Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (9): 1601-1613.doi: 10.3864/j.issn.0578-1752.2019.09.011

• HORTICULTURE • Previous Articles     Next Articles

The QTL Analysis of Single Fruit Weight Associated Traits in Melon Based on CAPS Markers

LIU XiangYu1,ZHANG YuShu1,LIU Liu1,LIU Shi1,GAO Peng1,WANG Di2,WANG XueZheng1()   

  1. 1 Horticulture College, Northeast Agricultural University/Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Harbin 150030
    2 Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing 163319, Heilongjiang
  • Received:2018-10-31 Accepted:2019-02-25 Online:2019-05-01 Published:2019-05-16
  • Contact: XueZheng WANG E-mail:xz6206815@163.com

Abstract:

【Objective】 In our study, based on melon genome-wide resequencing technology, SNP loci were explored and CAPS markers were developed to construct a genetic linkage map. The preliminary QTL analysis of traits related to single fruit weight in melon was carried out, which laid a theoretical foundation for the detection of genes related to single fruit weight traits in melon.【Method】F2:3 population materials were constructed from X207 and M4-130. The cultivated melon accession M4-130 was selected as female parent and wild melon accession X207 as male parent. Correlation analysis was carried out for fruit traits, including single fruit weight, fruit length, fruit width, pulp thickness, fruit shape index and soluble solids content in melon fruit. Parents were resequenced at 20× depth. SNP loci between parents were extracted in the whole genome by the use of BWA, SAMTools, VCFTools and other software. CAPS markers were developed by using SNP2CAPS software and combined with restriction endonuclease digestion sites in melon genome for genetic linkage map construction. Finally, QTLs of single fruit weight, fruit length, fruit width, pulp thickness, fruit shape index and soluble solids content in melon fruit were analyzed by composite interval mapping.【Result】In this experiment, single fruit weight significantly correlated with fruit length, fruit width and pulp thickness. 185 CAPS markers were developed and subsequently used for genetic linkage map construction. The genetic linkage map contained 12 linkage groups covering a total length of 1 600.45 cM and average distance of 8.65 cM. 7 QTLs (FW3.1, FW4.1, FW5.1, FW6.1, FW8.1, FW8.2 and FW11.1) were related to the single fruit weight. 7 QTLs (FL2.1, FL3.1, FL4.1, FL5.1, FL6.1, FL8.1 and FL11.1) were related to fruit length. 5 QTLs (FWID3.1, FWID4.1, FWID8.1, FWID10.1 and FWID11.1) were related to fruit width. 2 QTLs (FT6.1 and FT11.1) were related to pulp thickness. 1 QTLs (FS2.1) was related to fruit shape index. 2 QTLs (SS6.1 and SS12.1) were related to soluble solids content.【Conclusion】Twenty-three QTLs in total were identified. A major QTL FW8.1 was identified with phenotypic variance contribution rate of 25.8774% and the LOD value was 16.8746. It was also found that single fruit weight was closely related to fruit length, fruit width and pulp thickness. Location intervals were same or adjacent, closely concentrated on chromosomes 3, 4, 5, 6, 8 and 11.

Key words: melon, fruit weight, genetic linkage map, QTL

Fig. 1

M4-130 and X207 longitudinal cut of fruit"

Table 1

Parents values of traits related to fruit of melon and distribution in F2:3 population"

性状
Trait
亲本及F1均值
The mean value of and F1 generation
F2:3群体
Distribution in F2:3 population
母本
M4-130
父本
X207
F1 均值
Mean
标准差
SD
范围
Range
峰度
SEK
偏度
SES
单果重 Fruit weight (g) 833.0±7.64 21.67±2.87 226.67±50.58 155.92 8.76 33.00—590.00 6.57 2.08
果实长度 Fruit length (cm) 14.20±0.40 3.63±0.23 9.83±1.27 7.87 1.92 3.80—13.30 0.09 0.43
果实宽度 Fruit width (cm) 11.40±0.20 3.30±0.17 6.57±0.31 6.01 1.42 3.00—11.00 0.79 0.74
果肉厚度 Fruit thickness (cm) 3.10±0.10 0.33±0.06 1.13±0.15 1.16 0.34 0.30—2.30 0.58 0.41
果形指数 Fruit shape index (%) 1.25±0.01 1.10±0.12 1.49±0.12 1.32 0.22 0.90—2.10 0.65 0.72
可溶性固形物含量Soluble solids (%) 8.17±0.35 10.5±0.79 10.00±2.20 9.46 1.81 5.90—14.40 -0.55 0.30

Fig. 2

Parent, F1 and F2:3 group fruit longitudinal cut map"

Fig. 3

Histogram for the fruit traits of F2:3 population"

Table 2

Correlation analysis of fruit traits in melon"

性状
Trait
单果重
Fruit weight
果实长度
Fruit length
果实宽度
Fruit width
果肉厚度
Fruit thickness
果形指数
Fruit shape
可溶性固形物含量
Soluble solids
单果重 Fruit weight 1
果实长度 Fruit length 0.873** 1
果实宽度 Fruit width 0.891** 0.832** 1
果肉厚度 Fruit thickness 0.866** 0.813** 0.854** 1
果形指数 Fruit shape -0.018 0.284** -0.278** -0.065 1
可溶性固形物含量 Soluble solids 0.745** 0.706** 0.685** 0.648** 0.034 1

Fig. 4

DNA electrophoregram of muskmelon"

Fig. 5

Polymorphism of CAPS markers among parental materials and F1 generation M: The band of marker; P1: Band of female parent; P2: Band of male parent; F1: Band of F1 generation"

Table 3

Parameter of melon genetic linkage map"

染色体
Chr.
标记数目
No. of Marker
长度
Genetic distance of linkage groups (cM)
标记间平均距离
Average distance of linkage groups (cM)
1 13 91.53 7.04
2 13 112.55 8.66
3 19 121.62 6.40
4 17 140.25 8.25
5 15 108.46 7.23
6 15 160.37 10.69
7 15 166.20 11.08
8 15 144.30 9.62
9 14 155.56 11.11
10 20 107.28 5.36
11 14 163.11 11.65
12 15 129.22 8.61
总计Total 185 1600.45 8.65

Fig. 6

QTL analysis for melon fruit weight traits on genetic linkage map"

Table 4

QTLs and the effects of the fruit traits in melon"

性状
Trait
位点
QTL
相邻标记
Adjacent markers
图谱位置
Position
标记间距
Marker range
LOD 贡献率(%)
R2
加性效应
Additive
显性效应
Dominance
单果重
Fruit weight
FW3.1 3-6670—3-0640 66 65.23—74.69 3.0173 2.7054 39.2379 32.2348
FW4.1 4-9382—4-1311 31 27.25—31.68 3.2739 12.3435 39.6980 -14.1269
FW5.1 5-9232—5-5773 108 105.17—108.46 2.9070 9.3215 -31.2002 23.5592
FW6.1 6-1444—6-6615 160 106.62—160.37 3.9121 14.4755 40.7147 -20.9489
FW8.1 8-2883—8-5972 101 98.60—104.93 16.8746 25.8774 -1.2134 184.5905
FW8.2 8-0306—8-2169 71 65.29—72.09 3.3297 3.6869 3.6869 9.8677
FW11.1 11-3692—11-1432 48 41.93—56.06 4.6085 18.8628 48.3023 -18.9123
果实长度
Fruit length
FL2.1 2-2347—2-1803 104 100.56—109.19 6.7436 17.0180 -1.3111 0.2646
FL3.1 3-6670—3-0640 66 65.23—74.69 3.0160 15.1015 1.1146 0.9123
FL4.1 4-9382—4-1311 30 27.25—31.68 4.2371 9.9603 0.9998 -0.2666
FL5.1 5-9232—5-5773 107 105.17—108.46 2.6505 5.1442 -0.6258 0.5634
FL6.1 6-1444—6-6615 148 106.62—160.37 3.8379 14.1998 1.1898 -0.0833
FL8.1 8-8589—8-8413 14 00.00—14.22 2.8085 19.9334 1.3147 -0.5710
FL11.1 11-8315—11-3692 35 30.15—41.93 6.1904 15.7421 1.2632 -0.0376
果实宽度
Fruit width
FWID3.1 3-1192—3-0090 34 18.50—46.50 3.0311 11.3927 0.6226 0.0665
FWID4.1 4-1311—4-2962 34 31.68—42.76 3.2242 10.1598 0.7384 0.1435
FWID8.1 8-0306—8-2169 71 65.29—72.09 5.3190 18.4669 0.7200 -0.3225
FWID10.1 10-3838—10-0417 1 0.00—9.81 4.0028 13.2077 0.6771 0.0365
FWID11.1 11-8315—11-3692 38 30.15—41.93 4.5617 15.8568 0.9479 -0.0865
果肉厚度
Fruit thickness
FT6.1 6-1444—6-6615 151 106.62—160.37 2.8921 12.0802 0.1414 -0.2006
FT11.1 11-8315—11-3692 35 30.15—41.93 4.3730 15.2309 0.2292 -0.0031
果型指数
Fruit shape index
FS2.1 2-1803—2-2808 112 109.19—112.55 4.6355 22.0413 -0.1131 0.0923
可溶性固形物
Soluble solids
SS6.1 6-1444—6-6615 146 106.62—160.37 2.9412 16.4299 1.2740 0.2516
SS12.1 12-5356—12-4957 9 0.00—19.61 3.3407 10.0947 0.1159 -1.4154

Table 5

The table for the result of gene annotation"

GO一级类别
GO Level I Category
GO数据库二级分类编号
GO Level II Category
GO分类注释
Annotation of II level GO term
基因数量
Gene number
生物学过程
Biological process
GO: 0008152 代谢过程 Metabolic process 91
GO: 0009987 细胞过程 Cellular process 83
GO: 0044699 单体进程 Single-organism process 65
GO: 0065007 生物调控 Biological regulation 31
GO: 0050896 应激反应 Response to stimulus 20
GO: 0071840 细胞成分组织与合成 Cellular component organization or biogenesis 19
GO: 0051179 定位 Localization 16
GO: 0032502 发展过程 Developmental process 11
GO: 0032501 多细胞生物过程 Multicellular organismal process 9
GO: 0000003 生殖过程 Reproduction 6
GO: 0022414 再生过程 Reproductive process 6
GO: 0023052 信号 Signaling 4
GO: 0040007 发育过程 Growth 3
GO: 0051704 多生物过程 Multi-organism process 3
GO: 0022610 生物粘附 Biological adhesion 1
GO: 0098754 去毒过程 Detoxification 1
分子功能
Molecular function
GO: 0005488 联结 Binding 95
GO: 0003824 催化活性 Catalytic activity 81
GO: 0005215 转运活性 Transporter activity 8
GO: 0001071 核酸结合转录因子活性 Nucleic acid binding transcription factor activity 4
GO: 0098772 分子功能调控 Molecular function regulator 4
GO: 0005198 结构分子活性 Structural molecule activity 3
GO: 0016209 抗氧化活性 Antioxidant activity 3
GO: 0000988 蛋白质结合转录活性 Transcription factor activity, protein binding 1
GO: 0004871 信号传感器活性 Signal transducer activity 1
GO: 0060089 分子转导活性 Molecular transducer activity 1
细胞组分
(Cellular Component)
GO: 0005623 细胞 Cell 73
GO: 0044464 细胞组分 Cell part 73
GO: 0043226 细胞器 Organelle 49
GO: 0016020 细胞膜 Membrane 30
GO: 0032991 大分子复合物 Macromolecular complex 26
GO: 0044425 细胞膜组分 Membrane part 20
GO: 0044422 细胞器组分 Organelle part 15
GO: 0005576 细胞外区 Extracellular region 4
GO: 0030054 细胞连接 Cell junction 4
GO: 0055044 共质体 Symplast 4
GO: 0031974 膜封闭的管腔 Membrane-enclosed lumen 3
GO: 0019012 病毒 Virion 2
GO: 0044423 病毒组分 Virion part 2

Table 6

Significant enrichment of metabolic pathways"

通路名称
Pathway
通路注释
Description of pathway
基因数目
Gene number
P
P-value
基因
Gene
PWY-6902 几丁质降解II Chitin degradation II 6 3.70E-08 MELO3C007961, MELO3C007962, MELO3C007963, MELO3C007964, MELO3C007965, MELO3C007966
PWY-3561 胆碱生物合成III Choline biosynthesis III 2 0.0112 MELO3C007944, MELO3C007945
ASPARAGINE-DEG1-PWY L-天冬胺酰降解I L-asparagine degradation I 1 0.0502 MELO3C008013
GLYSYN-ALA-PWY 甘氨酸生物合成III Glycine biosynthesis III 1 0.0403 MELO3C014568
PWY-6013 克螨酯生物合成Crepenynate biosynthesis 1 0.0204 MELO3C009630
PWY-6515 根皮苷生物合成 Phloridzin biosynthesis 1 0.0502 MELO3C007921
PWY-7039 磷脂代谢 Phosphatidate metabolism 2 0.0466 MELO3C007944, MELO3C007945
[1] VERZERA A, DIMA G, TRIPODI G, CONDURSO C, CRINO P, ROMANO D, MAZZAGLIA A, LANZA C M, RESTUCCIA C, PARATORE A . Aroma and sensory quality of honeydew melon fruits (Cucumis melo L. subsp. melo var. inodorus H. Jacq.) in relation to different rootstocks. Scientia Horticulturae, 2014,169(11):118-124.
[2] DANTAS D D C, MEDIROS J F, FREIRE A G . Produção e qualidade do meloeiro cultivado com filmes plásticos em respostas à lâmina de irrigação. Revista Ciência Agronômica, 2011,42(3):652-661.
doi: 10.1590/S1806-66902011000300011
[3] 董玉梅, 王崇启, 赵西, 肖守华, 陈伟, 孙建磊, 焦自高 . 不同嫁接方式对厚皮甜瓜植株生长及果实性状的影响. 中国瓜菜, 2017,30(9):34-37.
DONG Y M, WANG C Q, ZHAO X, XIAO S H, CHEN W, SUN J L, JIAO Z G . Influences of different grafting methods on the plant growth and fruit characters of muskmelon. Zhongguo Gua-cai, 2017,30(9):34-37. (in Chinese)
[4] 于翠香, 韩忠才, 王占海, 张海燕, 杨贵春 . 甜瓜果实性状遗传规律的研究进展. 东北农业科学, 2016,41(3):91-94.
YU C X, HAN Z C, WANG Z H, ZHANG H Y, YANG G C . Advance of studies on genetic law of melon fruit characters. Journal of Northeast Agricultural Sciences, 2016,41(3):91-94. (in Chinese)
[5] 陈克农, 张红卓, 袁丽伟, 盛云燕 . 甜瓜果形指数的F2代遗传研究. 北方园艺, 2016(19):1-2.
CHEN K N, ZHANG H Z, YUAN L W, SHENG Y Y . Genetic inheritance analysis on melon index in F2 generation. Northern Horticulture, 2016(19):1-2. (in Chinese)
[6] 张宁 . 甜瓜远缘群体果实主要性状遗传分析及遗传图谱构建[D]. 杨凌: 西北农林科技大学, 2014.
ZHANG N . Genetic analysis of main fruit traits and construction of the genetic linkage map for interspecific population of melon[D]. Yangling: Northwest A&F University, 2014. ( in Chinese)
[7] BAUDRACCO-ARNAS S, PITRAT M . A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theoretical and Applied Genetics, 1996,93(1/2):57-64.
[8] PÉRIN C, HAGEN L, De CONTO V, KATZIR N, DANIN-POLEG Y, PORTNOY V, BAUDRACCO-ARNAS S, CHADOEUF J, DOGIMONT C, PITRAT M . A reference map of Cucumis melo based on two recombinant inbred line populations. Theoretical and Applied Genetics, 2002,104(6):1017-1034.
[9] CUEVAS H E, STAUB J E, SIMON P W, ZALAPA J E . A consensus linkage map identifies genomic regions controlling fruit maturity and beta-carotene associated flesh color in melon (Cucumis melo L.). Theoretical and Applied Genetics, 2009,119(4):741-756.
[10] FUKINO N, OHARA T, SUGIYAMA M, KUBO N, HIRAI M, SAKATA Y, MATSUMOTO S . Mapping of a gene that confers short lateral branching ( slb) in melon(Cucumis melo L.). Euphytica, 2012,187:133-143.
[11] ZALAPA J E, STAUB J E, MCCREIGHT J D, CHUNG S M, CUEVAS H . Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theoretical & Applied Genetics, 2007,114(7):1185-1201.
[12] RAMAMURTHY R K, WATERS B M . Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica, 2015,204(1):163-177.
[13] DIAZ A, MARTIN-HERNANDEZ A M, DOLCET-SANJUAN R, GARCES-CLAVER A, ALVAREZ J M, GARCIA-MAS J, PICO B, MONFORTE J . Quantitative trait loci analysis of melon (Cucumis melo L.) domestication related traits. Theoretical and Applied Genetics, 2017,130(9):1837-1857.
[14] 马双武, 刘君璞 . 甜瓜种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006.
MA S W, LIU J P. Descriptors and Data Standard for Melon (Cucumis melo L.). Beijing: China Agriculture Press, 2006. ( in Chinese)
[15] LUAN F S, DELANNAY I, STAUB J E . Chinese melon ( Cucumis melo L.) diversity analyses provide strategies for germplasm curation, genetic improvement, and evidentiary support of domestication patterns. Euphytica, 2008,164(2):445-461.
[16] THIEL T, KOTA R, GROSSE I, STEIN N, GRANER A . SNP2CAPS: A SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research, 2004,32(1):e5.
doi: 10.1093/nar/gnh006
[17] 束永俊, 李勇, 吴娜拉胡, 柏锡, 才华, 纪巍, 朱延明 . 大豆EST-SNP的挖掘、鉴定及其CAPS标记的开发. 作物学报, 2010,36(4):574-579.
doi: 10.3724/SP.J.1006.2010.00574
SHU Y J, LI Y, WU N L H, BAI X, CAI H, JI W, ZHU Y M . Mining and identification of SNP from EST sequences and convertion of CAPS markers in soybean. Acta Agronomica Sinica, 2010,36(4):574-579. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00574
[18] SANDLIN K, PROTHRO J, HEESACKER A, KHALILIAN N, OKASHAH R, XIANG W W, BACHLAVA E, CALDWELL D G, MTAYLOR C A, SEYMOUR D K, WHITE V, CHAN E, TOLLA G, WHITE C, SAFRAN D, GRAHAM E, KNAPP S, MCGREGOR C . Comparative mapping in watermelon [Citrullus lanatus(Thunb.) Matsum.et Nakai]. Tag Theoretical & Applied Genetics Theoretische Und Anbewandte Genetik, 2012,125(8):1603-1618.
[19] SEBASTIAN P, SCHAEFER H, TELFORD I R H, RENNER S S . Cucumber (Cucumis sativus) and melon(C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proceeding of National Academy of Sciences of the United States of America , 2010,107(32):14269-14273.
[20] MICHEL P . Phenotypic diversity in wild and cultivated melons (Cucumis melo L). Plant Biotechnology, 2013,30(3):273-278.
[21] GANAL M W, ALTMANN T, RODER M S . SNP identification in crop plants. Current Opinion in Plant Biology, 2009,12(2):211-217.
doi: 10.1016/j.pbi.2008.12.009
[22] 周慧文, 卢丙洋, 马鸿艳, 高鹏, 栾非时, 高启帆, 齐国安 . 西瓜种子大小形状相关QTL分析. 园艺学报, 2016,43(4):715-723.
ZHOU H W, LU B Y, MA H Y, GAO P, LUAN F S, GAO Q F, QI G A . QTL mapping of watermelon seed traits. Acta Horticulturae Sinica, 2016,43(4):715-723. (in Chinese)
[23] 程瑶, 刘识, 朱子成, 栾非时 . 西瓜糖含量相关性状的QTL分析. 中国蔬菜, 2016(2):24-31.
CHENG Y, LIU S, ZHU Z C, LUAN F S . QTL analysis for sugar content related traits in watermelon. China Vegetables, 2016(2):24-31. (in Chinese)
[24] 乔军, 陈钰辉, 王利英, 刘富中, 张映, 连勇 . 茄子果形的QTL定位. 园艺学报, 2012,39(6):1115-1122.
QIAO J, CHEN Y H, WANG L Y, LIU F Z, ZHANG Y, LIAN Y . QTL analysis for fruit shape in eggplant based on genetic linkage map. Acta Horticulturae Sinica, 2012,39(6):1115-1122. (in Chinese)
[25] TENG W, LI W, ZHANG Q, WU D, ZHAO X, LI H, HAN Y, LI W . Identification of quantitative trait loci underlying seed protein content of soybean including main, epistatic and QTL × environment effects in different regions of Northeast China. Crop and Pasture Science, 2017,68(8):649-655.
[26] REN Y, MCGREGOR C, ZHANG Y, GONG G Y, ZHANG H Y, GUO S G, SUN H H, CAI W T, ZHANG J, XU Y . An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Curullus lanatus). BMC Plant Biology, 2014,14(1):33.
[27] 赵璞, 刘瑞响, 李成璞, 刑向茹, 曹晓良, 陶勇生, 张祖新 . 基于掖478导人系的玉米产量性状QTL鉴定. 中国农业科学, 2011,44(17):3508-3519.
doi: 10.3864/j.issn.0578-1752.2011.17.003
ZHAO P, LIU R X, LI C P, XING X R, CAO X L, TAO Y S, ZHANG Z X . QTL mapping for grain yield associated traits using Ye 478 introgression lines in maize. Scientia Agricultura Sinica, 2011,44(17):3508-3519. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2011.17.003
[28] CHAIM A B, PARAN I, GRUBR R C, JAHN M, WIJK R V, PELEMAN J . QTL mapping of fruit-related traits in pepper (Capsicum annuum). Theoretical & Applied Genetics, 2001,102(6/7):1016-1028.
[29] SALIBA-COLOMBANI V, CAUSSE M, LANGLOIS D, PHILOUZE J, BURET M . Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theoretical & Applied Genetics, 2001,102(2/3):259-272.
[30] 陈美霞, 祁建民, 方平平, 李爱青, 危成林, 陶爱芬, 徐建堂, 谢增荣, 林培青, 兰涛, 吴建梅, 陈福成 . 红麻6个重要产量性状的QTL定位. 中国农业科学, 2011,44(5):874-883.
CHEN M X, QI J M, FANG P P, LI A Q, WEI C L, TAO A F, XU J T, XIE Z R, LIN P Q, LAN T, WU J M, CHEN F C . QTL mapping of six yield traits in kenaf. Scientia Agricultura Sinica, 2011,44(5):874-883. (in Chinese)
[31] 栾非时, 矫士琦, 盛云燕, 朱子成 . 甜瓜果实相关性状QTL分析. 东北农业大学学报, 2017,48(3):1-9.
LUAN F S, JIAO S Q, SHENG Y Y, ZHU Z C . Mapping of QTL for fruit traits in melon. Journal of Northeast Agricultural University, 2017,48(3):1-9. (in Chinese)
[32] WANG Y H, WU D H, HUANG J H, TSAO S J, HWU K K, LO H F . Mapping quantitative trait loci for fruit traits and powdery mildew resistance in melon (Cucumis melo). Botanical Studies, 2016,57(1):19.
[33] 栾非时, 卢丙洋, 周慧文, 王学征 . 甜瓜遗传图谱构建及果实相关性状QTL定位. 东北农业大学学报, 2016,47(8):9-20.
LUAN F S, LU B Y, ZHOU H W, WANG X Z . Construction of genetic linkage map and QTL location for fruit-related traits in melon. Journal of Northeast Agricultural University, 2016,47(8):9-20. (in Chinese)
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[6] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[7] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[8] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
[9] GUO ShuQing,SONG Hui,CHAI ShaoHua,GUO Yan,SHI Xing,DU LiHong,XING Lu,XIE HuiFang,ZHANG Yang,LI Long,FENG BaiLi,LIU JinRong,YANG Pu. QTL Analysis for Growth Period and Panicle-Related Traits in Foxtail Millet [J]. Scientia Agricultura Sinica, 2022, 55(15): 2883-2898.
[10] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[11] HAO Jing,LI XiuKun,CUI ShunLi,DENG HongTao,HOU MingYu,LIU YingRu,YANG XinLei,MU GuoJun,LIU LiFeng. QTL Mapping for Traits Related to Seed Number Per Pod in Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2022, 55(13): 2500-2508.
[12] MENG XinHao,DENG HongTao,LI Li,CUI ShunLi,Charles Y. CHEN,HOU MingYu,YANG XinLei,LIU LiFeng. QTL Mapping for Lateral Branch Angle Related Traits of Cultivated Peanut (Arachis hypogaea L.) [J]. Scientia Agricultura Sinica, 2021, 54(8): 1599-1612.
[13] ZHANG YaDong,LIANG WenHua,HE Lei,ZHAO ChunFang,ZHU Zhen,CHEN Tao,ZHAO QingYong,ZHAO Ling,YAO Shu,ZHOU LiHui,LU Kai,WANG CaiLin. Construction of High-Density Genetic Map and QTL Analysis of Grain Shape in Rice RIL Population [J]. Scientia Agricultura Sinica, 2021, 54(24): 5163-5176.
[14] LUO JiangTao,ZHENG JianMin,DENG QingYan,LIU PeiXun,PU ZongJun. The Genetic Contribution of the Important Breeding Parent Chuanmai 44 to Its Derivatives [J]. Scientia Agricultura Sinica, 2021, 54(20): 4255-4264.
[15] WANG Ling,CAI Yi,WANG GuiChao,WANG Di,SHENG YunYan. Specific Length Amplified Fragment (SFLA) Sequencing Mapping Construction and QTL Analysis of Fruit Related Traits in Muskmelon [J]. Scientia Agricultura Sinica, 2021, 54(19): 4196-4206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!