Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (7): 1215-1226.doi: 10.3864/j.issn.0578-1752.2019.07.009

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Physiological Response Mechanism of Drought Stress in Different Drought-Tolerance Genotypes of Sesame During Flowering Period

SUN Jian,YAN XiaoWen,LE MeiWang(),RAO YueLiang,YAN TingXian,YE YanYing,ZHOU HongYing   

  1. Institute of Crops, Jiangxi Academy of Agricultural Sciences/Nanchang Branch of National Center of Oilcrops Improvement/Jiangxi Province Key Laboratory of Oilcrops Biology/Key Laboratory of Crop Ecophysiology and Farming System for the Middle and Lower Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, Nanchang 330200
  • Received:2018-11-01 Accepted:2019-02-18 Online:2019-04-01 Published:2019-04-04
  • Contact: MeiWang LE E-mail:mwyuecarl@163.com

Abstract:

【Objective】The aims of this study were to study the effects of drought stress on the physiological and biochemical characteristics of leaves and roots of different drought-tolerant sesame varieties, to analyze the physiological responses of sesame different genotypes under drought stress during flowering period, thus providing a theoretical reference for the studies of sesame drought-tolerant and its improvement. 【Method】This experiment adopted the method of potted to drought-tolerant varieties “Jinhuangma” and drought-sensitive varieties “Zhushanbai” as the experimental materials, and treatment with mild (T1), moderate (T2) and severe (T3) drought stress at the flowering period, with normal irrigation as the control (CK). The contents of malondialdehyde (MDA), H2O2, proline (Pro), soluble sugar (SS), soluble protein (SP), free amino acids (AA), reduced ascobate (AsA), and reduced glutathione (GSH), as well as activities of superoxide dismutase(SOD), peroxidase (POD), catalase (CAT), phenylalanine ammonialyase (PAL) in plant leaves and roots were determined, respectively. And then the differences of physiological response mechanism between two genotypes under drought stress were analyzed. 【Result】 After drought stress, the contents of MDA, H2O2, Pro, SS, SP, and GSH with the activities of SOD, POD and PAL in sesame leaves, as well as contents of MDA, SS, SP, AA, GSH, AsA and CAT and PAL activity in roots showed an increasing trend with the aggravation of stress degree, and AA, AsA content and CAT activity in leaves and contents of H2O2, Pro and SOD, POD activity in roots showed a trend of first rising and then falling with the aggravation of stress degree. The results of correlation analysis showed that the measured value of physiological and biochemical indexes in leaves were all positively correlated with them in roots, and the drought-tolerance of varieties was negatively correlated with the content of membrane lipid peroxidation damage substances (MDA and H2O2), and positively correlated with partial osmotic regulatory substances, defense system substances and protective enzyme activities. 【Conclusion】Under drought stress during the flowering period of sesame, 12 physiological and biochemical indexes of two different genotypes of sesame all showed different degree of increase, with great difference in response, and the effect on the leaves was greater than that of the roots. Drought-tolerant varieties showed less cell membrane lipid peroxidation damage, more accumulation of osmotic regulatory substances, stronger activity of protective enzymes (SOD and CAT) and higher content of antioxidant substances (GSH and AsA) than that in drought-sensitive varieties. Drought-tolerance of sesame showed comprehensive defense in many factors on physiological and biochemical indexes.

Key words: sesame (Sesamum indicum L.), flowering period, drought stress, physiological and biochemical characteristics, physiological response mechanism

Fig. 1

Effects of drought stress on the content of MDA and H2O2 in sesame leaves and roots at the flowering period Different lowercase alphabets indicate significant differences of the same variety and tissue under different drought stress levels at 0.05 level. The same as below"

Fig. 2

Effects of drought stress on osmotic adjustment substances in sesame leaves and roots during the flowering period"

Fig. 3

Effects of drought stress on antioxidant substance and PAL in sesame leaves and roots during the flowering period"

Table 1

Correlation analysis of physiological and biochemical indexes of sesame under drought stress during flowering period"

丙二醛
MDA
过氧化氢
H2O2
脯氨酸
Pro
可溶性糖
SS
可溶性
蛋白
SP
游离
氨基酸
AA
超氧化
歧化酶
SOD
过氧化
物酶
POD
过氧化
氢酶
CAT
还原型谷胱甘肽
GSH
抗坏血酸
AsA
苯丙氨酸解氨酶
PAL
MDA 1.000
H2O2 0.654** 1.000
Pro 0.518** 0.716** 1.000
SS 0.702** 0.640** 0.774** 1.000
SP 0.715** 0.649** 0.742** 0.936** 1.000
AA 0.712** 0.717** 0.654** 0.865** 0.889** 1.000
SOD 0.520** 0.622** 0.843** 0.911** 0.908** 0.867** 1.000
POD 0.374** 0.089 0.180 0.217 0.080 -0.011 0.026 1.000
CAT 0.573** 0.373** 0.558** 0.754** 0.743** 0.672** 0.649** 0.290** 1.000
GSH 0.671** 0.296* 0.500** 0.608** 0.511** 0.283 0.360* 0.639** 0.562** 1.000
AsA 0.622** 0.704** 0.723** 0.869** 0.894** 0.923** 0.903** -0.048 0.626** 0.305* 1.000
PAL 0.790** 0.847** 0.745** 0.770** 0.756** 0.714** 0.637** 0.248 0.669** 0.639** 0.706** 1.000

Table 2

Correlation analysis of physiological and biochemical indexes between leaves and roots of sesame under drought stress during the flowering period"

项目
Item
叶片生理生化指标 Physiological and biochemical indexes of leaves
MDA H2O2 Pro SS SP AA SOD POD CAT GSH AsA PAL
根系生理生化指标
Physiological and biochemical indexes of roots
MDA 0.782** 0.761** 0.836** 0.636** 0.482* 0.367 0.519** 0.893** 0.600** 0.849** 0.418* 0.877**
H2O2 0.775** 0.876** 0.331 0.333 0.229 0.211 0.103 0.725** 0.164 0.528** -0.003 0.739**
Pro 0.211 -0.075 0.274 0.574** 0.752** 0.327 0.528** -0.054 0.484* 0.353 0.343 0.182
SS 0.604** 0.333 0.678** 0.938** 0.934** 0.759** 0.914** 0.543** 0.748** 0.688** 0.710** 0.478*
SP 0.627** 0.445* 0.879** 0.833** 0.759** 0.592** 0.850** 0.692** 0.699** 0.753** 0.716** 0.598**
AA 0.679** 0.457* 0.884** 0.920** 0.834** 0.560** 0.865** 0.732** 0.750** 0.872** 0.641** 0.671**
SOD 0.232 -0.079 0.339 0.789** 0.823** 0.772** 0.832** 0.217 0.601** 0.314 0.640** 0.023
POD 0.786** 0.697** 0.424* 0.613** 0.482* 0.672** 0.515* 0.645** 0.120 0.494* 0.771** 0.568**
CAT 0.320 0.059 0.745** 0.807** 0.741** 0.568** 0.902** 0.393 0.570** 0.593** 0.837** 0.254
GSH 0.766** 0.587** 0.868** 0.809** 0.721** 0.553** 0.744** 0.735** 0.729** 0.836** 0.617** 0.764**
AsA 0.413* 0.152 0.780** 0.779** 0.741** 0.602** 0.915** 0.480* 0.648** 0.561** 0.710** 0.247
PAL 0.529** 0.359 0.895** 0.783** 0.718** 0.290 0.761** 0.567** 0.587** 0.854** 0.607** 0.600**

Table 3

Correlation analysis of drought resistance of varieties and physiological and biochemical indexes of sesame leaves and roots under drought stress during the flowering period"

叶片生理生化指标
Physiological and biochemical indexes of leaves
相关系数1
Coefficient 1
相关系数2
Coefficient 2
根系生理生化指标
Physiological and biochemical indexes of roots
相关系数1
Coefficient 1
相关系数2
Coefficient 2
丙二醛MDA -0.490* -0.508* 丙二醛MDA -0.322 -0.427
过氧化氢H2O2 -0.722** -0.883** 过氧化氢H2O2 -0.640** -0.699**
脯氨酸Pro 0.113 -0.361 脯氨酸Pro 0.285 0.664**
可溶性糖SS 0.183 0.835** 可溶性糖SS 0.253 -0.151
可溶性蛋白SP 0.296 0.852** 可溶性蛋白SP 0.168 -0.554*
游离氨基酸AA 0.239 -0.377 游离氨基酸AA 0.094 0.215
超氧化歧化酶SOD 0.481* -0.236 超氧化歧化酶SOD 0.520** 0.649**
过氧化物酶POD -0.330 -0.624** 过氧化物酶POD -0.298 0.290
过氧化氢酶CAT 0.377 -0.216 过氧化氢酶CAT 0.479* 0.028
还原型谷胱甘肽GSH -0.223 0.841** 还原型谷胱甘肽GSH -0.030 -0.725**
抗坏血酸AsA 0.231 0.540* 抗坏血酸AsA 0.519** -0.837**
苯丙氨酸解氨酶PAL -0.620** 0.441 苯丙氨酸解氨酶PAL 0.138 0.338
[1] 张秀荣, 李培武, 汪雪芳, 王旭 . 芝麻种子木质素组分、粗脂肪、粗蛋白含量及相关性分析. 中国油料物学报. 2005,27(3):88-90.
doi: 10.3321/j.issn:1007-9084.2005.03.022
ZHANG X R, LI P W, WANG X F, WANG X . Studies on relationship among lignans, oil and protein content in sesame seed. Chinese Journal of Oil Crop Sciences, 2005,27(3):88-90. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2005.03.022
[2] 赵应忠 . 芝麻抗氧化物质的种类、检测方法和含量变异. 中国油料作物学报, 2005,27(3):97-102.
doi: 10.3321/j.issn:1007-9084.2005.03.024
ZHAO Y Z . The variety, detection method and content variation of antioxidant in sesame. Chinese Journal of Oil Crop Sciences, 2005,27(3):97-102. (in Chinese)
doi: 10.3321/j.issn:1007-9084.2005.03.024
[3] 梅鸿献, 魏安池, 刘艳阳, 王春弘, 杜振伟, 郑永战 . 芝麻种质资源芝麻素、蛋白质、脂肪含量变异及其相关分析. 中国油脂, 2013,38(4):87-90.
doi: 10.3969/j.issn.1003-7969.2013.04.023
MEI H X, WEI A C, LIU Y Y, WANG C H, DU Z W, ZHENG Y Z . Variation and correlation analysis of sesamin, oil and protein contents in sesame germplasm resources. China Oils and Fats, 2013,38(4):87-90. (in Chinese)
doi: 10.3969/j.issn.1003-7969.2013.04.023
[4] 杨湄, 黄凤洪 . 中国芝麻产业现状与存在问题、发展趋势与对策建议. 中国油脂, 2009,34(1):7-12.
doi: 10.3321/j.issn:1003-7969.2009.01.002
YANG M, HUANG F H . Situation, problem, development trend and suggestion of sesame industry in China. China Oils and Fats, 2009,34(1):7-12. (in Chinese)
doi: 10.3321/j.issn:1003-7969.2009.01.002
[5] 孙建, 乐美旺, 饶月亮, 颜廷献, 颜小文, 周红英 . 江西芝麻产业现状、限制因素、发展潜力与对策分析. 江西农业学报, 2010,22(9):10-15.
doi: 10.3969/j.issn.1001-8581.2010.09.003
SUN J, LE M W, RAO Y L, YAN T X, YAN X W, ZHOU H Y . Current situation, limiting factors, developmental potential and countermeasures of sesame industry in Jiangxi. Acta Agriculturae Jiangxi, 2010,22(9):10-15. (in Chinese)
doi: 10.3969/j.issn.1001-8581.2010.09.003
[6] PATHAK N, RAI AK, KUMARI R, THAPA A, BHAT K V . Sesame crop: An underexploited oilseed holds tremendous potential for enhanced food value. Agricultural Sciences, 2014,5:519-529.
doi: 10.4236/as.2014.56054
[7] DOSSA K, NIANG M, ASSOGBADJO A E, CISSÉ N, DIOUF D . Whole genome homology-based identification of candidate genes for drought tolerance in sesame (Sesamum indicum L.). African Journal of Biotechnology, 2016,15(27):1464-1474.
[8] 黄道友, 彭廷柏, 陈桂秋, 王克林 . 亚热带红壤丘陵区季节性干旱成因及其发生规律研究. 中国生态农业学报, 2004,12(1):124-126.
HUANG D Y, PENG T B, CHEN G Q, WANG K L . Study on causes and occurrence rules of seasonal drought in subtropical red soil hilly region. Chinese Journal of Eco-Agriculture, 2004,12(1):124-126. (in Chinese)
[9] 黄道友, 王克林, 黄敏, 陈洪松, 吴金水, 张广平, 彭廷柏 . 我国中亚热带典型红壤丘陵区季节性干旱. 生态学报, 2004,24(11):2516-2523.
doi: 10.3321/j.issn:1000-0933.2004.11.024
HUANG D Y, WANG K L, HUANG M, CHEN H S, WU J S, ZHANG G P, PENG T B . Seasonal drought problems in the red soil hilly region of the middle subtropical zone of China. Acta Ecologica Sinica, 2004,24(11):2516-2523. (in Chinese)
doi: 10.3321/j.issn:1000-0933.2004.11.024
[10] 王林海, 张艳欣, 危文亮, 张秀荣 . 中国芝麻湿害和旱害发生调查与分析. 中国农学通报, 2011,27(28):301-306.
WANG L H, ZHANG Y X, WEI W L, ZHANG X R . Investment of waterlogging and drought effect on the sesame production in China. Chinese Agricultural Science Bulletin, 2011,27(28):301-306. (in Chinese)
[11] DOSSA K, WEI X, LI D H, FONCEKA D, ZHANG Y X, WANG L H, YU J Y, LIAO B S, DIOUF D, CISSÉ N, ZHANG X R . Insight into the AP2/ERF transcription factor superfamily in sesame and expression profiling of DREB subfamily under drought stress. BMC Plant Biology, 2016,16:171.
doi: 10.1186/s12870-016-0859-4 pmid: 4967514
[12] LI D H, LIU P L, YU J Y, WANG L H, DOSSA K, ZHANG X Y, ZHOU R, WEI X, ZHANG X R . Genome-wide analysis of WRKY gene family in the sesame genome and identification of the WRKY genes involved in responses to abiotic stresses. BMC Plant Biology, 2017,17:152.
doi: 10.1186/s12870-017-1099-y pmid: 5594535
[13] 孙建, 饶月亮, 乐美旺, 颜廷献, 颜小文, 周红英 . 干旱胁迫对芝麻生长与产量性状的影响及其抗旱性综合评价. 中国油料作物学报, 2010,32(4):525-533.
SUN J, RAO Y L, LE M W, YAN T X, YAN X W, ZHOU H Y . Effects of drought stress on sesame growth and yield characteristics and comprehensive evaluation of drought tolerance. Chinese Journal of Oil Crop Sciences, 2010,32(4):525-533. (in Chinese)
[14] MENSAH J K, OBADONI B O, ERUOTOR P G, ONOME- IRIEGUNA F . Simulated flooding and drought effects on germination, growth and yield parameters of sesame (Sesamum indicum L.). African Journal of Biotechnology, 2006,5(13):1249-1253.
[15] 陈培, 汪强, 赵莉, 田东风 . 水分胁迫对芝麻种子萌发特性的影响. 种子, 2012,31(4):83-85.
doi: 10.3969/j.issn.1001-4705.2012.04.024
CHEN P, WANG Q, ZHAO L, TIAN D F . Effect of water stress on seed germination characteristics of sesame (Sesamum indicum L.). Seed, 2012,31(4):83-85. (in Chinese)
doi: 10.3969/j.issn.1001-4705.2012.04.024
[16] 徐芬芬, 杜佳朋 . 干旱胁迫和盐胁迫对芝麻种子萌发的影响. 种子, 2013,32(11):85-86.
doi: 10.3969/j.issn.1001-4705.2013.11.025
XU F F, DU J P . Effect of drought and salt stress on seed germination of sesame. Seed, 2013,32(11):85-86. (in Chinese)
doi: 10.3969/j.issn.1001-4705.2013.11.025
[17] 刘文萍, 任果香, 吕伟, 文飞 . 西北地区芝麻抗旱性鉴定研究. 中国农学通报, 2014,30(30):192-198.
LIU W P, REN G X, LÜ W, WEN F . Identification of drought resistance of sesame in northwest region. Chinese Agricultural Science Bulletin, 2014,30(30):192-198. (in Chinese)
[18] KHATIBY A, VAZIN F, HASSANZADEH M, SHADMEHRI A A . Effect of foliar application with salicylic acid on some morphological and physiological characteristics of sesame (Sesamum indicum L.) under drought stress. Cercetari Agronomice in Moldova, 2016,49(4):35-42.
[19] KIM K S, PARK S H, JENKS M A . Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. Journal of Plant Physiology, 2007,164(9):1134-1143.
doi: 10.1016/j.jplph.2006.07.004 pmid: 16904233
[20] HASSANZADEH M, EBADI A, KIVI M P, ESHGHI A G, SOMARIN S J . Evaluation of drought stress on relative water content and chlorophyll content of sesame (Sesamun indicum L.) genotypes at early flowering stage. Research Journal of Environmental Sciences, 2009,3(3):345-350.
doi: 10.5194/acp-8-1195-2008
[21] FAZELI F, GHORBANLI M, NIKNAM V . Effect of drought on biomass, protein content, lipid peroxidation and antioxidant enzymes in two sesame cultivars. Biologia Plantarum, 2007,51(1):98-103.
doi: 10.1007/s10535-007-0020-1
[22] KADKHODAIE A, ZAHEDI M, RAZMJOO J, PESSARAKLI M . Changes in some anti-oxidative enzymes and physiological indices among sesame genotypes (Sesamum indicum L.) in response to soil water deficits under field conditions. Acta Physiologiae Plantarum, 2014,36(3):641-650.
doi: 10.1007/s11738-013-1442-3
[23] 王晓玲 . 水分胁迫对芝麻花期脯氨酸含量的影响. 安徽农学通报, 2007,13(20):66-67.
doi: 10.3969/j.issn.1007-7731.2007.20.025
WANG X L . Effect of water stress on proline content of sesame at flowering stage. Anhui Agricultural Science Bulletin, 2007,13(20):66-67. (in Chinese)
doi: 10.3969/j.issn.1007-7731.2007.20.025
[24] 高桐梅, 吴寅, 李丰, 曾艳娟, 王东勇, 田媛, 卫双玲 . 苗期水分胁迫对芝麻生长和生理特性的影响. 核农学报, 2017,31(11):2229-2235.
doi: 10.11869/j.issn.100-8551.2017.11.2229
GAO T M, WU Y, LI F, ZENG Y J, WANG D Y, TIAN Y, WEI S L . Effects of water stress on physiological characteristics and growth under water stress in seedling of sesame. Journal of Nuclear Agricultural Sciences, 2017,31(11):2229-2235. (in Chinese)
doi: 10.11869/j.issn.100-8551.2017.11.2229
[25] 严寒, 许本波, 赵福永, 何勇, 姚晓鼎, 田志宏 . 脱落酸和水杨酸对干旱胁迫下芝麻幼苗生理特性的影响. 干旱地区农业研究, 2008,26(6):163-166.
YAN H, XU B B, ZHAO F Y, HE Y, YAO X D, TIAN Z H . Effects of abscisic acid and salicylic acid on physiological characteristics of sesame seedlings under drought stress. Agricultural Research in the Arid Areas, 2008,26(6):163-166. (in Chinese)
[26] HUSSEIN Y, AMIN G, GAHIN H . Antioxidant activities during drought stress resistance of sesame (Sesamum indicum L.) plant by salicylic acid and kinetin. Research Journal of Botany, 2016,11(1):1-8.
[27] NAJAFABADI M Y, EHSANZADEH P . Photosynthetic and antioxidative upregulation in drought-stressed sesame (Sesamum indicum L.) subjected to foliar-applied salicylic acid. Photosynthetica, 2017,55(4):611-622.
doi: 10.1007/s11099-017-0673-8
[28] 李合生 . 植物生理生化实验原理和技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of Plant Physiological and Biochemical Experiment. Beijing: Higher Education Press, 2000. ( in Chinese)
[29] GRIFFITH O W . Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 1980,106(1):207-212.
doi: 10.1016/0003-2697(80)90139-6 pmid: 7416462
[30] 金丽萍, 崔世茂, 杜金伟, 金彩霞, 吴玉峰, 其日格 . 干旱胁迫对不同生态条件下蒙古扁桃叶片PAL和C4H活性的影响. 华北农学报, 2009,24(5):118-122.
doi: 10.7668/hbnxb.2009.05.025
JIN L P, CUI S M, DU J W, JIN C X, WU Y F, QI R G . Effects of drought stress in different ecological conditions of the Prunus mongolica Maxim almond leaves in PAL and C4H activity. Acta Agriculturae Boreali-Sinica, 2009,24(5):118-122. (in Chinese)
doi: 10.7668/hbnxb.2009.05.025
[31] 张蜀秋, 李云, 武维华 . 植物生理学实验技术教程. 北京: 科学出版社, 2011.
ZHANG S Q, LI Y, WU W H. Course of Experimental Techniques in Plant Physiology. Beijing: Science Press, 2011. ( in Chinese)
[32] 李海玲, 彭书明, 李凛, 张雪梅 . 4中常用蛋白浓度测定方法的比较. 中国生化药物杂志, 2008,29(4):277-278.
LI H L, PENG S M, LI L, ZHANG X M . Studies on four conventional methods for protein determination. Chinese Journal of Biochemical Pharmaceutics, 2008,29(4):277-278. (in Chinese)
[33] 董守坤, 马玉玲, 李爽, 董娜, 刘丽君 . 干旱胁迫及复水对大豆抗坏血酸-谷胱甘肽循环的影响. 东北农业大学学报, 2018,49(1):10-18.
DONG S K, MA Y L, LI S, DONG N, LIU L J . Effect of drought stress and re-watering on ascorbate-glutathionecycle of soybean. Journal of Northeast Agricultural University, 2018,49(1):10-18. (in Chinese)
[34] 曲涛, 南志标 . 作物和牧草对干旱胁迫的响应及机理研究进展. 草业学报, 2008,17(2):126-135.
doi: 10.3321/j.issn:1004-5759.2008.02.018
QU T, NAN Z B . Research progress on respones and mechanisms of crop and grass under drought stress. Acta Prataculturae Sinca, 2008,17(2):126-135. (in Chinese)
doi: 10.3321/j.issn:1004-5759.2008.02.018
[35] 张翠梅, 师尚礼, 吴芳 . 干旱胁迫对不同抗旱性苜蓿品种根系生长及生理特性影响. 中国农业科学, 2018,51(5):868-882.
doi: 10.3864/j.issn.0578-1752.2018.05.006
ZHANG C M, SHI S L, WU F . Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties. Scientia Agricultura Sinica, 2018,51(5):868-882. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2018.05.006
[36] GRIFFITHS H, PARRY M A J . Plant responses to water stress. Annals of Botany, 2002,89(7):801-802.
doi: 10.1093/aob/mcf159 pmid: 4233812
[37] FAROOQ M, WAHID A, KOBAYASHI N, FUJITA D, BASRA S M A . Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 2009,29(1):185-212.
doi: 10.1051/agro:2008021
[38] BOWLER C, MONTAGU V M, INZE D . Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology & Plant Molecular Biology, 1992,43(1):83-116.
[39] 吴金山, 张景欢, 李瑞杰, 李英英, 高豪杰, 赵庆杰 . 植物对干旱胁迫的生理机制及适应性研究进展. 山西农业大学学报(自然科学版), 2017,37(6):452-456.
WU J S, ZHANG J H, LI R J, LI Y Y, GAO H J, ZHAO Q J . The plant’s physiological mechanism and adaptability to drought stress. Journal of Shanxi Agricultural University (Natural Science Edition), 2017,37(6):452-456. (in Chinese)
[40] 王启明, 徐心诚, 马原松, 吴诗光 . 干旱胁迫下大豆开花期的生理生化变化与抗旱性的关系. 干旱地区农业研究, 2005,23(4):98-102.
doi: 10.3321/j.issn:1000-7601.2005.04.020
WANG Q M, XU X C, MA Y S, WU S G . Influences of drought stress on physiological and biochemical characters of different soybean varieties in flowering period. Agricultural Research in the Arid Areas, 2005,23(4):98-102. (in Chinese)
doi: 10.3321/j.issn:1000-7601.2005.04.020
[41] 揭雨成, 黄丕生, 李宗道 . 干旱胁迫下苎麻的生理生化变化与抗旱性的关系. 中国农业科学, 2000,33(6):33-39.
doi: 10.3321/j.issn:0578-1752.2000.06.006
JIE Y C, HUANG P S, LI Z D . Relationship between physiological biochemical changes of ramine under drought stress and drought resistance. Scientia Agricultura Sinica, 2000,33(6):33-39. (in Chinese)
doi: 10.3321/j.issn:0578-1752.2000.06.006
[42] 白鹏, 冉春燕, 谢小玉 . 干旱胁迫对油菜蕾薹期生理特性及农艺性状的影响. 中国农业科学, 2014,47(18):3566-3576.
doi: 10.3864/j.issn.0578-1752.2014.18.005
BAI P, RAN C Y, XIE X Y . Influence of drought stress on physiological characteristics and agronomic traits at bud stage of rapeseed (Brassica napus L.). Scientia Agricultura Sinica, 2014,47(18):3566-3576. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.18.005
[43] BADGER M R . Photosynthetic oxygen exchanges. Annual Replant Physiology, 1985,36:27-53.
doi: 10.1146/annurev.pp.36.060185.000331
[44] SEEL W E, HENDY G A F, LEE J A . Effects of desiccation on some activated oxygen processing enzymes and anti-oxidants in mosses. Journal of Experimental Botany, 1992,43:1031-1035 .
doi: 10.1093/jxb/43.8.1031
[45] 刘佳, 徐秉良, 薛应钰, 张树武, 陈荣贤 . 美洲南瓜(Cucurbita pepo)种皮苯丙氨酸解氨酶基因克隆与表达分析. 中国农业科学, 2014,47(6):1216-1226.
doi: 10.3864/j.issn.0578-1752.2014.06.018
LIU J, XU B L, XUE Y Y, ZHANG S W, CHEN R X . Cloning and expression analysis of PAL gene in seed coat of Cucurbita pepo. Scientia Agricultura Sinica, 2014,47(6):1216-1226. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.06.018
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[6] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[7] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[8] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[9] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[10] LI Hui,HAN ZhanPin,HE LiXia,YANG YaLing,YOU ShuYan,DENG Lin,WANG ChunGuo. Cloning and Functional Analysis of BraERF023a Under Salt and Drought Stresses in Cauliflower (Brassica oleracea L. var. botrytis) [J]. Scientia Agricultura Sinica, 2021, 54(1): 152-163.
[11] LIU WenJuan,CHANG LiJuan,YUE LiJie,SONG Jun,ZHANG FuLi,WANG Dong,WU JiaWei,GUO LingAn,LEI ShaoRong. Response of Non-Photochemical Quenching in Bundle Sheath Chloroplasts of Two Maize Hybrids to Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(8): 1532-1544.
[12] HaiYan ZHANG,BeiTao XIE,BaoQing WANG,ShunXu DONG,WenXue DUAN,LiMing ZHANG. Effects of Drought Treatments at Different Growth Stages on Growth and the Activity of Antioxidant Enzymes in Sweetpotato [J]. Scientia Agricultura Sinica, 2020, 53(6): 1126-1139.
[13] ZHOU Lian,XIONG YuHan,HONG XiangDe,ZHOU Jing,LIU ChaoXian,WANG JiuGuang,WANG GuoQiang,CAI YiLin. Functional Characterization of a Maize Plasma Membrane Intrinsic Protein ZmPIP2;6 Responses to Osmotic, Salt and Drought Stress [J]. Scientia Agricultura Sinica, 2020, 53(3): 461-473.
[14] WANG JinQiang,LI SiPing,LIU Qing,LI Huan. Mechanism of Spraying Growth Regulators to Alleviate Drought Stress of Sweet Potato [J]. Scientia Agricultura Sinica, 2020, 53(3): 500-512.
[15] SI XuYang,JIA XiaoWei,ZHANG HongYan,JIA YangYang,TIAN ShiJun,ZHANG Ke,PAN YanYun. Genomic Profiling and Expression Analysis of Phosphatidylinositol- specific PLC Gene Families Among Chinese Spring Wheat [J]. Scientia Agricultura Sinica, 2020, 53(24): 4969-4981.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!