Scientia Agricultura Sinica ›› 2019, Vol. 52 ›› Issue (1): 1-10.doi: 10.3864/j.issn.0578-1752.2019.01.001

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS •     Next Articles

SSR Sequences and Development of PCR Markers Based on Transcriptome of Dasypyrum villosum No.1026

CHEN JingNan1,2(),MA XiaoLan1,WANG Zhen3,LI ShiJin1,XIE Hao2(),YE XingGuo1,LIN ZhiShan1()   

  1. 1 Institute of Crop Science, Chinese Academy of Agricultural Sciences/National Key Facility of Crop Gene Resources and Genetic Improvement/Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081
    2 School of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206
    3 College of Bioscience & Bioengineering, North Minzu University, Yinchuan 750021;
  • Received:2018-07-01 Accepted:2018-09-19 Online:2019-01-01 Published:2019-01-12
  • Contact: Hao XIE,ZhiShan LIN E-mail:1293498949@qq.com;xiehao126@126.com;linzhishan@caas.cn

Abstract:

【Objective】The aim of this study is to explore the characteristics of the EST-SSR sequences of a Dasypyrum villosum accession No.1026 (Dv#4) introduced from the former Soviet Union, and their distributions on chromosomes and polymorphism in different D. villosum accessions and between Dv#4 and common wheat. 【Method】Transcriptome sequences of Dv#4 plants were obtained by Illumina HiSeq sequencing and used to search and analyze the SSR sequences using MISA software and design primers by Primer 3. In total, 238 pairs of primers were selected randomly for synthesis and used to amplify the genomic DNAs of wheat Chinese Spring (CS) and the two different D. villosum accessions. The polymorphisms of the PCR products on agarose gel were evaluated. Further, the features of their chromosome distributions in Dv#4 were studied by using a set of wheat- D. villosum alien chromosome lines (including disomic addition lines and disomic substitution lines). 【Result】 A total sequence length of 62.76 Mb was detected and 10 497 SSR loci were found in the transcriptome data. They are involved in 8 735 unigenes. Repeated unit of mono-, di-, tri- nucleotides are the main type, holding 95.85% of all loci among 1-6 nucleotides repeats, among which tri-nucleotide is the richest component that makes up of 50.33% and contains CCG/CGG motif by 41.66%. The next component is mono-nucleotide tandem repeat, and its occurrence frequency is 18.39%, and A/T repeats occupy 74.58% in this type. Di-nucleotide ranks the 3rd, and it holds 18.39% in the total SSR loci. Among 238 pairs of randomly synthetized EST-SSR primers, 88 pairs amplified polymorphic fragments between CS and D. villosum (including Dv#2 and Dv#4); 8 pairs only had amplifications in D. villosum and some single alien chromosome lines; 4 pairs could specifically amplify bands in D. villosum and multiple alien chromosome lines. But, many primers which had amplification in both D. villosum accessions had no amplification in any alien chromosome lines. Therefore, it can be inferred that variations on the flanking conserved sequences of SSR might occur during the transferring of the exogenous genome or chromosomes into wheat. Additionally, 47 pairs of primers (19.74%) showed polymorphisms between Dv#2 and Dv#4. By using a pair of EST-SSR primer and a PCR marker, respectively, polymorphic amplicons were detected in 48 D. villosum plants, indicating that polymorphic SSR primer can be used to detect the heterogeneity of D. villosum effectively.【Conclusion】 D. villosum Dv#4 has abundant SSR sequences in its transcriptome, of which, CCG/CGG, A/T, AG/CT and other tri-, mono-, and di-nucleotide are the main tandem repeats. The flanking conserved sequences of partial EST-SSR in Dv#4 are associated with a single or several chromosomes specifically, which provides an ideal sequence resource for the development of specific molecular markers to track and detect D. villosum chromosomes or chromosome fragments in wheat background. Some of the EST-SSR polymorphism between Dv#4 and Dv#2 indicates that there is a certain degree of genetic diversity in some of the expressed sequences between the two different origin D. villosum accessions. Therefore, Dv#4 is valuable to be further investigated.

Key words: Dasypyrum villosum, transcriptome, EST-SSR, alien chromosome lines, chromosome localization, genetic diversity

Table 1

EST-SSR composition in Dv#4"

重复单元大小
Repeat unit size
构成比例
Composition ratio (%)
重复基序(位点数)
Repeat motif (locus number)
重复次数
Repeats
单核苷酸Mononucleotide 27.13 A/T(2124)、C/G(724) 10—23
双核苷酸Dinucleotide 18.39 AG/CT(1054)、AC/GT(546)、AT/AT(173)、CG/CG(157) 6—12
三核苷酸Trinucleotide 50.33 CCG/CGG(2201)、AGG/CCT(1003)、AGC/CTG(756)、
ACC/GGT(347)、AAG/CTT(322)、ACG/CGT(265)、ATC/ATG(159)、AAC/GTT(135)、AAT/ATT(48)、
ACT/AGT(47)
5—10
四核苷酸Tetranucleotide 3.75 AGGG/CCCT(46)、ACGC/GCGT (40)、ATCC/ATGG(37)、
AAGG/CCTT(35)、AGGC/GCCT(23)、ACAT/ATGT(21)、
AGCG/CGCT(21)、AAAG/CTTT(20)、AAAT/ATTT(17)、
AGCC/CTGG(16)、ACGG/CCGT(16)、CCCG/CGGG(15)、
AAAC/GTTT(14)、AGAT/ATCT(13)、AATC/ATTG(10)、
CCGG/CCGG(7)、AACC/GGTT(6)、ACAG/CTGT(5)、
AGCT/AGCT(4)、ATCG/ATCG(3)、ACTG/AGTC(3)、
ACTC/AGTG(3)、AATG/ATTC(3)、AAGC/CTTG(3)、
ATGC/ATGC(2)、ACGT/ACGT(2)、ACCG/CGGT(2)、
ACCC/GGGT(2)、AAGT/ACTT(2)、AACG/CGTT(2)、
ACCT/AGGT(1)
5—6
五核苷酸Pentanucleotide 0.34 AGAGG/CCTCT(5)、AGAGC/CTCTG(4)、AAGGG/CCCTT(2) 、ACAGC/CTGTG(2)、ACCAG/CTGGT(2)、AGGCG/CCTCG(2)、 ATCCC/ATGGG(2)、AAAAG/CTTTT(1)、AAACC/GGTTT(1)、 AAACT/AGTTT(1)、AAATC/ATTTG(1)、AAGCT/AGCTT(1)、 AAGGC/CCTTG(1)、AATAC/ATTGT(1)、ACACC/GGTGT(1)、ACCCC/GGGGT(1)、ACCGC/CGGTG(1)、ACGAG/CGTCT(1)、 ACGGC/CCGTG(1)、ACTAG/AGTCT(1)、AGCCC/CTGGG(1)、 AGCCG/CGGCT(1)、AGGGG/CCCCT(1)、ATCCG/ATCGG(1) 5—6
六核苷酸
Hexanucleotide
0.06 AAAGCC/GGCTTT(3)、AAACGC/CGTTTG(1)、AATGCC/ATTGGC(1)、ACCAGC/CTGGTG(1)、ACCAGC/CTGGTG(1) 6—8

Fig. 1

Amplification patterns of CS and two D. villosum accessions by EST- SSR primers M: Parts of Marker 2000, the bands are corresponding to 100 bp, 250 bp and 500 bp in size, respectively. 1-65 indicate 65 pairs of EST-SSR primers, the amplified products showing the PCR polymorphic fragments between wheat and D. villosum or between two D. villosum accessions"

Fig. 2

Amplification patterns of CS, 1V-7V alien chromosome lines and D. villosum by 8 pairs of EST-SSR primers M: Marker 2000, name of primer is indicated on the left side, each of the amplified band is indicated by an arrow on the right side with the fragment size. The same as below"

Fig. 3

Amplification results of 1V-7V alien chromosome lines and Dv#4 by 4 pairs of primers"

Fig. 4

Amplification patterns of D. villosum by EST-SSR primer 225 and EST-PCR primers 6VS-12 M: Marker 2000, 1-16: The offspring individuals of Dv#2 that had been planted closely with Dv#4, D. villosum Dv#2 and Dv#4 are originals, respectively"

[1] GRĄDZIELEWSKA A . The genus Dasypyrum-part 2. Dasypyrum villosum- a wild species used in wheat improvement. Euphytica, 2006,152:441-454.
[2] 赵万春, 董剑, 陈其皎, 李晓燕, 高翔, 石引刚, 陈良国 . 簇毛麦—用于小麦改良的一种野生植物. 草业科学, 2012,29(10):1613-1621.
ZHAO W C, DONG J, CHEN Q J, LI X Y, GAO X, SHI Y G, CHEN L G . Advance in Dasypyrum villosum-a valuable wild species used in wheat improvement. Protacultural Science, 2012,29(10):1613-1621. (in Chinese)
[3] CHEN Q, CONNER R L, LI H, LAROCHE A, GRAF R J, KUZYK A D . Expression of resistance to strip rust, powdery mildew and the wheat curl mite in Triticum aestivum×Haynaldia villosa lines. Canadian Journal of Plant Science, 2002,82(2):451-456.
[4] 刘大钧, 陈佩度, 吴沛良, 王耀南, 邱伯行, 王苏玲 . 硬粒小麦-簇毛麦双二倍体. 作物学报, 1986,12(3):155-162.
LIU D J, CHEN P D, WU P L, WANG Y N, QIU B X, WANG S L . Triticum durum-Haynadia villosa amphidiploid. Acta Agronomica Sinica, 1986,12(3):155-162. (in Chinese)
[5] 陈孝, 徐惠君, 杜丽璞, 尚立民, 韩彬, 施爱农, 肖世和 . 利用组织培养技术向普通小麦导入簇毛麦抗白粉病基因的研究. 中国农业科学, 1996,29(5):1-8.
CHEN X, XU H J, DU L P, SHANG L M, HAN B, SHI A N, XIAO S H . Transfer of gene resistant to powdery mildew from H. villosa to common wheat by tissue culture. Scientia Agricultura Sinica, 1996,29(5):1-8. (in Chinese)
[6] 陈佩度, 周波, 齐莉莉, 刘大钧 . 用分子原位杂交(GISH)鉴定小麦-簇毛麦双倍体、附加系、代换系和易位系. 遗传学报, 1995,22(5):380-386.
CHEN P D, ZHOU B, QI L L, LIU D J . Identification of wheat- Haynaldia villosa amphiloid, addition, substitution and translocation lines by in situ hybridization using biotin-labelled genomic DNA as a probe. Acta Genetica Sinica, 1995,22(5):380-386. (in Chinese)
[7] CHEN P D, QI L L, ZHOU B, ZHANG S Z, LIU D J . Development and molecular cytogenetic analysis of wheat- Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theoretical and Applied Genetics, 1995,91:1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007
[8] 齐莉莉, 陈佩度, 刘大钧, 周波, 张守中, 盛宝钦, 向齐君, 段霞渝, 周益林 . 小麦白粉病新抗源——基因Pm21. 作物学报, 1995,21(3):257-262.
QI L L, CHEN P D, LIU D J, ZHOU B, ZHANG S Z, SHEENG B Q, XIANG Q J, DUAN X Y, ZHOU Y L . The gene Pm21- a new source for resistance to wheat powdery mildew. Acta Agronomica Sinica, 1995,21(3):257-262. (in Chinese)
[9] LI H, CHEN X, XIN Z Y, MA Y Z, XU H J, CHEN X Y, JIA X . Development and identification of wheat- Haynaldia villosa T6DL.6VS chromosome translocation lines conferring resistance to powdery mildew. Plant Breeding, 2005,124:203-205.
[10] LIU C, QI L L, LIU W X, ZHAO W C, WILSON J, FRIEBE B, GILL B S . Development of a set of compensating Triticum aestivum- Dasypyrum villosum Robertsonian translocation lines. Genome, 2011,54:836-844.
[11] XING L, HU P, LIU J., WITEK K, ZHOU S, XU J, ZHOU W, GAO L, HUANG Z, ZHANG R, WANG X, CHEN P, WANG H , JONES J D G, KARAFIATOVA M, VRANA J, BARTOS J, DOLEZEL J, TIAN Y, WU Y, CAO A. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR that confers powdery mildew resistance in wheat. Molecular Plant, 2018, doi: 10.1016/j.molp.2018.02.013.
doi: 10.1016/j.molp.2018.02.013 pmid: 29567451
[12] HE H, ZHU S, ZHAO R, JIANG Z, JI Y, JI J, QIU D, LI H, BIE T . Pm21, encoding a typical CC-NBS-LRR protein, confers broad- spectrum resistance to wheat powdery mildew disease. Molecular Plant, 2018, doi: 10.1016/j.molp.2018.03.004.
doi: 10.1016/j.molp.2018.03.004
[13] ZHANG Q P, LI Q, WANG X E, WANG H Y, LANG S P, WANG Y N, WANG S L, CHEN P D, LIU D J . Development and characterization of a Triticum aestivum-Haynaldia villosa translocation line T4VS·4DL conferring resistance to wheat spindle streak mosaic virus. Euphytica, 2005,145:317-320.
[14] ZHAO R, WANG H, XIAO J, BIE T, CHENG S, JIA Q, YUAN C, ZHANG R, CAO A, CHEN P, WANG X . Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa. Theoretical and Applied Genetics, 2013,126:2921-2930.
doi: 10.1007/s00122-013-2181-y pmid: 23989649
[15] 李淑梅, 徐川梅, 周波, 陈佩度 . 普通小麦-簇毛麦2V染色体端体异附加系的选育与鉴定. 南京农业大学学报, 2009,32(1):1-5.
doi: 10.3321/j.issn:1000-2030.2009.01.001
LI S M, XU C M, ZHOU B, CHEN P D . Development and identification of Triticum-Haynadia villosa ditelesomic addition lines involving chromosome 2V of H.villosa. Journal of Nanjing Agricultural University, 2009,32(1):1-5. (in Chinese)
doi: 10.3321/j.issn:1000-2030.2009.01.001
[16] 董剑, 杨华, 赵万春, 李晓燕, 陈其皎, 高翔 . 普通小麦中国春-簇毛麦易位系T1DL·1VS和T1DS·1VL的农艺和品质特性. 作物学报, 2013,39(8):1386-1390.
doi: 10.3724/SP.J.1006.2013.01386
DONG J, YANG H, ZHAO W C, LI X Y, CHEN Q J, GAO X . Agronomic traits and grain quality of Chinese Spring- Dasypyrum villosum translocation lines T1DL∙1VS and T1DS∙1VL. Acta Agronomica Sinica, 2013,39(8):1386-1390. (in Chinese)
doi: 10.3724/SP.J.1006.2013.01386
[17] 张瑞奇, 冯祎高, 侯富, 陈树林, 别同德, 陈佩度 . 普通小麦-簇毛麦T5VS.5DL易位染色体对小麦主要农艺性状、品质和白粉病抗性的遗传效应分析. 中国农业科学, 2015,48(6):1041-1051.
doi: 10.3864/j.issn.0578-1752.2015.06.01
ZHANG R Q, FENG Y G, HOU F, CHEN S L, BIE T D, CHEN P D . The genetic effect of wheat-H. villosa T5VS.5DL translocated chromosome on agronomic characteristics, quality, and powdery mildew resistance of common wheat. Scientia Agricultura Sinica, 2015,48(6):1041-1051. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2015.06.01
[18] ZHANG R, SUN B, CHEN J, CAO A, XING L, FENG Y, LAN C, CHEN P . Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theoretical and Applied Genetics, 2016,129:1975-1984.
doi: 10.1007/s00122-016-2753-8 pmid: 27422445
[19] QI L L, PUMPHREY M O, FRIEBE B, ZHANG P, QIAN C, BOWDEN R L, ROUSE M N, JIN Y, GILL B S . A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theoretical and Applied Genetics, 2011,123(1):159-167.
doi: 10.1007/s00122-011-1574-z pmid: 21437597
[20] LI H J, CONNER R L, CHEN Q, JIA X, LI H, GRAF R J, LAROCHE A, KUZYK A D . Different reactions to the wheat curl mite and wheat streak mosaic virus in various wheat-Haynaldia villosa 6V and 6VS lines. Plant Disease, 2002,86(4):423-428.
doi: 10.1094/PDIS.2002.86.4.423
[21] LIU C, Ye X G, Wang M J, LI S J, LIN Z S . Genetic behavior of Triticum aestivum-Dasypyrum villosum translocation chromosomes T6V#4S·6DL and T6V#2S·6AL. Journal of Integrative Agriculture, 2017,16(10):2136-2144.
[22] 张云龙, 王美蛟, 张悦, 褚翠萍, 林志珊, 徐琼芳, 叶兴国, 陈孝, 张宪省 . 不同簇毛麦6VS 染色体臂的白粉病抗性特异功能标记的开发及应用. 作物学报, 2012,38(10):1827-1832.
doi: 10.3724/SP.J.1006.2012.01827
ZHANG Y L, WANG M J, ZHANF Y, CHU C P, LIN Z S, XU Q F, YE X G, CHEN X, ZHANG X S . Development and application of functional markers specific to powdery mildew resistance on chromosome arm 6VS from different origins of Haynaldia villosa. Acta Agronomica Sinica, 2012,38(10):1827-1832. (in Chinese)
doi: 10.3724/SP.J.1006.2012.01827
[23] LIN Z S, ZHANG Y L, WANG K, LI J R, XU Q F, CHEN X, ZHANG X S, YE X G . Isolation and molecular analysis of genes Stpk-V2 and Stpk-V3 homologous to powdery mildew resistance gene Stpk-V in a Dasypyrum villosum accession and its derivatives. Journal of Applied Genetics, 2013,54:417-426.
[24] BIE T D, ZHAO R H, ZHU S Y, CHEN S L, HE H G . Development and characterization of marker MBH1 simultaneously tagging genes Pm21 and PmV conferring resistance to powdery mildew in wheat. Molecular Breeding, 2015,35:189.
doi: 10.1007/s11032-015-0385-3
[25] 刘畅, 李仕金, 王轲, 叶兴国, 林志珊 . 簇毛麦6VS特异转录序列P21461及P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用. 作物学报, 2017,43(7):983-992.
doi: 10.3724/SP.J.1006.2017.00983
LIU C, LI S J, WANG K, YE X G, LIN Z S . Developing of specific transcription sequences P21461 and P33259 on Dasypyrum villosum 6VS and application of molecular markers in identifying wheat-D. villosum breeding materials with powdery mildew resistance. Acta Agronomica Sinica, 2017,43(7):983-992. (in Chinese)
doi: 10.3724/SP.J.1006.2017.00983
[26] LI S J, LIN Z S, LIU C, WANG K, DU L P, YE X G . Development and comparative genomic mapping of Dasypyrum villosum 6V#4S- specific PCR markers using transcriptome data. Theoretical and Applied Genetics, 2017,130(10):2057-2068.
[27] PLASCHKE J, GANAL M E, RODER M S . Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theoretical and Applied Genetics, 1995,91:1001-1007.
doi: 10.1007/BF00223912 pmid: 24169989
[28] BRYAN G J, COLLINS A J, STEPHENSON P, ORRY A, SMITH J B, GALE M D . Isolation and characterization of microsatellites from hexaploid bread wheat. Theoretical and Applied Genetics, 1997,94(5):557-563.
[29] 谢皓, 陈学珍, 杨柳, 王建立 . EST-SSR标记的发展和在植物遗传研究中的应用. 北京农学院学报, 2005,20(4):73-76.
doi: 10.3969/j.issn.1002-3186.2005.04.018
XIE H, CHEN X J, YANG L, WANG J L . Development and application of EST-SSR marker in plant genetic. Journal of Beijing Agricultural College, 2005,20(4):73-76. (in Chinese)
doi: 10.3969/j.issn.1002-3186.2005.04.018
[30] 曹亚萍, 曹爱忠, 王秀娥, 陈佩度 . 基于EST-PCR的簇毛麦染色体特异分子标记筛选及应用. 作物学报, 2009,35(1):1-10.
doi: 10.3724/SP.J.1006.2009.00001
CAO Y P, CAO A Z, WANG X E, CHEN P D . Screening and application of EST-based PCR markers specific to individual chromosomes of Haynaldia villosa. Acta Agronomica Sinica, 2009,35(1):1-10. (in Chinese)
doi: 10.3724/SP.J.1006.2009.00001
[31] 李珊珊, 曾艳飞, 何彩云, 张建国 . 基于沙棘转录组序列开发EST-SSR分子标记. 林业科学研究, 2017,30(1):69-74.
doi: 10.13275/j.cnki.lykxyj.2017.01.010
LI S S, ZENG Y F, HE C Y, ZHANG J G . Development of EST-SSR markers based on Seabuckthorn transcriptomic sequences. Forest Research, 2017,30(1):69-74. (in Chinese)
doi: 10.13275/j.cnki.lykxyj.2017.01.010
[32] 陈岳, 张微微, 莫海波, 付乃峰, 田代科 . EST-SSR标记构建莲(Nelumbo Adans)遗传连锁图谱. 分子植物育种, 2017,15(6):2265-2273.
CHEN Y, ZHANG W W, MO H B, FU N F, TIAN D K . Construction of a genetic linkage map of lotus (Nelumbo Adans) using EST-SSR markers. Molecular Plant Breeding, 2017,15(6):2265-2273. (in Chinese)
[33] 陈勋, 龚自明 . 基于EST-SSR 标记的湖北茶树种质资源遗传多样性分析. 分子植物育种, 2017,15(5):1831-1838.
CHEN X, GONG Z M . Analysis of genetic diversity with EST-SSR markers for tea germplasm in Hubei province. Molecular Plant Breeding, 2017,15(5):1831-1838. (in Chinese)
[34] 李翔, 张颖, 许俊强, 宋婷, 李文璐, 董玉梅, 张应华 . 基于EST-SSR 标记的云南黄瓜种质资源遗传多样性分析. 分子植物育种, 2016,14(5):1179-1188.
LI X, ZHANG Y, XU J Q, SONG T, LI W L, DONG Y M, ZHANG Y H . Analysis on genetic diversity of local cucumber germplasm resources in Yunnan based on EST-SSR markers. Molecular Plant Breeding, 2016,14(5):1179-1188. (in Chinese)
[35] QI L L, WANG S L, CHEN P D, LIU D J, GILL B S . Identification and physical mapping of three Haynaldia villosa chromosome-6V deletion lines. Theoretical and Applied Genetics, 1998,97(7):1042-1046.
[36] ZHANG L D, YUAN D J, YU S W, LI Z G, CAO Y F, MIAO Z Q, QIAN H M, TANG K X . Preference of simple sequence repeats in coding and non-coding regions of Arebidopsis thaliana. Bioinformations, 2004,20(7):1081-1086.
[37] 张利达, 唐克轩 . 植物EST-SSR标记开发及其应用. 基因组学与应用生物学, 2010,29(3):534-541.
doi: 10.3969/gab.029.000534
ZHANG L D, TANG K X . Development of plant EST-SSR markers and its application. Genomics and Applied Biology, 2010,29(3):534-541. (in Chinese)
doi: 10.3969/gab.029.000534
[38] GAO L F, TANG J F, LI H W, JIA J Z . Analysis of microsatellites in major crops assessed by computational and experimental approaches. Molecular Breeding, 2003,12:245-261.
doi: 10.1023/A:1026346121217
[39] 文亚峰, 韩文军, 周宏, 徐刚标 . 杉木转录组SSR挖掘及EST-SSR标记规模化开发. 林业科学, 2015,51(11):40-49.
doi: 10.11707/j.1001-7488.20151106
WEN Y F, HAN W J, ZHOU H, XU G B . SSR mining and development of EST-SSR markers for Cunninghamia lanceolata based on transcriptome sequences. Scientia Silvae Sinicae, 2015,51(11):40-49. (in Chinese)
doi: 10.11707/j.1001-7488.20151106
[40] KASHKUSH K, FELDMAN M, LEVY A A . Silencing and activation in a newly synthesized wheat allotetraploid. Genetics, 2002,160(4):1651-1659.
doi: 10.1017/S0016672301005511 pmid: 11973318
[1] YOU YuWan,ZHANG Yu,SUN JiaYi,ZHANG Wei. Genome-Wide Identification of NAC Family and Screening of Its Members Related to Prickle Development in Rosa chinensis Old Blush [J]. Scientia Agricultura Sinica, 2022, 55(24): 4895-4911.
[2] YOU JiaLing,LI YouMei,SUN MengHao,XIE ZhaoSen. Analysis Reveals the Differential Expression of Genes Related to Starch Accumulation in Chloroplast of Leaf with Different Ages in Pinot Noir Grape [J]. Scientia Agricultura Sinica, 2022, 55(21): 4265-4278.
[3] SUN BaoJuan,WANG Rui,SUN GuangWen,WANG YiKui,LI Tao,GONG Chao,HENG Zhou,YOU Qian,LI ZhiLiang. Transcriptome and Metabolome Integrated Analysis of Epistatic Genetics Effects on Eggplant Peel Color [J]. Scientia Agricultura Sinica, 2022, 55(20): 3997-4010.
[4] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[5] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[6] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[7] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[8] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[9] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[10] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[11] GUO YongChun, WANG PengJie, JIN Shan, HOU Binghao, WANG ShuYan, ZHAO Feng, YE NaiXing. Identification of Co-Expression Gene Related to Tea Plant Response to Glyphosate Based on WGCNA [J]. Scientia Agricultura Sinica, 2022, 55(1): 152-166.
[12] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[13] HuaZhi CHEN,YuanChan FAN,HaiBin JIANG,Jie WANG,XiaoXue FAN,ZhiWei ZHU,Qi LONG,ZongBing CAI,YanZhen ZHENG,ZhongMin FU,GuoJun XU,DaFu CHEN,Rui GUO. Improvement of Nosema ceranae Genome Annotation Based on Nanopore Full-Length Transcriptome Data [J]. Scientia Agricultura Sinica, 2021, 54(6): 1288-1300.
[14] DU Yu,ZHU ZhiWei,WANG Jie,WANG XiuNa,JIANG HaiBin,FAN YuanChan,FAN XiaoXue,CHEN HuaZhi,LONG Qi,CAI ZongBing,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Construction and Annotation of Ascosphaera apis Full-Length Transcriptome Utilizing Nanopore Third-Generation Long-Read Sequencing Technology [J]. Scientia Agricultura Sinica, 2021, 54(4): 864-876.
[15] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!