Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 11-20.doi: 10.3864/j.issn.0578-1752.2019.01.002

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Inheritance and QTL Mapping for α-Tocopherol in Soybean

LIANG HuiZhen1(),YU YongLiang1,XU LanJie1,YANG HongQi1,DONG Wei1,TAN ZhengWei1,LI Lei1,PEI XinYong2,LIU XinMei1   

  1. 1Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou 450002
    2 Institute of Agricultural Economy and Information, Henan Academy of Agricultural Sciences, Zhengzhou 450002
  • Received:2018-06-25 Accepted:2018-08-07 Online:2019-01-01 Published:2019-01-12

Abstract:

【Objective】 Inheritance and main QTL for α-tocopherol were detected by genetic analysis and QTL mapping. The results lay a genetic foundation for the selection of soybean varieties with high α-tocopherol content in soybean.【Method】The 447 RILs were derived from a cross between Jindou23 of commercial cultivar as the female parent and Huibuzhi of farm variety from Shanxi Province (ZDD02315) as the male parent that construct SSR genetic linkage map. The parent lines and the RILs were cultivated in summer at Yuanyang testing ground of Academy of Agricultural Sciences, and in Winter at Sanya of Hainan province in 2011, 2012, 2015. A complete random design with two replications was used in this study. Each plot of a single genotype provided 15.00 g big-plump seeds with same size in six environmental conditions. α-tocopherol content was detected quantitatively and qualitatively by High Performance Liquid Chromatography (HPLC). Major gene plus polygene mixed inheritance and QTL mapping for α-tocopherol were detected by major gene plus polygene mixed inheritance analysis and composite interval mapping with WinQTLCart 2.5.【Result】The results showed that α-tocopherol was controlled by four pairs of main genes by major gene plus polygene mixed inheritance analysis. and the four pairs of main genes distributed in two parents. Three main genes shared the same direction with positive additive effect and involved novel alleles from the same parent, Jindou23; one main gene has negative additive effects and donated by Huibuzhi of black beans. Three pairs of genes shared the different direction of positive or negative epistatic effects shared the different direction to α-tocopherol contribution. The phenotypic variation explained by QTL by environment interaction ranged from 0.13 to 4.05%, and indicated that α-tocopherol was significantly affected by four pairs of main genes, more than by environment. Seventeen QTLs for α-tocopherol were mapped on 8 chromosomes 1, 2, 5, 6, 8, 14, 16, and 17, separately; the variation accounted for by each of these seventeen QTLs ranged from 8.35% to 35.78%; and QTL showed additive effect. qα-D1a-1 was all located in marker intervals between Satt320-Satt254 (19.79 cM) on chromosomes 1 in four environmental conditions of 2011 at Yuanyang, 2012 at Yuanyang and Sanya, and 2015 at Yuanyang. and explained 12.55%, 12.01%, 11.89%, 12.61% of the phenotypic variation. It had an additive effect of 0.119–0.132 donated by Jinbean23. qα-A2-1 was all located in marker intervals between Sat_129-Satt377 (44.53 cM) on chromosomes 8 in three environmental conditions of 2011 at Yuanyang and Sanya, 2015 at Yuanyang. and explained 23.18%, 22.56%, 23.01% of the phenotypic variation. It had an additive effect of -0.195–-0.180 donated by Huibuzhi. qα-D1a-1 and qα-A2-1 can be stably expressed in different genetic backgrounds.【Conclusion】α-tocopherol was controlled by four pairs of additive epistatic effect major genes genetic model (4MG-AI), and it less affected by environmental factor. The two stable main QTL of Satt320-Satt254 and Sat_129-Satt377 were co-localization marker intervals in soybean.

Key words: soybean, α-tocopherol;, major gene plus polygene, genetic mechanisms, QTL

Table 1

Phenotypic variation of α-TOC contents of soybean seed in RIL population"

年份
Year
平均值Mean 亲本差P2—P1 tt value RIL变幅RIL range GCV(%) 遗传率h2
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
原阳
Yuanyang
三亚
Sanya
2011 1.68 1.73 -0.68 -0.72 5.22** 5.93** 1.17—2.67 1.07—2.44 22.65 18.30 62.02 68.37
2012 1.71 1.68 -0.70 -0.64 6.17** 4.97** 1.02—3.47 1.27—2.47 24.44 18.25 67.21 77.35
2015 1.74 1.85 -0.71 -0.79 5.32** 7.05** 1.07—3.20 1.03—2.68 25.29 19.76 70.03 75.91
平均值Mean 1.71 1.75 -0.70 -0.72 6.29** 7.83** 1.02—3.47 1.03—2.68 23.98 18.72 68.52 73.53

Table 2

Variance analysis of α-TOC contents in soybean seeds"

变异Variation Df SS MS F F0.05
年份间Year 2 0.0551 0.0551 <1
地点间Location 1 0.0070 0.0035 <1
基因型Genotypes 117 31.1280 0.2661 2.0034* 1.871
年份×地点Year×Location 2 0.1497 0.0749 <1
年份×基因Year×Genotypes 234 55.4814 0.2371 1.7854 1.830
地点×基因Location×Genotypes 117 16.5170 0.1412 1.0633 1.871
年份×地点×基因Year×Location×Genotypes 234 22.9903 0.0982 <1
误差 Error 702 93.2256 0.1328

Fig. 1

Distribution of α-TOC among the two parents and the RILs population across six environments"

Table 3

Analysis of the best models and genetic parameters for α-TOC"

参数
Parameter
α-生育酚α-TOC 参数
Parameter
α-生育酚α-TOC
原阳Yuanyang 三亚Sanya 原阳Yuanyang 三亚Sanya
最适模型Optimal model 4MG-AI 4MG-AI
一阶参数1st order parameter 二阶参数2nd order parameter
M 2011 0.8822 0.8724 σp2 2011 0.7701 0.8051
2012 0.9814 1.6881 2012 0.8221 0.0937
2015 0.9917 0.8798 2015 0.8468 0.7472
d(da) 2011 0.8542 0.8727 σmg2 2011 0.7684 0.8041
2012 0.8786 0.1906 2012 0.8178 0.0899
2015 0.9900 0.8796 2015 0.8447 0.7455
db 2011 0.1392 0.1832 σpg2 2011
2012 0.1792 0.0674 2012
2015 0.2319 0.1563 2015
dc 2011 0.0728 0.0852 h2mg(%) 2011 99.78 99.87
2012 0.1864 0.0054 2012 99.48 95.95
2015 0.1722 0.1180 2015 99.75 99.77
dd 2011 -0.0975 -0.0446 hpg2 (%) 2011
2012 -0.0835 -0.0364 2012
2015 -0.1217 -0.0772 2015
iab(i*) 2011 0.1392 0.1832
2012 0.1792 0.1679
2015 0.2319 0.1563
iac 2011 0.0728 0.0852
2012 0.1864 0.0794
2015 0.1722 0.1180
iad 2011 -0.0975 -0.0446
2012 -0.0835 -0.0967
2015 -0.1217 -0.0772
ibc 2011 0.0279 0.007
2012 0.1083 0.0286
2015 0.0125 0.0085
ibd 2011 -0.0658 -0.0059
2012 -0.1309 -0.0938
2015 -0.0083 -0.007
icd 2011 -0.0276 -0.0052
2012 -0.1028 -0.0077
2015 -0.0125 -0.0034

Table 4

QTL positions and its parameters for α-TOC"

年份
Year
环境
Environment
QTL 染色体
Chr.
标记区间
Marker Interval
位置
Position (cM)
LOD 加性效应
Additive
R2
(%)
2011 原阳Yuanyang qα-A2-1 A2(8) Sat_129—Satt377 44.53 3.75 -0.195 23.18
qα-D2-1 D2(17) Satt372—Satt154 0.01 2.62 0.147 12.82
qα-A2-2 A2(7) Satt333—Satt327 93.50 3.93 0.182 21.07
qα-D1a-1 D1a(1) Satt320—Satt254 19.79 2.63 0.125 12.55
三亚Sanya qα-D1a-3 D1a(1) Satt267—Satt402 28.98 4.11 0.140 17.05
qα-A2-1 A2(8) Sat_129—Satt377 44.53 3.71 -0.190 22.56
2012 原阳Yuanyang qα-D1b-1 D1b(2) Satt041—Satt546 14.84 2.52 -0.736 8.35
qα-C2-2 C2(6) Satt100—Satt134 100.60 3.05 -0.143 21.10
qα-D1a-1 D1a(1) Satt320—Satt254 19.79 2.70 0.131 12.01
三亚Sanya qα-A1-1 A1(5) Satt545—Satt511 114.35 5.06 -0.191 35.78
qα-C2-1 C2(6) Satt577—Satt100 98.36 4.10 -0.129 17.07
qα-D1a-1 D1a(1) Satt320—Satt254 19.79 2.53 0.119 11.89
qα-D1a-2 D1a(1) Satt179—Satt267 24.23 2.88 0.120 12.33
2015 原阳Yuanyang qα-D1a-1 D1a(1) Satt320—Satt254 19.79 2.72 0.132 12.61
qα-A2-1 A2(8) Sat_129—Satt377 44.53 3.21 -0.180 23.01
三亚Sanya qα-B2-1 B2(14) Satt070—Satt534 86.20 3.18 -0.964 20.46
qα-J_2-1 J_2(16) Satt380—Satt183 0.01 2.71 -0.687 16.90

Fig. 2

Distribution of main QTLs and additive QTLs on linkage groups"

[1] RIMBACH G, MOEHRING J, HUEBBE P . Gene-regulatory activity of alpha-tocopherol. Molecules, 2010,15:1746-1761.
doi: 10.3390/molecules15031746
[2] ABBASI A R, HAJIREZAEI M, HOFIUS D, SONNEWALD U, VOLL L M . Specific roles of α- and γ-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiology, 2007,143:1720-1738.
doi: 10.1104/pp.106.094771 pmid: 17293434
[3] HINCHA D K . Effects of α-tocopherol (vitamin E) on the stability and lipid dynamics of model membranes mimicking the lipid composition of plant chloroplast membranes. FEBS Letters, 2008,582:3687-3692.
doi: 10.1016/j.febslet.2008.10.002 pmid: 18848546
[4] KANWISCHER M, PORFIROVA S, BERGMULLER E , DÖRMANN P. Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiology, 2005,137:713-723.
doi: 10.1104/pp.104.054908 pmid: 15665245
[5] TAVVA V S, KIM Y H, KAGAN I A, DINKINS R D, KIM K H, COLLINS G B . Increased alpha-tocopherol content in soybean seed overexpressing the Perilla frutescens gamma-tocopherol methyltransferase gene. Plant Cell Reports, 2007,26(1):1-70.
[6] 李海燕, 隋美楠, 聂腾坤, 史帅, 韩英鹏, 李文滨 . 大豆维生素E五个相关基因表达模式分析. 东北农业大学学报, 2016,47(5):15-22.
LI H Y, SUI M N, NIE T K, SHI S, HAN Y P, LI W B . Expression analysis of five relative genes of soybean vitamin E. Journal of Northeast Agricultural University, 2016,47(5):15-22. (in Chinese)
[7] FENG F, DENG F, ZHOU P, YAN J, WANG Q, YANG R, LI X . QTL mapping for the tocopherols at milk stage of kernel development in sweet corn. Euphytica, 2013,193(3):409-417.
doi: 10.1007/s10681-013-0948-5
[8] XU S, ZHANG D, CAI Y, ZHOU Y, TRUSHAR S, FARHAN A, LI Q, LI Z, WANG W, LI J, YANG X, YAN J . Dissecting tocopherols content in maize ( Zea mays L.), using two segregating populations and high-density single nucleotide polymorphism markers. BMC Plant Biology, 2012,12(1):201.
doi: 10.1186/1471-2229-12-201 pmid: 23122295
[9] WANG X, ZHANG C, LI L, FRITSCHE S, ENDRIGKEIT J, ZHANG W, LONG Y, JUNG C, MENG J . Unraveling the genetic basis of seed tocopherol content and composition in rapeseed ( Brassica napus L.). PLoS ONE, 2012,7(11):e50038.
doi: 10.1371/journal.pone.0050038 pmid: 23185526
[10] GRAEBNER R C, WISE M, CUESTA-MARCOS A, GENIZA M, BLAKE T, BLAKE V C, BUTLER J, CHAO S, HOLE D J, HORSLEY R, JAISWAL P, OBERT D, SMITH K, ULLRICHL S, HAYESL P M . Quantitative trait loci associated with the tocochromanol (vitamin E) pathway in barley. PLoS ONE, 2015,10(7):e0133767.
doi: 10.1371/journal.pone.0133767 pmid: 4514886
[11] HADDADI P, EBRAHIMI A, LANGLADE N B, YAZDI-SAMADI B, BERGER M, CALMON A, NAGHAVI M R, VINCOURT P, SARRAFI A . Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Molecular Breeding, 2012,29(3):717-729.
doi: 10.1007/s11032-011-9585-7
[12] MORAL L D , FERNANDEZ-MARTINEZ J M, VELASCO L, PEREZVICH. Quantitative trait loci for seed tocopherol content in sunflower. Crop Science, 2012,52(2):786-794.
doi: 10.2135/cropsci2011.08.0406
[13] GUPTA S, SANGHA M K, KAUR G, BANGA S, GUPTA M, KUMAR H, BANGA S S . QTL analysis for phytonutrient compounds and the antioxidant molecule in mustard ( Brassica juncea L.). Euphytica, 2015,201(3):345-356.
doi: 10.1007/s10681-014-1204-3
[14] DWIYANTI M S, UJIIE A , THUY L T B, YAMDA T, KITAMURA K. Genetic analysis of high α-tocopherol content in soybean seeds. Breed Science, 2007,57:23-28.
doi: 10.1270/jsbbs.57.23
[15] SHAW E, RAJCAN I . Molecular mapping of soybean seed tocopherols in the cross ‘OAC Bayfield’בOAC Shire’. Plant Breeding, 2017,136:83-93.
doi: 10.1111/pbr.2017.136.issue-1
[16] LI H, WANG Y, HAN Y, TENG W, ZHAO X, LI Y, LI W . Mapping quantitative trait loci (QTLs) underlying seed vitamin E content in soybean with main, epistatic and QTL×environment effects. Plant Breeding, 2016,135(2):208-214.
doi: 10.1111/pbr.2016.135.issue-2
[17] LI H, LIU H, HAN Y, WU X, TENG W, LIU G, LI W . Identification of QTL underlying vitamin E contents in soybean seed among multiple environments. Theoretical and Applied Genetics, 2010,120(7):1405-1413.
doi: 10.1007/s00122-010-1264-2 pmid: 20069414
[18] 张红梅, 李海朝, 文自翔, 顾和平, 袁星星, 陈华涛, 崔晓艳, 陈新, 卢为国 . 大豆籽粒维生素E含量的QTL分析. 作物学报, 2015,41(2):187-196.
doi: 10.3724/SP.J.1006.2015.00187
ZHANG H M, LI H C, WEN Z X, GU H P, YUAN X X, CHEN H T, CUI X Y, CHEN X, LU W G . Identification of QTL associated with vitamin E content in soybean seeds. Acta Agronomica Sinica, 2015,41(2):187-196.
doi: 10.3724/SP.J.1006.2015.00187
[19] WANG S C, BASTEN C J, ZENG Z B . Windows QTL cartographer 2.5 user manual. Department of Statistics, North Carolina State University, Raleigh, NC, 2005.
[20] 曹锡文, 刘兵, 章元明 . 植物数量性状分离分析Windows软件包SEA的研制. 南京农业大学学报, 2013,36(6):1-6.
doi: 10.7685/j.issn.1000-2030.2013.06.001
CAO X W, LIU B, ZHANG Y M . SEA: A software package of segregation analysis of quantitative traits in plants. Journal of Nanjing Agricultural University, 2013,36(6):1-6. (in Chinese)
doi: 10.7685/j.issn.1000-2030.2013.06.001
[21] SONG Q J, MAREK L F, SHOEMAKER R C, LARK K G, CONCIBIDO V C, DELANNAY X, SPECHT J E, CREGAN P B . A new integrated genetic linkage map of the soybean. Theoretical and Applied Genetics, 2004,109:122-128.
doi: 10.1007/s00122-004-1602-3 pmid: 14991109
[22] 梁慧珍 . 大豆子粒性状的遗传及QTL分析[D]. 杨凌: 西北农林科技大学, 2006.
LIANG H Z . Genetic analysis and QTL mapping of seed traits in soybean(Glycine max (L.) Merr)[D]. Yangling: Northwest A&F University, 2006. ( in Chinese)
[23] 王珍 . 大豆SSR遗传图谱构建及重要农艺性状QTL分析[D]. 南宁: 广西大学, 2004.
WANG Z . Construction of soybean SSR based map and QTL analysis important agronomic traits[D]. Nanning: Guangxi University, 2004. ( in Chinese)
[24] MCCOUCH S R, CHO Y G, YANO M, PAUL E, BLINSTRUB M, MORISHIMA H, KINOSHITA T . Report on QTL nome nclature. Rice Genetics Newsletter, 1997,14:11-14.
[25] 王金社, 李海旺, 赵团结, 盖钧镒 . 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立. 作物学报, 2010,36(2):191-201.
doi: 10.3724/SP.J.1006.2010.00191
WANG J S, LI H W, ZHAO T J, GAI J Y . Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population. Acta Agronomica Sinica, 2010,36(2):191-201. (in Chinese)
doi: 10.3724/SP.J.1006.2010.00191
[26] JANSEN R C , VAN OOIJIEN J M, STAM P, LISTER C, DEAN C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theoretical and Applied Genetics, 1995,91:33-37.
doi: 10.1007/BF00220855 pmid: 24169664
[27] HAGIWARA W E, ONISH K, TAKAMURE I, SANO Y . Transgressive segregation due to linked QTLs for grain characteristics of rice. Euphytica, 2006,150:27-35.
doi: 10.1007/s10681-006-9085-8
[28] WANG Y, CHENG L, LENG J, WU, C, SHAO G, HOU W, HAN T . Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean ( Glycine max(L.) Merr.). Euphytica, 2015,201(2):275-284.
doi: 10.1007/s10681-014-1209-y
[29] LIANG H, YU Y, WANG S, LIAN Y, WANG T, WEI Y, GONG P, LIU X, FANG X, ZHANG M . QTL mapping of isoflavone, oil and protein contents in soybean ( Glycine max L. Merr.) [D]. Agricultural Science in China, 2010,9(8):1108-1116.
[30] 梁慧珍, 余永亮, 杨红旗, 许兰杰, 董薇, 牛永光, 张海洋, 刘学义, 方宣钧 . 大豆异黄酮及其组分含量的遗传分析与QTL检测. 作物学报, 2015,41(9):1372-1383.
doi: 10.3724/SP.J.1006.2015.01372
LIANG H Z, YU Y L, YANG H Q, XU L J, DONG W, NIU Y G, ZHANG H Y, LIU X Y, FANG X J . Genetic analysis and QTL mapping of isoflavone contents and its components in soybean. Acta Agronomica Sinica, 2015,41(9):1372-1383. (in Chinese)
doi: 10.3724/SP.J.1006.2015.01372
[31] RIZAL G, KARKI S, WANG Y, CHENG L, LENG J, WU C, SHAO G, HOU W, HAN T . Genetic analysis and quantitative trait locus identification of the reproductive to vegetative growth period ratio in soybean ( Glycine max (L.) Merr.). Euphytica, 2015,201(2):275-284.
doi: 10.1007/s10681-014-1209-y
[32] RIZAL G, KARKI S . Alcohol dehydrogenase (ADH) activity in soybean (Glycine max(L.) Merr.) under flooding stress. Electronic Journal of Plant Breeding, 2011,2(1):50-57.
[33] 梁慧珍, 董薇, 许兰杰, 余永亮, 杨红旗, 谭政伟, 许阳, 陈鑫伟 . 不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析. 中国农业科学, 2017,50(18):3450-3460.
doi: 10.3864/j.issn.0578-1752.2017.18.002
LIANG H Z, DONG W, XU L J, YU Y L, YANG H Q, TAN Z W, XU Y, CHEN X W . QTL mapping for main moot length and lateral root number in soybean at the seedling stage in different N, P and K environments. Scientia Agricultura Sinica, 2017,50(18):3450-3460.
doi: 10.3864/j.issn.0578-1752.2017.18.002
[34] DU W, YU D, FU S . Analysis of QTLs for the trichome density on the upper and downer surface of leaf blade in soybean [Glycine max(L.) Merr.]. Agricultural Science in China, 2009,8(5):529-537.
doi: 10.1016/S1671-2927(08)60243-6
[35] 梁慧珍, 余永亮, 杨红旗, 张海洋, 董薇, 崔暐文, 巩鹏涛, 方宣钧 . 幼苗期大豆根系性状的遗传分析与QTL检测. 中国农业科学, 2014,47(9):1681-1691.
doi: 10.3864/j.issn.0578-1752.2014.09.003
LIANG H Z, YU Y L, YANG H Q, ZHANG H Y, DONG W, CUI W W, GONG P T, FANG X J . Genetic and QTL analysis of root traits at seedling stage in soybean [ Glycine max( L.) Merr.]. Scientia Agricultura Sinica, 2014,47(9):1681-1691. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2014.09.003
[36] 李海燕 . 大豆维生素E含量的遗传分析及QTL定位[D]. 哈尔滨: 东北林业大学, 2010.
LI H Y . Genetic and QTL analysis of the content of vitamin E in soybean[D]. Harbin: Northeast Forestry University, 2010. ( in Chinese)
[37] 方宣钧, 吴为人, 唐纪良 . 作物DNA标记辅助育种. 北京: 科学技术出版社, 2001.
FANG X J, WU W R, TANG J L. Molecular Marker Assistant Breeding in Crop. Beijing: Science Press, 2001. ( in Chinese)
[38] SONG K, SLOCUM M K, OSBORN T C . Molecular marker analysis of genes controlling morphological variation in Brassica rapa(syn. campestris). Theoretical and Applied Genetics, 1995,90:1-10.
doi: 10.1007/BF00220989 pmid: 24173777
[39] LI Z , PINSON S R M, STANSEL J W. Identification of quantitative trait loci (QTLs) for heading date and plant height in cultivated rice ( Oryza sativa L.). Theoretical and Applied Genetics, 1995,91:374-381.
doi: 10.1007/BF00220902 pmid: 24169788
[1] CHEN JiHao, ZHOU JieGuang, QU XiangRu, WANG SuRong, TANG HuaPing, JIANG Yun, TANG LiWei, $\boxed{\hbox{LAN XiuJin}}$, WEI YuMing, ZHOU JingZhong, MA Jian. Mapping and Analysis of QTL for Embryo Size-Related Traits in Tetraploid Wheat [J]. Scientia Agricultura Sinica, 2023, 56(2): 203-216.
[2] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[3] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[4] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[5] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[6] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[7] ZHAO Ling, ZHANG Yong, WEI XiaoDong, LIANG WenHua, ZHAO ChunFang, ZHOU LiHui, YAO Shu, WANG CaiLin, ZHANG YaDong. Mapping of QTLs for Chlorophyll Content in Flag Leaves of Rice on High-Density Bin Map [J]. Scientia Agricultura Sinica, 2022, 55(5): 825-836.
[8] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[9] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[10] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[11] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[12] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[13] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[14] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[15] CHANG LiGuo,HE KunHui,LIU JianChao. Mining of Genetic Locus of Maize Stay-Green Related Traits Under Multi-Environments [J]. Scientia Agricultura Sinica, 2022, 55(16): 3071-3081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!