Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (11): 1982-1992.doi: 10.3864/j.issn.0578-1752.2019.11.013

Special Issue: MINERAL IN FEEDSTUFFS FOR LIVESTOCK AND POULTRY

• SPECIAL FOCUS: MINERAL IN FEEDSTUFFS FOR LIVESTOCK AND POULTRY • Previous Articles     Next Articles

A Survey on Distribution of Copper Contents in Feedstuffs for Livestock and Poultry in China

WANG LiSai1,2,ZHANG LiYang1,SHAO YuXin1,MA XueLian1,WANG LiangZhi1,3,XING GuanZhong2,YANG Liu2,LI SuFen2,LÜ Lin1,LIAO XiuDong1(),LUO XuGang1()   

  1. 1 Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193
    2 College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, Hebei
    3 College of Life Science and Technology, Southwest Minzu University, Chengdu 610041
  • Received:2019-03-14 Accepted:2019-04-29 Online:2019-06-01 Published:2019-06-11
  • Contact: XiuDong LIAO,XuGang LUO E-mail:liaoxd56@163.com;wlysz@263.net

Abstract:

【Objective】 The purpose of this survey was to study the distribution of copper (Cu) contents in various feed ingredients from different regions, as well as the Cu content in the basal diets of livestock and poultry in China, so as to provide a basis for the reasonable addition of Cu to diets. 【Method】 A total of 3 903 feed samples from 37 feed ingredients which fallen into seven types (cereal feeds, cereal by-products, plant protein feeds, animal protein feeds, pasture feeds, straw feeds and mineral feeds) from 31 regions (provinces, municipalities and autonomous regions). After pretreatment of those samples, microwave digestion was performed with MARS6 high-throughput closed microwave digestion system, and then the Cu contents of feed samples were determined by IRIS Intrepid Ⅱ. The pig liver or soybean powder were used as a reference material to ensure the reliability of the measurement results. 【Result】 The determination of Cu contents in feedstuffs showed that the average Cu content of cereal feeds (including corn, wheat, rice and barley) was 3.95 mg·kg -1 (ranged from 2.50 to 5.34 mg·kg -1); the average Cu content of cereal by-products (including corn gluten meal, corn DDGS, corn germ meal, wheat middling, wheat bran, wheat DDGS, broken rice and rice bran) was 7.16 mg·kg -1 (ranged from 1.62 to 12.13 mg·kg -1); the average Cu content of plant protein feeds (including extruded soybean, soybean meal, rapeseed meal, cottonseed meal, peanut meal, linseed meal and sunflower meal) was 16.37 mg·kg -1 (ranged from 6.45 to 30.40 mg·kg -1); the average Cu content of animal protein feeds (including fish meal, meat meal, hydrolyzed feather meal, dried porcine soluble, plasma protein powder and blood cells protein powder) was 11.14 mg·kg -1 (ranged from 1.90 to 20.04 mg·kg -1); the average Cu content of pasture feeds (including Leymus chinensis, ryegrass, alfalfa and corn silage) was 7.85 mg·kg -1 (ranged from 4.31 to 9.92 mg·kg -1; the average Cu content of straw feeds (including corn straw, wheat straw, rice straw and sweet potato vine) was 7.50 mg·kg -1 (ranged from 3.38 to 13.89 mg·kg -1); the average Cu content of mineral feeds (including limestone, dicalcium phosphate, bone meal and oyster shell meal) was 6.79 mg·kg -1 (ranged from 3.39 to 11.45 mg·kg -1). Results showed that the average Cu contents of these 37 kinds of feeds ranged from 1.62 to 30.40 mg·kg -1 and the Cu contents distribution of different species feeds were as follows: plant protein feeds (16.37 mg·kg -1)>animal protein feeds (11.14 mg·kg -1)>pasture feeds (7.85 mg·kg -1)>straw feeds (7.50 mg·kg -1)>cereal by-products (7.16 mg·kg -1)>mineral feeds (6.79 mg·kg -1)>cereal feeds (3.95 mg·kg -1). It was found that the Cu contents in corn, wheat or soybean meal from some provinces (regions) were significantly different (P<0.05). The highest and lowest Cu contents of corn and soybean meal were observed in Sichuan (2.97 and 15.74 mg·kg -1) and Inner Mongolia (1.66 and 11.72 mg·kg -1), respectively; the highest and lowest Cu contents of wheat were observed in Gansu (5.61 mg·kg -1) and Hebei (4.02 mg·kg -1) provinces, respectively. Calculated Cu contents from 152 feed formulas commonly used in pigs and chickens all over the country ranged from 5.07 to 6.54 mg·kg -1. According to Cu requirements of pigs and chickens from feeding standards of China and NRC of the United States, the Cu contents in the basal diets could provide the Cu nutrition requirements of pigs basically and provide most of the Cu nutrition requirements of chickens. However, the utilization rate of Cu in different feed ingredients had not been considered. 【Conclusion】 The above results showed that the Cu contents in feed ingredients varied greatly in different kinds and regions, and the Cu contents in the basal diets from common formulations of pigs and chickens in our country could provide most of the nutritional requirements for pigs and chickens. Therefore, it was suggested that the Cu contents and its utilization rate of the basal diets from different regions should be considered to formulate the diets accurately, so as to meet the need of efficient production of livestock and poultry and reduce the environmental pollution caused by Cu addition and emission.

Key words: feedstuff, copper content, pig, chicken

Table 1

Distribution of Cu contents in cereals (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
玉米Corn 30 1191 2.50±0.41b 2.35 2.44
小麦Wheat 28 251 5.09±0.56a 4.89 4.65
稻谷Rice 30 207 2.85±0.88b 2.81 2.22
大麦Barley 15 28 5.34±1.39a 5.47 5.67
PP-value <0.001
总平均值 Total average 3.95

Table 2

Distribution of Cu contents in cereal by-products (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of
samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
玉米蛋白粉 Corn gluten meal 17 90 9.04±1.49b 9.17 7.88
玉米DDGS Corn DDGS 13 96 4.18±0.47d 4.22 4.51
玉米胚芽粕 Corn germ meal 7 49 4.66±0.36d 4.59 3.98
次粉 Wheat middling 20 51 7.58±2.60bc 8.84 -
小麦麸 Wheat bran 24 112 12.13±1.86a 12.23 13.04
小麦DDGS Wheat DDGS 4 16 11.53±7.16a 9.73 -
碎米 Broken rice 20 54 1.62±0.88e 1.67 1.43
米糠 Rice bran 22 122 6.55±2.30c 7.38 9.87
PP-value <0.001
总平均值 Total average 7.16

Table 3

Distribution of Cu contents in plant protein ingredients (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of
samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
膨化大豆 Extruded soybean 13 110 12.60±0.69d 12.54 12.97
大豆粕 Soybean meal 23 330 14.09±1.26cd 14.15 12.54
菜籽粕 Rapeseed meal 21 165 6.45±2.24e 5.65 5.23
棉籽粕 Cottonseed meal 14 106 13.54±1.88cd 13.41 13.41
花生粕 Peanut meal 11 49 16.05±2.67c 15.13 12.91
亚麻粕 Linseed meal 3 19 21.45±10.71b 18.55 -
葵花粕 Sunflower meal 3 15 30.40±7.33a 27.01 -
PP-value <0.001
总平均值 Total average 16.37

Table 4

Distribution of Cu contents in animal protein ingredients (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
鱼粉 Fish meal 14 57 14.46±11.37b 8.96 6.70
肉粉 Meat meal 12 24 10.11±4.58b 8.68 -
水解羽毛粉 Hydrolyzed feather meal 16 34 9.57±2.71b 9.97 7.52
肠膜蛋白粉 Dried porcine soluble 3 9 10.73±2.30b 9.23 -
血浆蛋白粉 Plasma protein powder 16 32 20.04±4.93a 22.37 -
血球蛋白粉 Blood cells protein powder 16 28 1.90±0.52c 2.06 1.68
PP-value <0.001
总平均值 Total average 11.14

Table 5

Distribution of Cu contents in pasture ingredients (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
羊草 Leymus chinensis 7 35 4.31±1.51b 3.74 2.81
黑麦草 Ryegrass 16 72 7.97±3.39a 7.70 8.59
苜蓿 Alfalfa 25 93 9.20±1.88a 8.96 7.12
青贮玉米 Corn silage 23 88 9.92±2.46a 8.77 7.75
PP-value <0.001
总平均值 Total average 7.85

Table 6

Distribution of Cu contents in straw ingredients (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
玉米秸秆 Corn straw 30 84 8.93±2.90b 8.37 9.55
小麦秸秆 Wheat straw 24 57 3.80±1.47c 3.63 5.48
稻秸 Rice straw 29 84 3.38±1.87c 2.98 4.32
甘薯藤 Sweet potato vine 12 21 13.89±3.79a 13.54 -
PP-value <0.001
总平均值 Total average 7.50

Table 7

Distribution of Cu contents in mineral ingredients (air-dry basis)"

样品名称
Name of samples
省(市、区)数
No. of provinces
(municipalities, regions)
样品数
No. of samples
铜含量Cu contents (mg·kg-1)
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
石粉 Limestone 16 45 3.39±1.95b 3.45 3.50
磷酸氢钙 Dicalcium phosphate 12 43 11.45±5.96a 10.73 7.55
骨粉 Bone meal 15 28 6.89±3.64b 5.79 5.46
贝壳粉 Oyster shell meal 5 8 5.42±3.44b 7.69 -
PP-value <0.001
总平均值 Total average 6.79

Table 8

Distribution of Cu contents in corn, wheat and soybean meal from some provinces of China (mg·kg-1, air-dry basis)"

省(区)名
Name of provinces (Regions)
玉米铜含量Cu contents in corn 小麦铜含量Cu contents in wheat 大豆粕铜含量Cu contents in soybean meal
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
平均值±标准差
Mean ± standard deviation
中位数
Median
众数
Mode
黑龙江 Heilongjiang 2.32±0.46cdef(78) 2.32 2.45 13.75±1.04c(50) 13.76 14.84
河南 Henan 2.10±0.50ef(54) 2.04 1.78 5.09±1.93ab(27) 4.61 4.38 13.72±1.69c(15) 13.13 -
山东 Shandong 2.72±0.54ab(54) 2.77 2.93 4.64±0.45abc(14) 4.60 - 14.45±1.07bc(19) 14.47 -
河北 Hebei 2.35±0.59cde(55) 2.25 2.05 4.02±0.42c(19) 3.99 - 15.29±1.37ab(27) 15.25 15.03
内蒙古 Inner Mongolia 1.66±0.39g(51) 1.56 1.50 11.72±1.32d(30) 11.42 10.73
吉林 Jilin 2.05±0.48f(60) 2.00 1.74 13.86±1.63c(11) 13.72 -
辽宁 Liaoning 2.28±0.74def(53) 2.16 1.15 13.58±1.82c(22) 13.94 -
山西 Shanxi 2.31±0.62cdef(83) 2.33 2.44 4.97±1.14abc(14) 4.80 - 14.55±0.50bc(4) 14.41 -
四川 Sichuan 2.97±0.57a(44) 2.91 2.72 5.36±0.44ab(8) 5.31 - 15.74±1.07a(8) 15.64 -
安徽 Anhui 2.91±0.95a(44) 2.85 2.27 4.81±0.58abc(14) 4.69 - 15.10±2.30ab(10) 15.15 -
陕西 Shaanxi 2.70±0.84ab(41) 2.66 - 4.55±1.04bc(9) 4.40 -
云南 Yunnan 2.35±0.63cde(56) 2.21 2.28
甘肃 Gansu 2.48±1.03bcd(42) 2.33 2.09 5.61±0.90a(9) 5.51 -
新疆 Xinjiang 2.12±0.40ef(48) 2.03 1.95 4.87±0.40abc(10) 4.79 -
贵州 Guizhou 2.61±1.03bc(39) 2.29 1.45
湖北 Hubei 2.78±0.60ab(38) 2.76 2.95 5.08±0.43ab(8) 5.16 - 14.35±1.01bc(10) 14.36 -
江苏 Jiangsu 2.58±0.73bcd(46) 2.54 1.88 5.34±0.62ab(16) 5.37 4.65 13.36±0.33c(15) 13.40 -
广西 Guangxi 2.54±0.79bcd(36) 2.23 2.05
P-P-value <0.001 0.0079 <0.001
均值 Average 2.44 4.94 14.12

Table 9

Cu contents in the basal diets for pigs and chickens in China (air-dry basis)"

饲粮类型
Type of diet
鸡 Chickens 猪 Pigs
配方数
No. of formulas
铜含量
Cu contents (mg·kg-1)
配方数
No. of formulas
铜含量
Cu contents (mg·kg-1)
玉米-豆粕 Corn-soybean meal 22 6.54±0.40 25 5.77±0.39
玉米-油籽粕 Corn-oilseed meals 20 5.62±0.68 15 5.82±0.34
多谷-豆粕 Cereals-soybean meal 16 5.70±0.60 23 5.59±0.70
多谷-油籽粕 Cereals-oilseed meals 15 5.07±0.47 16 5.48±0.73
[1] 晏家友, 张纯, 唐凌, 邝声耀 . 不同铜源在畜禽养殖生产中的研究与应用. 中国畜牧兽医, 2016,43(12):3227-3231.
YAN J Y, ZHANG C, TANG L, KUANG S Y . Research and application of different copper sources in livestock production . China Animal Husbandry &Veterinary Medicine, 2016,43(12):3227-3231. (in Chinese)
[2] PETRIS M J . The SLC31 (Ctr) copper transporter family. Pfluegers Archiv European Journal of Physiology, 2004,447(5):752-755.
doi: 10.1007/s00424-003-1092-1
[3] HAMDI M, SOLÀ D, FRANCO R, DUROSOY S, ROMÉO A, PÉREZ J F . Including copper sulphate or dicopper oxide in the diet of broiler chickens affects performance and copper content in the liver. Animal Feed Science and Technology, 2018,237:89-97.
doi: 10.1016/j.anifeedsci.2018.01.014
[4] 张吴平, 靳黎, 韩俊文 . 铜与柠檬酸不同配伍对断奶仔猪生产性能与血液生化指标影响的研究. 中国畜牧兽医, 2007,34(7):13-16.
ZHANG W P, JIN L, HAN J W . Effects of adding high copper and citric-acid in diet on the performance traits and blood biochemical indicators of weaning piglets. China Animal Husbandry &Veterinary Medicine, 2007,34(7):13-16. (in Chinese)
[5] 蒙洪娇 . 日粮铜水平对育肥猪生长性能、养分消化率及组织铜沉积的影响研究[D]. 长春: 吉林农业大学, 2017.
MENG H J . Effects of diet copper level on growth performance nutrient digestibility and tissue copper deposition in finishing pigs[D]. Changchun: Jilin Agricultural University, 2017. (in Chinese)
[6] ARIAS V J, KOUTSOS E A . Effects of copper source and level on intestinal physiology and growth of broiler chickens. Poultry Science, 2006,85(6):999-1007.
doi: 10.1093/ps/85.6.999
[7] BONHAM M, O"CONNOR J M, HANNIGAN B M, STRAIN J. J . The immune system as a physiological indicator of marginal copper status. British Journal of Nutrition, 2002,87(05):393-403.
doi: 10.1079/BJN2002558
[8] 吴建设, 呙于明, 杨汉春, 周毓平 . 微量元素铜影响肉仔鸡免疫功能剂量效应的研究. 动物营养学报, 2002,14(1):55-60.
WU J S, GUO Y M, YANG H C, ZHOU Y P . Studies on the regulative effects of trace element copper on immune function in broiler chicks. Chinese Journal of Animal Nutrition, 2002,14(1):55-60. (in Chinese)
[9] 张彩英, 胡国良, 曹华斌, 郭小权 . 饲粮铜添加水平对育成蛋鸡免疫功能和抗氧化酶活性的影响. 动物营养学报, 2011,23(1):154-161.
doi: 10.3969/j.issn.1006-267x.2011.01.022
ZHANG C Y, HU G L, CAO H B, GUO X Q . Effects of dietary copper levels on immunity and activity of anti-oxidation enzyme of growing-laying hens. Chinese Journal of Animal Nutrition, 2011,23(1):154-161. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2011.01.022
[10] 宋明明, 黄凯, 朱连勤 . 铜吸收与代谢的研究进展. 饲料博览, 2014(9):14-17.
SONG M M, HUANG K, ZHU L Q . Research progress of copper absorption and metabolism. Feed Review, 2014(9):14-17. (in Chinese)
[11] 李德发, 王康宁, 谯仕彦, 贾刚, 蒋宗勇, 陈正玲, 林映才, 吴徳, 朱锡明, 熊本海, 杨立彬, 王凤来 . NY/T65-2004猪饲养标准. 北京: 中华人民共和国农业部, 2004.
LI D F, WANG K N, QIAO S Y, JIA G, JIANG Z Y, CHEN Z L, LIN Y C, WU D, ZHU X M, XIONG B H, YANG L B, WANG F L . NY/T65-2004Feeding Standard of Swine. Beijing: Ministry of Agriculture of the People’s Republic of China, 2004.(in Chinese)
[12] 文杰, 蔡辉益, 呙于明, 齐广海, 陈继兰, 张桂芝, 刘国华, 熊本海, 苏基双, 计成, 刁其玉, 刘汉林 . NY/T 33-2004鸡饲养标准. 北京: 中华人民共和国农业部, 2004.
WEN J, CAI H Y, GUO Y M, QI G H, CHEN J L, ZHANG G Z, LIU G H, XIONG B H, SU J S, JI C, DIAO Q Y, LIU H L . NY/T 33-2004 Feeding Standard of Chicken. Beijing: Ministry of Agriculture of the People’s Republic of China, 2004.(in Chinese)
[13] NRC. Nutrient Requirements of Swine. Washington, DC. National Academy Press, 2012.
[14] NRC. Nutrient Requirements of Poultry. Washington, DC. National Academy Press, 1994.
[15] 徐书培 . 山东省不同猪场饲料中微量元素营养调查及研究[D]. 泰安: 山东农业大学, 2016.
XU S P . Investigation and research on trace element nutrition in pig feed from different piggeries of Shandong province[D]. Taian: Shandong Agricultural University, 2016. (in Chinese)
[16] JONDREVILLE C, REVY P S, DOURMAD J Y . Dietary means to better control the environmental impact of copper and zinc by pigs from weaning to slaughter. Livestock Production Science, 2003,84(2):147-156.
doi: 10.1016/j.livprodsci.2003.09.011
[17] 孙娅静 . 常见饲料原料微量元素盈亏分析及产蛋鸡微量元素适宜添加水平的研究[D]. 杨凌: 西北农林科技大学, 2008.
SUN Y J . Studies on the contents of trace elements in common feedstuffs and optimal supplementation in the diet of laying hens[D]. Yangling: Northwest A&F University, 2008. (in Chinese)
[18] 钟茂 . 肉仔鸡常用饲料原料中矿物元素生物学利用率研究[D]. 重庆: 西南大学, 2006.
ZHONG M . Research on bioavailabilities of minerals in feedstuffs for broilers[D]. Chongqing: Master Degree Dissertation of Southwest University, 2006. (in Chinese)
[19] SAS User΄s Guide: Statistics. Version 9.4. SAS Institute Inc. 2003, Cary, NC.
[20] 章世元 . 动物饲料配方设计. 南京: 江苏科学技术出版社, 2008.
ZHANG S Y . Animal Feed Formulation. Nanjing: Phoenix Science Press, 2008. (in Chinese)
[21] 杨淑芬 . 湖南省主要饲料资源分析与评价[D]. 长沙: 湖南农业大学, 2017.
YANG S F . Analysis and evaluation of main feed resources in Hunan province[D]. Changsha: Hunan Agricultural University, 2017. (in Chinese)
[22] 袁磊 . 山东省猪饲料微量元素调控模型的建立及应用验证[D]. 泰安: 山东农业大学, 2002.
YUAN L . The management strategy of trace element and evaluation of the strategy for pigs in Shandong province[D]. Taian: Shandong Agricultural University, 2002. (in Chinese)
[23] 许艳芬 . 山东省猪饲料原料的营养价值评定[D]. 泰安: 山东农业大学, 2013.
XU Y F . Evaluation of nutritional value of swine feedstuffs in Shandong province[D]. Taian: Shandong Agricultural University, 2013. (in Chinese)
[24] 王征帆 . 铜在玉米体内的累积规律研究. 安徽农业科学, 2008,36(14):6056-6057.
WANG Z F . Research on the accumulation law of copper in corn. Journal of Anhui Agriculture, 2008,36(14):6056-6057. (in Chinese)
[25] 傅炳森, 孙爱德 . 土壤-玉米体系微量营养元素锰、锌、铜、铁的分布特征. 山东化工, 2018,47(21):79-81.
FU B S, SUN A D . Distribution characteristics of the micronutrients: Mg, Mn, Cu and Fe in plant-soil system. Shandong Chemical Industry, 2018,47(21):79-81. (in Chinese)
[26] 焦婷 . 青海省环湖地区土壤-牧草-畜体生态体系中微量元素季节变化及其盈缺分析[D]. 兰州: 甘肃农业大学, 2003.
JIAO T . Seasonal changes of trace elements and analysis of their sufficiency or lack in the soil-forage-animal ecosystem in study farm around Qinghai lake[D]. SLanzhou: Gansu Agricultural University, 2003. (in Chinese)
[27] 王振权, 张育华, 陈二钦, 梁远东, 罗兰 . 广西常用饲料、牧草中铜、锌、铁、锰、钴、钼含量的初步调查. 广西农业大学学报, 1992,11(4):53-58.
WANG Z Q, ZHANG Y H, CHEN E Q, LIANG Y D, LUO L . Investigations on the contents of Cu, Zn, Fe, Mn, Co, Mo of feedstuffs and forages in Guangxi. Journal of Guangxi Agricultural University, 1992,11(4):53-58. (in Chinese)
[28] 柏雪, 原泽鸿, 王建萍, 丁雪梅, 白世平, 曾秋凤, 张克英 . 四川省常用能量饲料和蛋白质饲料中重金属分布研究. 动物营养学报, 2016,28(9):2847-2860.
BAI X, YUAN Z H, WANG J P, DING X M, BAI S P, ZENG Q F, ZHANG K Y . Investigation on heavy metal distribution in energy feedstuffs and protein feedstuffs of Sichuan province. Chinese Journal of Animal Nutrition, 2016,28(9):2847-2860.(in Chinese)
[29] 王秋菊, 张玉龙, 赵宏亮, 李明贤, 孟英, 王立志, 姜辉 . 黑龙江省不同类型土壤微量元素含量及对稻米品质的影响. 作物杂志, 2011(6):46-49.
doi: 10.3969/j.issn.1001-7283.2011.06.011
WANG Q J, ZHANG Y L, ZHAO H L, LI M X, MENG Y, WANG L Z, JIANG H . Contents of mineral nutrient elements in different types of soil and effects on rice qualities in Heilongjiang province. Crops, 2011(6):46-49. (in Chinese)
doi: 10.3969/j.issn.1001-7283.2011.06.011
[30] 殷敬峰, 李华兴, 卢维盛, 谢斯斯, 骆海雄, 黄杏媛 . 不同品种水稻糙米对Cd Cu Zn积累特性的研究. 农业环境科学学报, 2010,29(5):844-850.
YIN J F, LI H X, LU W S, XIE S S, LUO H X, HUANG X Y . Variations of Cd, Cu, Zn accumulation among rice cultivars. Journal of Agro-Environment Science, 2010,29(5):844-850. (in Chinese)
[31] LIU G Q, LI S F, SU X , et al. Estimation of standardized mineral availabilities in feedstuffs for broilers. Journal of Animal Science, 2018. doi: 10.1093/jas/sky434.
[32] 吴学壮, 闻治国, 胡洪, 闻爱友, 华金玲, 王立新, 王淑娟, 戴四发, 高秀华, 蔡治华 . 斜率比法评定肉仔鸡对铜源的相对生物学利用率. 动物营养学报, 2019,31(4):1-8.
WU X Z, WEN Z G, HU H, WEN A Y, HUA J L, WANG L X, WANG S J, DAI S F, GAO X H, CAI Z H . Evaluation of relative bioavailability of copper source with slope ratio method for broilers. Chinese Journal of Animal Nutrition, 2019,31(4):1-8. (in Chinese)
[33] 吴敏, 龚伟莎, 谢优优, 韩剑众 . 铜在消化道的形态变化及其与生物利用率的关系. 食品科技, 2016,41(9):107-111.
WU M, GONG W S, XIE Y Y, HAN J Z . Relationship with bioavailability and speciation change of copper during digestion. Food Science and Technology, 2016,41(9):107-111. (in Chinese)
[34] 李龙, 蒋守群, 郑春田, 苟钟勇, 陈芳, 阮栋, 余德谦 . 1-21日龄黄羽肉鸡饲粮铜营养需要量的研究. 动物营养学报, 2015,27(2):578-587.
doi: 10.3969/j.issn.1006-267x.2015.02.030
LI L, JIANG S Q, ZHENG C T, GOU Z Y, CHEN F, RUAN D, YU D Q . Copper requirement of yellow-feathered broilers aged from 1 to 21 days. Chinese Journal of Animal Nutrition, 2015,27(2):578-587. (in Chinese)
doi: 10.3969/j.issn.1006-267x.2015.02.030
[35] 张利环, 张瑜, 李玲香, 杨燕燕, 张春善 . 饲粮铜与维生素A及其互作对肉仔鸡生长性能及十二指肠酶活性的影响. 中国畜牧杂志, 2014,50(23):38-43.
doi: 10.3969/j.issn.0258-7033.2014.23.010
ZHANG L H, ZHANG Y, LI L X, YANG Y Y, ZHANG C S . Effects of dietary copper, vitamin a and their interaction on growth performance and the duodenum enzyme activity in broilers. China Animal Husbandry & Veterinary Medicine, 2014,50(23):38-43. (in Chinese)
doi: 10.3969/j.issn.0258-7033.2014.23.010
[1] TAN XianMing,ZHANG JiaWei,WANG ZhongLin,CHEN JunXu,YANG Feng,YANG WenYu. Prediction of Maize Yield in Relay Strip Intercropping Under Different Water and Nitrogen Conditions Based on PLS [J]. Scientia Agricultura Sinica, 2022, 55(6): 1127-1138.
[2] CHEN XueSen, YIN HuaLin, WANG Nan, ZHANG Min, JIANG ShengHui, XU Juan, MAO ZhiQuan, ZHANG ZongYing, WANG ZhiGang, JIANG ZhaoTao, XU YueHua, LI JianMing. Interpretation of the Case of Bud Sports Selection to Promote the High-Quality and Efficient Development of the World’s Apple and Citrus Industry [J]. Scientia Agricultura Sinica, 2022, 55(4): 755-768.
[3] SHU JingTing,SHAN YanJu,JI GaiGe,ZHANG Ming,TU YunJie,LIU YiFan,JU XiaoJun,SHENG ZhongWei,TANG YanFei,LI Hua,ZOU JianMin. Relationship Between Expression Levels of Guangxi Partridge Chicken m6A Methyltransferase Genes, Myofiber Types and Myogenic Differentiation [J]. Scientia Agricultura Sinica, 2022, 55(3): 589-601.
[4] ZHANG YaNan,JIN YongYan,ZHUANG ZhiWei,WANG Shuang,XIA WeiGuang,RUAN Dong,CHEN Wei,ZHENG ChunTian. Comparison of Shell Mechanical Property, Ultrastructure and Component Between Chicken and Duck Eggs [J]. Scientia Agricultura Sinica, 2022, 55(24): 4957-4968.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] HUANG XunHe,WENG ZhuoXian,LI WeiNa,WANG Qing,HE DanLin,LUO Wei,ZHANG XiQuan,DU BingWang. Genetic Diversity of Indigenous Yellow-Feathered Chickens in Southern China Inferred from Mitochondrial DNA D-Loop Region [J]. Scientia Agricultura Sinica, 2022, 55(22): 4526-4538.
[7] WANG ZhePeng,ZHOU WenXin,HE JunXi,HU QiaoYan,ZHAO JiaYue. Association of Levels of Cholecystokinin A Receptor Expression and Sequence Variants with Feed Conversion Efficiency of Lueyang Black-Boned Chicken [J]. Scientia Agricultura Sinica, 2022, 55(22): 4539-4549.
[8] GUO Jun,WANG KeHua,HAN Wei,DOU TaoCun,WANG XingGuo,HU YuPing,MA Meng,QU Liang. Analysis of Indirect Genetic Effects on Body Weight of 42 Day-Old Rugao Yellow Chickens [J]. Scientia Agricultura Sinica, 2022, 55(19): 3854-3861.
[9] MingJie XING,XianHong GU,XiaoHong WANG,Yue HAO. Effects of IL-15 Overexpression on Myoblast Differentiation of Porcine Skeletal Muscle Cells [J]. Scientia Agricultura Sinica, 2022, 55(18): 3652-3663.
[10] YaTing JIA,HuiHui HU,YaJun ZHAI,Bing ZHAO,Kun HE,YuShan PAN,GongZheng HU,Li YUAN. Molecular Mechanism of Regulation by H-NS on IncFⅡ Plasmid Transmission of Multi-drug Resistant Chicken Escherichia coli [J]. Scientia Agricultura Sinica, 2022, 55(18): 3675-3684.
[11] YANG ChangPei,WANG NaiXiu,WANG Kai,HUANG ZiQing,LIN HaiLan,ZHANG Li,ZHANG Chen,FENG LuQiu,GAN Ling. Effects and Mechanisms of Exogenous GABA Against Oxidative Stress in Piglets [J]. Scientia Agricultura Sinica, 2022, 55(17): 3437-3449.
[12] DENG FuLi,SHEN Dan,ZHONG RuQing,ZHANG ShunFen,LI Tao,SUN ShuDong,CHEN Liang,ZHANG HongFu. Non-Starch Polysaccharide Enzymes Cocktail of Corn-Miscellaneous Meal-Based Diet Optimization by In Vitro Method and Its Effects on Intestinal Microbiome in Finishing Pigs [J]. Scientia Agricultura Sinica, 2022, 55(16): 3242-3255.
[13] JIN MengJiao,LIU Bo,WANG KangKang,ZHANG GuangZhong,QIAN WanQiang,WAN FangHao. Light Energy Utilization and Response of Chlorophyll Synthesis Under Different Light Intensities in Mikania micrantha [J]. Scientia Agricultura Sinica, 2022, 55(12): 2347-2359.
[14] ZHANG NingBo,HAN ZhaoQing,JIN TaiHua,ZHUANG GuiYu,LI JiongKui,ZHENG QuanSheng,LI YongZhu. Comparison Analysis on Eggshell Quality, Biochemical Index of Calcium Metabolism and Calcium Binding Protein CaBP-D28k mRNA Expression Between Langya Chicken and Its Synthetic Lines [J]. Scientia Agricultura Sinica, 2021, 54(9): 2017-2026.
[15] WANG GuangYu,LI Qing,TANG WenQian,WANG HuHu,XU XingLian,QIU WeiFen. Effects of nuoB on Physiological Properties of Pseudomonas fragi and Its Spoilage Potential in Chilled Chicken [J]. Scientia Agricultura Sinica, 2021, 54(8): 1761-1771.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!