生物量测定方法及其应用. 北京: 气象出版社, 2006: 54.
WU J S. Method and Application of Soil Microbial Biomass Measurement. Beijing: China Meteorological Press, 2006: 54. (in Chinese)
[16] 鲁艳红, 聂军, 廖育林, 周兴, 王宇, 汤文光 . 氮素抑制剂对双季稻产量、氮素利用效率及土壤氮平衡的影响. 植物营养与肥料学报, 2018,24(1):95-104.
LU Y H, NIE J, LIAO Y L, ZHOU X, WANG Y, TANG W G . Effects of urease and nitrification inhibitor on yield, nitrogen efficiency and soil nitrogen balance under double-rice cropping system. Journal of Plant Nutrition and Fertilizers, 2018,24(1):95-104. (in Chinese)
[17] 薛亮, 马忠明, 杜少平, 冯守疆, 冉生斌 . 氮素用量对膜下滴灌甜瓜产量以及氮素平衡、硝态氮累积的影响. 中国农业科学, 2019,52(4):690-700.
XUE L, MA Z M, DU S P, FENG S J, RAN S B . Effects of application of nitrogen on melon yield, nitrogen balance and soil nitrogen accumulation under plastic mulching with drip irrigation. Scientia Agricultura Sinica, 2019,52(4):690-700. (in Chinese)
[18] 李大明, 柳开楼, 叶会财, 胡志华, 余喜初, 徐小林, 杨旭初, 周利军, 胡秋萍, 胡惠文, 黄庆海 . 长期不同施肥处理红壤旱地剖面养分分布差异. 植物营养与肥料学报, 2018,24(3):633-640.
LI D M, LIU K L, YE H C, HU Z H, YU X C, XU X L, YANG X C, ZHOU L J, HU Q P, HU H W, HUANG Q H . Differences of soil nutrient distribution in profiles under long-term fertilization in upland red soil. Journal of Plant Nutrition and Fertilizers, 2018,24(3):633-640. (in Chinese)
[19] ZHANG Y G, JIANG Y, LIANG W J, WEN D Z, ZHANG Y L . Vertical variation and storage of nitrogen in an aquic brown soil under different land uses. Journal of Forestry Research, 2004,15(3):192-196.
doi: 10.1007/BF02911023
[20] 张智猛, 戴良香, 张电学, 常连生 . 冬小麦—夏玉米轮作周期内碱解氮、硝态氮时空变化及施氮安全值的研究. 土壤通报, 2004,35(1):38-42.
ZHANG Z M, DAI L X, ZHANG D X, CHANG L S . Study on change on alkali hydrolysable N and NO3 --N content in soil with time and space and secure use of nitrogen amount in the wheat-maize rotating system . Chinese Journal of Soil Science, 2004,35(1):38-42. (in Chinese)
[21] 赵聪, 曹莹菲, 刘克, 杨学云, 吕家珑 . 长期不同施肥对塿土氮素分布的影响. 农业环境科学学报, 2013,32(7):1375-1381.
ZHAO C, CAO F F, LIU K, YANG X Y, LV J L . Effects of long-term fertilization on nitrogen distribution in manural loessial soil. Journal of Agro-Environment Science, 2013,32(7):1375-1381. (in Chinese)
[22] 施春建, 庄秋丽, 李琪, 梁文举, 姜勇 . 东北地区不同纬度农田土壤碱解氮的剖面分布. 生态学杂志, 2007,26(4):501-504.
SHI C J, ZHUANG Q L, LI Q, LIANG W J, JIANG Y . Profile distribution of alkali-hydrolyzed nitrogen in farmland soils of Northeast China along a latitudinal gradient. Chinese Journal of Ecology, 2007,26(4):501-504. (in Chinese)
[23] 南镇武, 刘树堂, 袁铭章, 刘锦涛 . 辛励, 陈晶培 . 长期定位施肥土壤硝态氮和铵态氮积累特征及其与玉米产量的关系. 华北农学报, 2016,31(2):176-181.
doi: 10.7668/hbnxb.2016.02.029
NAN Z W, LIU S T, YUAN M Z, LIU J T, XIN L, CHEN J P . Characteristics of nitrate nitrogen and ammonium nitrogen accumulation in soil and its relationship with maize yield on long-term located fertilization. Acta Agriculturae Boreali-Sinica, 2016,31(2):176-181. (in Chinese)
doi: 10.7668/hbnxb.2016.02.029
[24] BASSO B, RITCHIE J T . Impact of compost, manure and inorganic fertilizer on nitrate leaching and yield for a 6-year maize-alfalfa rotation in Michigan. Agriculture Ecosystems and Environment, 2005,l08:329-341.
[25] 张慧霞, 周怀平, 杨振兴, 解文艳, 关春林 . 长期施肥对旱地土壤剖面硝态氮分布和累积的影响. 山西农业科学, 2014,42(5):465-469.
ZHANG H X, ZHOU H P, YANG Z X, XIE W Y, GUAN C L . Effect of long-term fertilization to distribution and accumulation of NO3 --N in dryland soil . Journal of Shanxi Agricultural Sciences, 2014,42(5):465-469. (in Chinese)
[26] 盖霞普, 刘宏斌, 翟丽梅, 杨波, 任天志, 王洪媛, 武淑霞, 雷秋良 . 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响. 中国农业科学, 2018,51(12):2336-2347.
GAI X P, LIU H B, ZHAI L M, YANG B, REN T Z, WANG H Y, WU S X, LEI Q L . Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk. Scientia Agricultura Sinica, 2018,51(12):2336-2347. (in Chinese)
[27] 梁斌, 周建斌, 杨学云 . 长期施肥对土壤微生物生物量碳、氮及矿质态氮含量动态变化的影响. 植物营养与肥料学报, 2010,16(2):321-326.
doi: 10.11674/zwyf.2010.0209
LIANG B, ZHOU J B, YANG X Y . Changes of soil microbial biomass carbon and nitrogen, and mineral nitrogen after a long -term different fertilization. Plant Nutrition and Fertilizer Science, 2010,16(2):321-326.(in Chinese)
doi: 10.11674/zwyf.2010.0209
[28] 张丹, 付斌, 胡万里, 翟丽梅, 刘宏斌, 陈安强, 盖霞普, 张亦涛, 刘剑, 王洪媛 . 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量. 农业工程学报, 2017,33(9):133-140.
ZHANG D, FU B, HU W L, ZHAI L M, LIU H B, CHEN A Q, GAI X P, ZHANG Y T, LIU J, WANG H Y . Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(9):133-140. (in Chinese)
[29] 刘慧颖 . 玉米田氮素管理对氮肥综合效应影响的评价[D]. 沈阳: 沈阳农业大学, 2013.
LIU H Y . The evaluation of nitrogen management on comprehensive effect of nitrogen fertilizer in maize field[D]. Shenyang: Shenyang Agricultural University, 2013. ( in Chinese)
[30] 宁建凤, 邹献中, 杨少海, 魏岚, 巫金龙 . 有机无机氮肥配施对土壤氮淋失及油麦菜生长的影响. 农业工程学报, 2007,23(11):95-100.
NING J F, ZOU X Z, YANG S H, WEI L, WU J L . Effects of combined application of organic and inorganic nitrogen fertilizer on the soil nitrogen leaching and the growth of leaf used lettuce. Transactions of the CSAE, 2007,23(11):95-100. (in Chinese)
[31] 王敬, 程谊, 蔡祖聪, 张金波 . 长期施肥对农田土壤氮素关键转化过程的影响. 土壤学报, 2016,53(2):292-303.
WANG J, CHENG Y, CAI Z C, ZHANG J B . Effects of long-term fertilization on key processes of soil nitrogen cycling in agricultural soil: A review. Acta Pedologica Sinica, 2016,53(2):292-303. (in Chinese)
[32] 黄东风, 王果, 李卫华, 邱孝煊 . 不同施肥模式对蔬菜生长、氮肥利用及菜地氮流失的影响. 应用生态学报, 2009,20(3):631-638.
HUANG D F, WANG G, LI W H, QIU X X . Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field. Chinese Journal of Applied Ecology, 2009,20(3):631-638. (in Chinese)
[33] 李彦, 孙翠平, 井永平, 罗加法, 张英鹏, 仲子文, 孙明, 薄录吉, 刘兆辉 . 长期施用有机肥对潮土土壤肥力及硝态氮运移规律的影响. 农业环境科学学报, 2017,36(7):1386-1394.
LI Y, SUN C P, JING Y P, LUO J F, ZHANG Y P, ZHONG Z W, SUN M, BO L J, LIU Z H . Effects of long-term application of organic manure on soil fertility and nitrate-N transport in fluvo-aquic soil. Journal of Agro-Environment Science, 2017,36(7):1386-1394. (in Chinese)
[34] 杨合法, 范聚芳, 梁丽娜, 杨玉宝, 牛灵安, 李季 . 长期不同施肥模式对日光温室土壤硝态氮时空分布及累积的影响. 中国生态农业学报, 2011,19(2):246-252.
YANG H F, FAN J F, LIANG L N, YANG Y B, NIU L A, LI J . Effects of long-term fertilization modes on spatio-temporal distribution and accumulation of soil nitrate nitrogen in solar greenhouse. Chinese Journal of Eco-Agriculture, 2011,19(2):246-252. (in Chinese)
[35] 刘顺国, 汪景宽 . 长期地膜覆盖对棕壤剖面中NH4 +-N和NO3 --N动态变化的影响 . 土壤通报, 2006,37(3):443-446.
LIU S G, WANG J K . Effect of long-term covering with plastic film on NH4 +-N and NO3 --N in depth profile of brown earth . Chinese Journal of Soil Science, 2006,37(3):443-446. (in Chinese)
[36] 谢永春, 张平良, 郭天文, 姜小凤, 侯慧芝 . 覆膜穴播方式对旱地小麦田土壤硝态氮和铵态氮积累的影响. 麦类作物学报, 2015,35(6):836-843.
XIE Y C, ZHANG P L, GUO T W, JIANG X F, HOU H Z . Effect of film-mulching on nitrate and ammonium nitrogen in dryland wheat fields. Journal of Triticeae Crops, 2015,35(6):836-843. (in Chinese)
[37] 王少平, 俞立中, 许世远, 程声通 . 上海青紫泥土壤氮素淋溶及其对水环境影响研究. 长江流域资源与环境, 2002,11(6):554-558.
WANG S P, YU L Z, XU S Y, CHENG S T . Nitrogen leaching in the purple clay and analysis on its influence on water environmental quality in Shanghai. Resources and Environment in the Yangtze Basin, 2002,11(6):554-558. (in Chinese)
[38] LIU S Y, CHI Q D, CHENG Y, ZHU B, LI W Z, ZHANG X F, HUANG Y Q, MÜLLER C, CAI Z C, ZHANG J B . Importance of matching soil N transformations, crop N form preference, and climate to enhance crop yield and reducing N loss. Science of the Total Environment, 2019,657:1265-1273.
doi: 10.1016/j.scitotenv.2018.12.100
[39] 张宏威, 康凌云, 梁斌, 陈清, 李俊良, 严正娟 . 长期大量施肥增加设施菜田土壤可溶性有机氮淋溶风险. 农业工程学报, 2013,21(29):99-107.
ZHANG H W, KANG L Y, LIANG B, CHEN Q, LI J L, YAN Z J . Long-term heavy fertilization increases leaching risk of soil soluble organic nitrogen in vegetable greenhouse. Transactions of Chinese Society of Agricultural Engineering, 2013,21(29):99-107. (in Chinese)
[40] 孔祥忠, 于红梅, 束良佐, 宋强, 刘涛 . 农田利用方式对土壤可溶性氮素含量及迁移的影响. 土壤通报, 2015,46(6):1359-1365.
KONG X Z, YU H M, SHU L Z, SONG Q, LIU T . Impact of land use on the content and migration pattern of soluble organic nitrogen. Chinese Journal of Soil Science, 2015,46(6):1359-1365. (in Chinese)
[41] 陶晓, 徐小牛, 石雷 . 城市土壤活性碳, 氮分布特征及影响因素. 生态学杂志, 2011,30(12):2868-2874.
TAO X, XU X N, SHI L . Distribution characteristics of urban soil active organic carbon and nitrogen and related controlling factors. Chinese Journal of Ecology, 2011,30(12):2868-2874. (in Chinese)
[42] CHAPMAN P J, WILLIAMS B L, HAWKINS A . Influence of temperature and vegetation cover on soluble inorganic and organic nitrogen in a spodosol. Soil Biology & Biochemistry, 2001,33(7):1113-1121.
[43] ROSA G H, HOFFLAND E, VAN KESSEL C, TEMMINGHOFF E J M . Extractable and dissolved soil organic nitrogen—A quantitative assessment. Soil Biology & Biochemistry, 2009,41(6):1029-1039.
[44] 赵满兴, 周建斌, 陈竹君, 杨绒 . 有机肥中可溶性有机碳、氮含量及其特性. 生态学报, 2007,27(1):397-403.
ZHAO M X, ZHOU J B, CHEN Z J, YANG R . Concentration and characteristics of soluble organic nitrogen (SON) and carbon (SOC) in different types of organic manures. Acta Ecologica Sinica, 2007,27(1):397-403. (in Chinese)
[45] SCHIMEL J, BALSER T C, WALLENSTAIN M . Microbial stress-response physiology and its implications for ecosystem function. Ecology, 2007,86(6):1386-1394.
[46] KALBITZ K, SOLINGER S, PARK J H, MICHALZIK B, MATZNER Z . Controls on the dynamics of dissolved organic matter in soils: A review. Soil Science, 2000,165(4):277-304.
doi: 10.1097/00010694-200004000-00001
[47] 徐一兰, 唐海明, 肖小平, 郭立君, 李微艳, 孙继民 . 长期施肥对双季稻田土壤微生物学特性的影响. 生态学报, 2016,36(18):1-9.
XU Y L, TANG H M, XIAO X P, GUO L J, LI W Y, SUN J M . Effects of different long-term fertilization regimes on the soil microbiological properties of a paddy filed. Acta Ecologica Sinica, 2016,36(18):1-9. (in Chinese)
[48] 刘守龙, 肖和艾, 童成立, 吴金水 . 亚热带稻田土壤微生物生物量碳、氮、磷状况及其对施肥反应特点. 农业现代化研究, 2003,24(4):278-284.
LIU S L, XIAO H A, TONG C L, WU J S . Microbial biomass C, N and P and their responses to application of inorganic fertilizers in subtropical paddy soils. Research of Agricultural Modernization, 2003,24(4):278-284. (in Chinese)
[49] WANG J G, BAKKEN L R . Competition for nitrogen during mineralization of plant residues in soil: microbial response to C and N availability. Soil Biology & Biochemistry, 1997,29:163-170.
[50] HODGE A, ROBINSON D, FITTER A . Are microorganisms more effective than plants at competing for nitrogen? Trends in Plant Science, 2000,5(7):304-308.
doi: 10.1016/S1360-1385(00)01656-3
[51] VAN VEEN J A, LADD J H, FRISSEL M J . Modeling C and N turnover through the microbial biomass in soil. Plant and Soil, 1984,76:257-274.
doi: 10.1007/BF02205585
[52] 李世清, 李生秀, 邵明安, 郭大勇 . 半干旱农田生态系统长期施肥对土壤有机氮组分和微生物体氮的影响. 中国农业科学, 2004,37(6):859-864.
LI S Q, LI S X, SHAO M A, GUO D Y . Effects of long-term application of fertilizers on soil organic nitrogen components and microbial biomass nitrogen in semiarid farmland ecological system. Scientia Agricultura Sinica, 2004,37(6):859-864. (in Chinese)
[53] CHEN C R, XU Z H, ZHANG S L, KEAY P . Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant and Soil, 2005,277(1/2):285-297.
doi: 10.1007/s11104-005-7530-4
[54] ZHONG Z, MAKESCHIN F . Soluble organic nitrogen in temperate forest soils. Soil Biology and Biochemistry, 2003,35(2):333-338.
doi: 10.1016/S0038-0717(02)00252-3
[55] HUANG C Y, JIE S H, CHEN T H, TIAN G L, CHIU C Y . Soluble organic C and N and their relationships with soil organic C and N and microbial characteristics in moso bamboo (Phyllostachys edulis) plantations along an elevation gradient in central Taiwan. Journal of Soils and Sediments, 2014,14(6):1061-1070.
[56] 黎宁, 李华兴, 朱凤娇, 刘远金, 邝培锐 . 菜园土壤微生物生态特征与土壤理化性质的关系. 应用生态学报, 2006,17(2):285-290.
LI N, LI H X, ZHU F J, LIU Y J, KUANG P R . Relationships between soil microbial ecological characteristics and physical- chemical properties of vegetable garden soil. Chinese Journal of Applied Ecology, 2006,17(2):285-290. (in Chinese)
[57] 高菊生, 黄晶, 董春华, 徐明岗, 曾希柏, 文石林 . 长期有机无机肥配施对水稻产量及土壤有效养分影响. 土壤学报, 2014,51(2):314-324.
GAO J S, HUANG J, DONG C H, XU M G, ZENG X B, WEN S L . Effects of long-term combined application of organic and chemical fertilizers on rice yield and soil available nutrients. Acta Pedologica Sinica, 2014,51(2):314-324. (in Chinese)
[58] 张文锋, 袁颖红, 周际海, 芮绍云, 李丽, 李大明, 黄欠如, 成艳红 . 长期施肥对红壤性水稻土碳库管理指数和双季水稻产量的影响. 生态环境学报, 2016,25(4):569-575.
ZHANG W F, YUAN Y H, ZHOU J H, RUI S Y, LI L, LI D M, HUANG Q R, CHENG Y H . Effects of long-term fertilization on the carbon management index and double rice yield in Red paddy soils. Ecology and Environmental Sciences, 2016,25(4):569-575. (in Chinese)
[59] 王秀斌, 周卫, 梁国庆, 裴雪霞, 夏文建, 孙静文 . 优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发. 植物营养与肥料学报, 2009,15(2):344-351.
doi: 10.11674/zwyf.2009.0214
WANG X B, ZHOU W, LIANG G Q, PEI X X, XIA W J, SUN J W . Effect of optimized nitrogen application on ammonia volatilization from soil in winter wheat-summer corn rotation system in Northern China. Plant Nutrition and Fertilizer Science, 2009,15(2):344-351. (in Chinese)
doi: 10.11674/zwyf.2009.0214
[60] 张玉革, 王力, 姜勇 . 施肥对水稻生物学性状和土壤氮素平衡的影响. 沈阳农业大学学报, 1999,30(2):115-117.
ZHANG Y G, WANG L, JIANG Y . Effect of fertilizer application on biological properties of rice and the balance of soil nitrogen. Journal of Shenyang Agricultural University, 1999,30(2):115-117. (in Chinese)
[61] 姜丽娜, 符建荣, 马军伟, 叶静, 林成远 . 有机无机复配肥氮肥利用率的 15N生物示踪研究 . 浙江农业学报, 2005,17(5):287-291.
JIANG L N, FU J R, MA J W, YE J, LIN C Y . Study on nitrogen fertilizer utilization efficiency of organic and inorganic compound fertilizer with 15N isotope . Acta Agriculturae Zhejiangensis, 2005,17(5):287-291. (in Chinese)
[62] 张亚丽, 张娟, 沈其荣, 王金川 . 秸秆生物有机肥的施用对土壤供氮能力的影响. 应用生态学报, 2002,13(12):1575-1578.
ZHANG Y L, ZHANG J, SHEN Q R, WANG J C . Effect of combined application of bioorganic manure and inorganic nitrogen fertilizer on soil nitrogen supplying characteristics. Chinese Journal of Applied Ecology, 2002,13(12):1575-1578. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[4] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[5] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[6] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[7] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[8] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[9] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[10] ZHU DaWei,ZHANG LinPing,CHEN MingXue,FANG ChangYun,YU YongHong,ZHENG XiaoLong,SHAO YaFang. Characteristics of High-Quality Rice Varieties and Taste Sensory Evaluation Values in China [J]. Scientia Agricultura Sinica, 2022, 55(7): 1271-1283.
[11] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[12] JIANG JingJing,ZHOU TianYang,WEI ChenHua,WU JiaNing,ZHANG Hao,LIU LiJun,WANG ZhiQin,GU JunFei,YANG JianChang. Effects of Crop Management Practices on Grain Quality of Superior and Inferior Spikelets of Super Rice [J]. Scientia Agricultura Sinica, 2022, 55(5): 874-889.
[13] CHEN ZhiYong, ZHANG Zhi, LIU Jie, KANG AiGuo, ZHAO SuMei, YIN XiangJie, LI ZhanQing, XIE AiTing, ZHANG YunHui. Spatiotemporal Dynamics and Source of Loxostege sticticalis in Northern China in 2020 [J]. Scientia Agricultura Sinica, 2022, 55(5): 907-919.
[14] ZHANG YaLing, GAO Qing, ZHAO Yuhan, LIU Rui, FU Zhongju, LI Xue, SUN Yujia, JIN XueHui. Evaluation of Rice Blast Resistance and Genetic Structure Analysis of Rice Germplasm in Heilongjiang Province [J]. Scientia Agricultura Sinica, 2022, 55(4): 625-640.
[15] WANG YaLiang,ZHU DeFeng,CHEN RuoXia,FANG WenYing,WANG JingQing,XIANG Jing,CHEN HuiZhe,ZHANG YuPing,CHEN JiangHua. Beneficial Effects of Precision Drill Sowing with Low Seeding Rates in Machine Transplanting for Hybrid Rice to Improve Population Uniformity and Yield [J]. Scientia Agricultura Sinica, 2022, 55(4): 666-679.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!