Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (13): 2280-2294.doi: 10.3864/j.issn.0578-1752.2019.13.008

• SOIL & FERTILIZER·WATER-SAVING IRRIGATION·AGROECOLOGY & ENVIRONMENT • Previous Articles     Next Articles

Response of Fungal Community and Function to Different Tillage and Straw Returning Methods

DAI HongCui1,3,ZHANG Hui2,3,XUE YanFang2,3,GAO YingBo2,3,QIAN Xin2,3,ZHAO HaiJun3,CHENG Hao4,LI ZongXin2,3(),LIU KaiChang1,3()   

  1. 1 Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
    2 Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100
    3 National Engineering Laboratory for Wheat and Maize, Jinan 250100
    4 College of Agronomy, Qingdao Agricultural University, Qingdao 266109, Shandong
  • Received:2018-12-24 Accepted:2019-02-26 Online:2019-07-01 Published:2019-07-11
  • Contact: ZongXin LI,KaiChang LIU E-mail:sdaucliff@sina.com;liukc1971@126.com

Abstract:

【Objective】 This study was conducted to explore the change of fungal community structure and function response to different tillage and straw returning methods in wheat-maize rotation system in the North China Plain. It aimed to clarify the biological mechanism of soil fertility improvement, which provided a theoretical support for sustainable development for agricultural production. 【Method】 A six-year field study with split plot design was conducted to investigate the effects of different soil tillage methods (no tillage, CT; deep tillage, DT; rotation tillage, ST) and straw returning methods (wheat and maize straws were returned to the field, DS; only wheat straw was returned to the field, SS) on changes of fungal community structure and function in soils from wheat-maize rotation system in the North China Plain. In combination with soil properties, multiple regression trees and correlation analysis was carried out to investigate driving factors of fungal community structure and function in soil.【Result】 The results showed that, compared with NT, soil organic carbon content under DS and SS were reduced by 35.04% and 44.30% in 0-10 cm layer, respectively. The available nitrogen of NT under SS treatment was significantly lower than that under other treatments in 10-20 cm layer. Ascomycetes (68.98%), Basidiomycetes (16.96%) and Chytridiomycetes (1.62%) were the dominant fungus in 0-10 cm layer, while Ascomycetes (68.44%), Basidiomycetes (15.52%), Chytridiomycetes (1.51%) and Coccidiomycetes (1.23%) were the dominant fungus in 10-20 cm layer. The different tillage and straw returning methods changed soil fungal community structure. Specifically, the relative abundance of Basidiomycota in DS increased 50.07% and 29.08% respectively in 0-10 cm and 10-20 cm layers than that of SS. The multiple regression trees showed that soil fungal communities were divided into soil organic carbon nodes with a threshold of 11.17 mg·kg -1 in 0-10 cm layer, additionally, the soil fungi community were divided into available nitrogen nodes with a threshold of 6.52 mg·kg -1 in 10-20 cm layer. In this study, Pathotroph was mainly function type of soil fungi in 0-10 cm (26.84%) and 10-20 cm (23.91%) layers in wheat-maize rotation in the North China Plain. Compared with NT, Pathotroph relative abundance under DT and RT treatments were reduced by 25.16% and 16.45%, respectively. The results of correlation analysis showed that Pathotroph relative abundance were positively correlated with soil total organic carbon, dissolved organic carbon, total nitrogen, available nitrogen and available potassium. 【Conclusion】 In general, our results indicated that different tillage and straw returning methods changed soil fungal community structure and relative abundance of functional groups. The content of soil organic carbon and available nitrogen were the driving factors shaped the fungal community structure. Besides, DT could reduce Pathotroph relative abundance, which was conducive to maintaining the soil ecosystem health.

Key words: tillage practice, straw returning, soil fungal community, high-throughput sequencing, multiple regression trees

Table 1

Treatments of different tillage and straw returning methods"

处理 Treatment 小麦季 Wheat season 玉米季 Maize season
NTD 免耕+秸秆还田 Straw returning with no tillage 免耕直播+秸秆还田 Straw returning without tillage
NTS 免耕+秸秆还田 Straw returning with no tillage 免耕直播 No tillage
DTD 深松+秸秆还田 Straw returning with deep tillage 免耕直播+秸秆还田 Straw returning without tillage
DTS 深松+秸秆还田 Straw returning with deep tillage 免耕直播 No tillage
RTD 旋耕+秸秆还田 Straw returning with rotary tillage 免耕直播+秸秆还田 Straw returning without tillage
RTS 旋耕+秸秆还田 Straw returning with rotary tillage 免耕直播 No tillage

Table 2

Chemical properties of the soils in different tillage and straw returning methods"

土层
Layer (cm)
处理
Treatment
pH 有机碳
TOC (g·kg-1)
可溶性有机碳
DOC (mg·kg-1)
全氮
TN (g·kg-1)
碱解氮
AN (mg·kg-1)
有效磷
AP (mg·kg-1)
速效钾
AK (mg·kg-1)
0-10 NTD 7.04±0.10c 14.04±2.01a 49.09±5.78a 1.11±0.02a 11.11±1.99a 62.18±8.76a 180.39±16.56a
NTS 7.38±0.14b 10.58±0.64bc 38.48±4.46b 0.97±0.10b 7.50±0.28b 39.76±5.81b 143.71±11.94b
DTD 7.54±0.06ab 9.12±1.35cd 37.36±5.61b 1.03±0.08ab 9.49±0.70ab 42.52±6.46b 111.43±8.21c
DTS 7.61±0.09a 7.82±0.15d 25.48±2.71c 0.98±0.04b 9.03±0.88ab 31.09±4.37b 92.67±5.47c
RTD 7.45±0.12ab 12.15±1.29ab 41.08±3.65b 0.96±0.06b 9.84±0.77a 44.18±8.64b 147.77±10.25b
RTS 7.47±0.14ab 10.08±1.45bc 39.68±2.61b 0.92±0.05b 9.95±1.65a 41.36±7.31b 112.44±15.52c
耕作方式Tillage ns ** ** ns ns * ***
还田方式Returning ns *** ** * * ** ***
交互作用Interaction ns ns ns ns * ns ns
10-20 NTD 7.80±0.21a 6.70±0.80c 35.95±5.30ab 0.78±0.18ab 7.30±0.58a 19.86±2.59b 94.87±5.29a
NTS 7.87±0.16a 6.05±0.98c 28.51±2.94bc 0.61±0.08b 5.31±0.97b 16.91±3.49b 91.99±7.39a
DTD 7.57±0.06a 8.15±0.80ab 29.57±5.01abc 0.92±0.11a 8.62±0.15a 27.39±4.55a 106.02±11a
DTS 7.75±0.20a 7.33±0.17bc 25.21±1.98c 0.76±0.03ab 8.70±1.01a 23.37±1.77ab 98.75±9.89a
RTD 7.53±0.23a 9.26±0.89a 37.44±4.88a 0.71±0.05b 7.90±1.30a 29.14±5.3a 102.81±2.97a
RTS 7.72±0.15a 8.20±0.38ab 35.43±4.61ab 0.72±0.06b 8.00±0.66a 26.81±3.59a 98.92±4.15a
耕作方式Tillage ns *** * ns ** ** ns
还田方式Returning ns * * * ns ns ns
交互作用Interaction ns ns ns ns ns ns ns

Table 3

Illumina MiSeq sequencing results and α-diversity of the fungal community with different tillage and straw returning methods"

土层
Layer (cm)
处理
Treatment
序列数
Reads
操作分类单元
OTU
覆盖度
Coverage (%)
香农指数
Shannon index
ACE 指数
ACE index
Chao 1指数
Chao 1 index
0-10 NTD 22368 160.67±4.73bc 99.86 2.93±0.09b 187.14±12.24a 190.50±17.14a
NTS 22368 152.00±3.00c 99.88 2.96±0.05b 171.75±6.00a 170.46±4.52a
DTD 22368 154.00±11.27bc 99.82 2.84±0.06b 194.55±45.81a 197.44±51.97a
DTS 22368 175.00±1.00a 99.88 2.95±0.11b 203.64±4.26a 202.76±12.03a
RTD 22368 167.00±16.52abc 99.87 2.87±0.03b 207.69±26.83a 212.52±23.99a
RTS 22368 177.33±3.06a 99.85 3.10±0.08a 194.63±7.08a 194.01±12.00a
耕作方式 Tillage - * - ns ns ns
还田方式 Returning - ns - ** ns ns
交互作用Interaction - * - ns ns ns
10-20 NTD 22368 167.00±4.36a 99.91 3.24±0.09a 184.75±6.58a 190.12±13.69a
NTS 22368 131.33±8.14b 99.89 2.49±0.34b 153.34±2.32b 158.04±4.56b
DTD 22368 143.67±10.07b 99.86 2.52±0.24b 158.66±11.23b 158.53±11.96b
DTS 22368 178.67±2.08a 99.86 3.13±0.06a 193.56±5.18a 197.41±2.47a
RTD 22368 163.33±7.64a 99.89 2.97±0.06a 194.48±14.13a 192.32±11.16a
RTS 22368 172.33±13.05a 99.89 3.18±0.03a 200.79±16.43a 199.87±12.53a
耕作方式 Tillage - ** - ns ** **
还田方式 Returning - ns - ns ns ns
交互作用Interaction - *** - *** ** ***

Fig. 1

Fungal community composition at the phylum levels in 0-10 cm (a) and 10-20 cm (b) layer under different tillage and returning treatments (the average relative abundance >1%)"

Fig. 2

The relative abundance of Basidiomycota in 0-10 cm and 10-20 cm layers with different tillage and straw returning regimes NT: No tillage; DT: Deep tillage; RT: Rotary tillage; DS: Double-season straw returning; SS: Single-season straw returning. The same as below"

Fig. 3

Principal coordinate analysis (PCoA) of soil fungal communities in different tillage and straw returning methods Principal coordinate analysis (PCoA) of soil fungal communities in 0-10 cm (a) and 10-20 cm (b) layers under different treatment. Communities are compared using the UniFrac differences"

Fig. 4

The relative abundance of soil fungal functional groups in 0-10 cm and 10-20 cm layers with different tillage and straw returning methods Data are means±standard deviation; Different small letters mean significant differences (P<0.05)"

Fig. 5

Multivariate regression tree analysis of fungal communities in 0-10 cm (a) and 10-20 cm (b) layers with different tillage and straw returning methods TOC: Total organic carbon; DOC: Dissolved organic carbon; TN: Total nitrogen; AN: Available nitrogen; AP: Available nitrogen; AK: Available potassium; Error: Relative error; CV error: Cross-validation error; SE: Cross-validation standard error"

Table 4

The relationship between abundance of functional groups and soil characteristics with different tillage and straw returning methods"

功能营养型
Functional groups
pH 有机碳
TOC
可溶性有机碳
DOC
全氮
TN
碱解氮
AN
有效磷
AP
速效钾
AK
病理营养型
Pathotroph
0.087 0.600*** 0.563*** 0.428** 0.394* 0.291 0.517**
腐生营养型
Saprotroph
-0.180 0.286 0.249 0.11 0.204 0.058 0.194
共生营养型
Symbiotroph
0.570** -0.535** -0.323 -0.597*** -0.525** -0.698*** -0.503**
[1] FAN M, SHEN J, YUAN L, JIANG R, CHEN X, DAVIES W J, ZHANG F . Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. Journal of Experimental Botany, 2012,63(1):13.
doi: 10.1093/jxb/err248
[2] 田慎重, 王瑜, 张玉凤, 边文范, 董亮, 罗加法, 郭洪海 . 旋耕转深松和秸秆还田增加农田土壤团聚体碳库. 农业工程学报, 2017,24(33):133-140.
TIAN S Z, WANG Y, ZHANG Y F, BIAN W F, DONG L, LUO J F, GUO H H . Residue returning with subsoiling replacing rotary tillage improving aggregate and associated carbon. Transactions of the Chinese Society of Agricultural Engineering, 2017,24(33):133-140. (in Chinese)
[3] 宋明伟, 李爱宗, 蔡立群, 张仁陟 . 耕作方式对土壤有机碳库的影响. 农业环境科学学报, 2008,27(2):622-626.
SONG M W, LI A Z, CAI L Q, ZHANG R Z . Effects of different tillage methods on soil organic carbon pool. Journal of Agro- Environment Science, 2008,27(2):622-626. (in Chinese)
[4] 张建军, 王勇, 樊廷录, 郭天文, 赵刚, 党翼, 王磊, 李尚中 . 耕作方式与施肥对陇东旱塬冬小麦-春玉米轮作农田土壤理化性质及产量的影响. 应用生态学报, 2013,24(4):1001-1008.
ZHANG J J, WANG Y, FAN T L, GUO T W, ZHAO G, DANG Y, WANG L, LI S Z . Effects of different tillage and fertilization modes on the soil physical and chemical properties and crop yield under winter wheat/spring corn rotation on dryland of east Gansu, Northwest China. Chinese Journal of Applied Ecology, 2013,24(4):1001-1008. (in Chinese)
[5] 赵亚丽, 薛志伟, 郭海斌, 穆心愿, 李潮海 . 耕作方式与秸秆还田对冬小麦-夏玉米耗水特性和水分利用效率的影响. 中国农业科学, 2014,47(17):3359-3371.
doi: 10.3864/j.issn.0578-1752.2014.17.004
ZHAO Y L, XUE Z W, GUO H B, MU X Y, LI C H . Effects of tillage and straw returning on water consumption characteristics and water use efficiency in the winter wheat and summer maize rotation system. Scientia Agricultura Sinica, 2014,47(17):3359-3371. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.17.004
[6] 杨学明, 张晓平, 方华军, 梁爱珍, 齐晓宁, 王洋 . 北美保护性耕作及对中国的意义. 应用生态学报, 2004,2(15):335-340.
YANG X M, ZHANG X P, FANG H J, LIANG A Z, QI X N, WANG Y . Conservation tillage systems in North America and their significance for China. Chinese Journal of Applied Ecology, 2004,2(15):335-340. (in Chinese)
[7] 陈丹梅, 袁玲, 黄建国, 冀建华, 侯红乾, 刘益仁 . 长期施肥对南方典型水稻土养分含量及真菌群落的影响. 作物学报, 2017,43(2):286-295.
CHEN D M, YUAN L, HUANG J G, JI J H, HOU H Q, LIU Y R . Influence of long-term fertilizations on nutrients and fungal communities in typical paddy soil of South China. Acta Agronomica Sinica, 2017,43(2):286-295. (in Chinese)
[8] 孙冰洁, 贾淑霞, 张晓平, 梁爱珍, 陈学文, 张士秀, 刘四义, 陈升龙 . 耕作方式对黑土表层土壤微生物生物量碳的影响. 应用生态学报, 2015,26(1):101-107.
SUN B J, JIA S X, ZHANG X P, LIANG A Z, CHEN X W, ZHANG S X, LIU S Y, CHEN S L . Impact of tillage practices on microbial biomass carbon in top layer of black soils. Chinese Journal of Applied Ecology, 2015,26(1):101-107. (in Chinese)
[9] AZOOZ R H, ARSHAD M A, FRANZLUEBBERS A J . Pore size distribution and hydraulic conductivity affected by tillage in northwestern Canada. Soil Science Society of America Journal, 1996,60:1197-1201.
doi: 10.2136/sssaj1996.03615995006000040034x
[10] 郭梨锦 . 免耕与稻秆还田对稻麦种植系统土壤有机碳库与微生物多样性的影响[D]. 武汉: 华中农业大学, 2018.
GUO L J . Effects of no-tillage and straw return on soil organic carbon pool and microbial diversity in rice-wheat systems[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese)
[11] WANG Z T, LIU L, CHEN Q, WEN X X, LIAO Y C . Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agronomy for Sustainable Development, 2016,36(2):28-36.
doi: 10.1007/s13593-016-0366-x
[12] SUN B J, JIA S X, ZHANG S X, MCLAUGHLIN N B, ZHANG X P, LIANG A Z, CHEN X W, WEI S C, LIU S Y . Tillage, seasonal and depths effects on soil microbial properties in black soil of Northeast China. Soil and Tillage Research, 2016,155:421-428.
doi: 10.1016/j.still.2015.09.014
[13] 郭梨锦, 曹凑贵, 张枝盛, 刘天奇, 李成芳 . 耕作方式和秸秆还田对稻田表层土壤微生物群落的短期影响. 农业环境科学学报, 2013,32(8):1577-1584.
GUO L J, CAO C G, ZHANG Z S, LIU T Q, LI C F . Short-term effects of tillage practices and wheat-straw returned to rice fields on topsoil microbial community structure and microbial diversity in central China. Journal of Agro-Environment Science, 2013,32(8):1577-1584. (in Chinese)
[14] 姚晓东, 王娓, 曾辉 . 磷脂脂肪酸法在土壤微生物群落分析中的应用. 微生物学通报, 2016,43(9):2086-2095.
YAO X D, WANG W, ZENG H . Application of phospholipid fatty acid method in analyzing soil microbial community composition. Microbiology China, 2016,43(9):2086-2095. (in Chinese)
[15] 聂三安, 王祎, 雷秀美, 赵丽霞, 林瑞余, 王飞, 邢世和 . 黄泥田土壤真菌群落结构和功能类群组成对施肥的响应. 应用生态学报, 2018,29(8):2721-2729.
NIE S A, WANG W, LEI X M, ZHAO L X, LIN R Y, WANG F, XING S H . Response of fungal community structure and functional group to fertilization in yellow clayey soil. Chinese Journal of Applied Ecology, 2018,29(8):2721-2729. (in Chinese)
[16] 鲍士旦 . 土壤农化分析. 北京: 中国农业出版社, 2000: 34-35, 44-49, 56-58, 81, 106-107.
BAO S D. Soil and Agricultural Chemistry Analysis. Beijing: China Agriculture Press, 2000: 34-35, 44-49, 56-58, 81, 106-107. (in Chinese)
[17] ROUSK J, BÅÅTH E, BROOKES P C, LAUBER C L, LOZUPONE C, CAPORASO J G, KNIGHT R, FIERER N . Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, 2010,4(10):1340-1351.
doi: 10.1038/ismej.2010.58
[18] EDGAR R C . UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 2013,10(10):996-998.
doi: 10.1038/nmeth.2604
[19] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN F D, COSTELLO E K, FIERER N, PEA A G, GOODRICH J K, GORDON J I, HUTTLEY G A, KELLEY S T, KNIGHTS D, KOENIG J E, LEY R E, LOZUPONE C A, MCDONALD D, MUEGGE B D, PIRRUNG M, REEDER J, SEVINSKY J R, TURNBAUGH P J, WALTERS W A, WIDMANN J, YATSUNENKO T, ZANEVELD J, KNIGHT R . QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010,7:335-336.
doi: 10.1038/nmeth.f.303
[20] WANG Q, GARRITY G M, TIEDJE J M, COLE J R . Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 2007,73(16):5261-5267.
doi: 10.1128/AEM.00062-07
[21] QUAST C, PRUESSE E, YILMAZ P, GERKEN J, SCHWEER T, YARZA P, PEPLIES J , GLÖCKNER F O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research, 2013,41(1):590-596.
[22] SCHLOSS P D, GEVERS D, WESTCOTT S L . Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE, 2011,6(12):1-14.
[23] CATHERINE L, ROB K . UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology, 2005,71:8228-8235.
doi: 10.1128/AEM.71.12.8228-8235.2005
[24] DE'ATH G . Multivariate Regression trees: A new technique for modeling species-environment relationships. Ecology, 2002,83(4):1105-1117.
[25] NGUYEN N H, SONG Z, BATES S T, BRANCO S, TEDERSOO L, MENKE J, SCHILLING, JONATHAN S, KENNEDY P G . Funguild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecology, 2015,20:241-248.
[26] FRĄC M, HANNULA S E, BEŁKA M, JĘDRYCZKA M . Fungal biodiversity and their role in soil health. Frontiers in Microbiology, 2018,9:1-9.
doi: 10.3389/fmicb.2018.00001
[27] 肖礼, 黄懿梅, 赵俊峰, 周俊英, 郭泽慧, 刘洋 . 土壤真菌组成对黄土高原梯田种植类型的响应. 中国环境科学, 2017,37(8):3151-3158.
XIAO L, HUANG Y M, ZHAO J F, ZHOU J Y, GUO Z H, LIU Y . High-throughput sequencing revealed soil fungal communities under three terrace agrotypes on the loess plateau. China Environmental Science, 2017,37(8):3151-3158. (in Chinese)
[28] 李锐, 刘瑜, 褚贵新 . 不同种植方式对绿洲农田土壤酶活性与微生物多样性的影响. 应用生态学报, 2015,26(2):490-496.
LI R, LIU Y, CHU G X . Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland. Chinese Journal of Applied Ecology, 2015,26(2):490-496. (in Chinese)
[29] 何玉梅, 张仁陟, 张丽华, 解开治 . 不同耕作措施对土壤真菌群落结构与生态特征的影响. 生态学报, 2007,27(1):113-119.
HE Y M, ZHANG R Z, ZHANG L H, XIE K Z . Effects of different tillage practices on fungi community structure and ecologic characteristics in loess soils. Acta Ecologica Sinica, 2007,27(1):113-119. (in Chinese)
[30] 季凌飞, 倪康, 马立锋, 陈兆杰, 赵远艳, 阮建云, 郭世伟 . 不同施肥方式对酸性茶园土壤真菌群落的影响. 生态学报, 2018,38(22):1-8.
JI L F, NI K, MA L F, CHEN Z J, ZHAO Y Y, RUAN J Y, GUO S W . Effect of different fertilizer regimes on the fungal community of acidic tea-garden soil. Acta Ecologica Sinica, 2018,38(22):1-8. (in Chinese)
[31] WANG J, RHODES G, HUANG Q, SHEN Q R . Plant growth stages and fertilization regimes drive soil fungal community compositions in a wheat-rice rotation system. Biology and Fertility of Soils, 2018,54(6):731-742.
doi: 10.1007/s00374-018-1295-4
[32] ESSEL E, LI L, DENG C, XIE J, ZHANG R, LUO Z, CAI L . Evaluation of bacterial and fungal diversity in a long-term spring wheat-field pea rotation field under different tillage practices. Canadian Journal of Soil Science, 2018,98:1-19.
[33] SCHLATTER D C, SCHILLINGER W F, BARY A I, SHARRATT B, PAULITZ T C . Biosolids and conservation tillage: Impacts on soil fungal communities in dryland wheat-fallow cropping systems. Soil Biology and Biochemistry, 2017,115:556-567.
doi: 10.1016/j.soilbio.2017.09.021
[34] ANNA G, JAROSŁAW G . Fungal genetics and functional diversity of microbial communities in the soil under long-term monoculture of maize using different cultivation techniques. Frontiers in Microbiology, 2018,9:1-9.
doi: 10.3389/fmicb.2018.00001
[35] 张经廷, 张丽华, 吕丽华, 董志强, 姚艳荣, 金欣欣, 姚海坡, 贾秀领 . 还田作物秸秆腐解及其养分释放特征概述. 核农学报, 2018,32(11):2274-2280.
ZHANG J T, ZHANG L H, LYU L H, DONG Z Q, YAO Y R, JIN X X, YAO H P, JIA X L . Overview of the characteristics of crop straw decomposition and nutrients release of returned field crops. Journal of Nuclear Agricultural Sciences, 2018,32(11):2274-2280. (in Chinese)
[36] LAUBER C L, STRICKLAND M S, BRADFORD M A, FIERER N . The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 2008,40(9):2407-2415.
doi: 10.1016/j.soilbio.2008.05.021
[37] NTHONY M A, FREY S D, STINSON K A . Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere, 2017,8(9):1-17.
[38] 董印丽, 李振峰, 王若伦, 卜学平, 付建敏, 董秀秀 . 华北地区小麦、玉米两季秸秆还田存在问题及对策研究. 中国土壤与肥料, 2018(1):159-163.
DONG Y L, LI Z F, WANG R L, BU X P, FU J M, DONG X X . Study on the problems and countermeasures of returning wheat and corn stalks into the soil in north China.Soils and Fertilizers Sciences in China, 2018(1):159-163. (in Chinese)
[39] 李秀璋 . 醉马草内生真菌与宿主种带真菌、根际微生物的互作及其进化研究[D]. 兰州: 兰州大学, 2017.
LI X Z . Study on the evolution and interactions of Epichloë gansuensis with host seed-borne fungi and rhizospheric microorganism[D]. Lanzhou: Lanzhou University, 2017. (in Chinese)
[40] LIU J, SUI Y, YU Z, SHI Y, CHU, H, JIN J, LIU X, WANG G . Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. Soil Biology and Biochemistry, 2015,83:29-39.
doi: 10.1016/j.soilbio.2015.01.009
[41] WANG Z, CHEN Q, LIU L, WEN X, LIAO Y . Responses of soil fungi to 5-year conservation tillage treatments in the drylands of northern China. Applied Soil Ecology, 2016,101:132-140.
doi: 10.1016/j.apsoil.2016.02.002
[42] 王慧颖, 徐明岗, 周宝库, 段英华 . 黑土细菌及真菌群落对长期施肥响应的差异及其驱动因素. 中国农业科学, 2018,51(5):914-925.
WANG H Y, XU M G, ZHOU B K, MA X, DUAN Y H . Response and driving factors of bacterial and fungal community to long-term fertilization in black soil. Scientia Agricultura Sinica, 2018,51(5):914-925. (in Chinese)
[43] STRICKLAND M S, ROUSK J . Considering fungal:bacterial dominance in soils-Methods, controls, and ecosystem implications. Soil Biology and Biochemistry, 2010,42(9):1385-1395.
doi: 10.1016/j.soilbio.2010.05.007
[44] 裴振, 孔强, 郭笃发 . 盐生植被演替对土壤微生物碳源代谢活性的影响. 中国环境科学, 2017,37(1):373-380.
PEI Z, KONG Q, GUO D F . Effect of succession of halophytic vegetation on soil microbial carbon metabolic activity. China Environmental Science, 2017,37(1):373-380. (in Chinese)
[45] ZHANG T, WANG N, LIU H, ZHANG Y Q, YU L Y . Soil pH is a key determinant of soil fungal community composition in the Ny-Ålesund region, Svalbard (High Arctic). Frontiers in Microbiology, 2016,7:1-10.
[46] HÖGBERG M N, YARWOOD S A, MYROLD D D . Fungal but not bacterial soil communities recover after termination of decadal nitrogen additions to boreal forest. Soil Biology and Biochemistry, 2014,72:35-43.
doi: 10.1016/j.soilbio.2014.01.014
[47] 李永春, 梁雪, 李永夫, 王祈, 陈俊辉, 徐秋芳 . 毛竹入侵阔叶林对土壤真菌群落的影响. 应用生态学报, 2016,27(2):585-592.
LI Y C, LIANG X, LI Y F, WANG Q, CHEN J H, XU Q F . Effects of Phyllostachys edulis invasion of native broadleaf forest on soil fungal community. Chinese Journal of Applied Ecology, 2016,27(2):585-592. (in Chinese)
[48] ROUSK J, BROOKES P C, BAATH E . Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 2009,75(6):1589-1596.
doi: 10.1128/AEM.02775-08
[1] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[2] LIU ShuJun,LI DongChu,HUANG Jing,LIU LiSheng,WU Ding,LI ZhaoQuan,WU YuanFan,ZHANG HuiMin. Effects of Straw Returning and Potassium Fertilizer on Soil Aggregate and Potassium Distribution Under Rapeseed-Rice Rotation [J]. Scientia Agricultura Sinica, 2022, 55(23): 4651-4663.
[3] WANG Liang,LIU YuanYuan,QIAN Xin,ZHANG Hui,DAI HongCui,LIU KaiChang,GAO YingBo,FANG ZhiJun,LIU ShuTang,LI ZongXin. The Single Season Wheat Straw Returning to Promote the Synergistic Improvement of Carbon Efficiency and Economic Benefit in Wheat- Maize Double Cropping System [J]. Scientia Agricultura Sinica, 2022, 55(2): 350-364.
[4] MA XueMeng,YU ChengMin,SAI XiaoLing,LIU Zhen,SANG HaiYang,CUI BaiMing. PSORA: A Strategy Based on High-Throughput Sequence for Analysis of T-DNA Insertion Sites [J]. Scientia Agricultura Sinica, 2022, 55(15): 2875-2882.
[5] MA LiXiao,LI Jing,ZOU ZhiChao,CAI AnDong,ZHANG AiPing,LI GuiChun,DU ZhangLiu. Effects of No-Tillage and Straw Returning on Soil C-Cycling Enzyme Activities in China: Meta-Analysis [J]. Scientia Agricultura Sinica, 2021, 54(9): 1913-1925.
[6] JIN YuTing,LIU YunFeng,HU HongXiang,MU Jing,GAO MengYao,LI XianFan,XUE ZhongJun,GONG JingJing. Effects of Continuous Straw Returning with Chemical Fertilizer on Annual Runoff Loss of Nitrogen and Phosphorus in Rice-Rape Rotation [J]. Scientia Agricultura Sinica, 2021, 54(9): 1937-1951.
[7] BiSheng WANG,WeiShui YU,XuePing WU,LiLi GAO,Jing LI,XiaoJun SONG,ShengPing LI,JinJing LU,FengJun ZHENG,DianXiong CAI. Effects of Straw Addition on Soil Organic Carbon and Related Factors Under Different Tillage Practices [J]. Scientia Agricultura Sinica, 2021, 54(6): 1176-1187.
[8] Xu LI,WeiLing DONG,ALin SONG,YanLing LI,YuQiu LU,EnZhao WANG,XiongDuo LIU,Meng WANG,FenLiang FAN. Effects of Straw Addition on Soil Biological N2-Fixation Rate and Diazotroph Community Properties [J]. Scientia Agricultura Sinica, 2021, 54(5): 980-991.
[9] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[10] HUANG Ming,WU JinZhi,LI YouJun,FU GuoZhan,ZHAO KaiNan,ZHANG ZhenWang,YANG ZhongShuai,HOU YuanQuan. Effects of Tillage Practices and Nitrogen Fertilizer Application Rates on Grain Yield, Protein Content in Winter Wheat and Soil Nitrate Residue in Dryland [J]. Scientia Agricultura Sinica, 2021, 54(24): 5206-5219.
[11] WANG XinYuan,ZHAO SiDa,ZHENG XianFeng,WANG ZhaoHui,HE Gang. Effects of Straw Returning and Nitrogen Application Rate on Grain Yield and Nitrogen Utilization of Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(23): 5043-5053.
[12] SHAO MeiQi,ZHAO WeiSong,SU ZhenHe,DONG LiHong,GUO QingGang,MA Ping. Effect of Bacillus subtilis NCD-2 on the Growth of Tomato and the Microbial Community Structure of Rhizosphere Soil Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(21): 4573-4584.
[13] WANG JinYu,CHENG WenLong,HUAI ShengChang,WU HongLiang,XING TingTing,YU WeiJia,WU Ji,LI Min,LU ChangAi. Effects of Deep Plowing and Organic-Inorganic Fertilization on Soil Water and Nitrogen Leaching in Rice Field [J]. Scientia Agricultura Sinica, 2021, 54(20): 4385-4395.
[14] HUANG ZiYue,LIU WenJun,QIN RenLiu,PANG ShiChan,XIAO Jian,YANG ShangDong. Endophytic Bacterial Community Composition and PICRUSt Gene Functions in Different Pumpkin Varieties [J]. Scientia Agricultura Sinica, 2021, 54(18): 4018-4032.
[15] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!