Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (13): 2462-2475.doi: 10.3864/j.issn.0578-1752.2018.13.003

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Change of Atmospheric Environment Leads to Deterioration of Rice Quality

  

  1. 1Yangzhou University/Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou 225009, Jiangsu; 2College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, Jiangsu
  • Received:2017-11-14 Online:2018-07-01 Published:2018-07-01

Abstract: Climate change will change the growth environment of crops, thereby affecting crop yield and quality. The effects of climate change on the yield formation of rice, one of the most important grain crops, had been reported extensively, but there were few studies on rice quality, which bore equal importance as yield in terms of rice production safety. After a brief introduction of the experimental platform, this paper summarized the research progress of the impact of climate change on rice quality. Quality traits were classified into processing, appearance, cooking/eating, nutritional and feeding quality. Climate change included elevated atmospheric CO2 concentration, elevated tropospheric O3 concentration, higher temperature etc. This paper focused on the interactions between atmospheric composition change and high temperature on rice quality. Previous studies showed many uncertainties about the impact of climate change on rice quality, but some important trends had also been found. Unfortunately, most of these trends indicated unfavorable changes in rice quality. Rice growing in high CO2 concentration, high O3 concentration or high temperature environment exhibited an increase in grain chalkiness and a higher percentage of broken grains during milling process. The concentrations of protein and several micronutrients in rice grains decreased with high CO2 concentration, but the palatability was improved; both the eating quality of rice grain and feeding quality of rice straw showed a trend of deterioration when plants were growing under ozone stress. At present, the understandings in this area were obtained mostly from the impact of single climatic factor, but the interaction between CO2 and temperature or O3 had been observed in a few studies. In addition, the responses of rice quality traits to climate change might also be affected by fumigation methods, genotypes and fertilizer application. In future, the experimental platform of different scales should be employed to verify the existing trends; more efforts should devote to evaluate the interactions between climate change factors and other factors, and to reveal the mechanisms of these interactions; and all related researches should aim at the successful development of rice production technology that could truly adapt to future climate change.

Key words: climate change, carbon dioxide (CO2), ozone (O3), temperature, rice, quality

[1]    STOCKER T F, QIN D, PLATTNER G K. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC(Intergovernmental Panel on Climate Change), Technical Summary, Cambridge, United Kingdom/New York, Cambridge University Press, 2013: 1442.
[2]    Pachauri R K, Allen M R, Barros V R. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC(Intergovernmental Panel on Climate Change), 2014.
[3]    IPCC(Intergovernmental Panel on Climate Change). Climate Change 2014: Mitigation of Climate Change. IPSS 5th Assessment Report, Bonn, Germany, 2014.
[4]    Fiscus E L, Booker F L, Burkey K O. Crop responses to ozone: Uptake, modes of action, carbon assimilation and partitioning. Plant, Cell and Environment, 2005, 28(8): 997-1011.
[5]    Fowler D, Cape J N, Coyle M, Smith R I, Hjellbrekke A G, Simpson D, Derwent R G, Johnson C E. Modelling photochemical oxidant formation, transport, deposition and exposure of terrestrial ecosystems. Environmental Pollution, 1999, 100(1/3): 43-55.
[6]    SOLOMON S, QIN D, MANNING M, CHEN Z, MARQUIS M, AVERYT K B, TIGNOR M, MILLER H L. Climate change 2007: The physical science basis, contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC(Intergovernmental Panel on Climate Change), Cambridge, United Kingdom/New York, Cambridge University Press, 2007.
[7]    Ainsworth E A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Global Change Biology, 2008, 14(7): 1642-1650.
[8]    HOUGHTON J T, MEIRA FILHO L G, CALLANDER B A, HARRIS N, KATTENBERG A, MASKELL K. Climate change 1995: Summary for policy makers and technical summary of the working group I report. Intergovernmental Panel on Climate Change. IPCC(Intergovernmental Panel on Climate Change), Cambridge, United Kingdom, Cambridge University Press, 1996.
[9]    IPCC(Intergovernmental Panel on Climate Change) in Core Writing Team. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC(Intergovernmental Panel on Climate Change), Geneva, Switzerland, 2014.
[10]   Kimball B A, Kobayashi K, Bindi M. Responses of agricultural crops to free-air CO2 enrichment. Advances in Agronomy, 2002, 77(10): 293-368.
[11]   Kimball B A. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Current Opinion in Plant Biology, 2016, 31: 36-43.
[12]   Ainsworth E A, Yendrek C R, Sitch S, Collins W J, Emberson L D. The Effects of tropospheric ozone on net primary productivity and implications for climate change. Annual Review of Plant Biology, 2012, 63(1): 637-661.
[13]   Krishnan R, Ramakrishnan B, Reddy K R, Reddy V R. High-temperature effects on rice growth, yield, and grain quality. Advances in Agronomy, 2011, 111: 87-206.
[14]   Xiong D L, Ling X X, Huang J L, Peng S B. Meta-analysis and dose-response analysis of high temperature effects on rice yield and quality. Environmental and Experimental Botany, 2017, 141: 1-9.
[15]   GRiSP. Rice Almanac,4th edition. International Rice Research Institute, Los Banos, Philippines, 2013.
[16]   de Pee S. Proposing nutrients and nutrient levels for rice fortification. Tech. Consid. Rice Fortif. Public Health 1324, 2014, 55-66.
[17]   Cooper N T W, Siebenmorgen T J, Counce P A. Effects of nighttime temperature during kernel development on rice physicochemical properties. Cereal Chemistry, 2008, 85(3): 276-282.
[18]   Lyman N B, Jagadish K S V, Nalley L L, Dixon B L, Siebenmorgen T. Neglecting rice milling yield and quality underestimates economic losses from high temperature stress. PLoS ONE, 2013, 8: e72157.
[19]   杨连新, 王余龙, 石广跃, 王云霞, 朱建国, Kazuhiko K, 赖上坤. 近地层高臭氧浓度对水稻生长发育影响研究进展. 应用生态学报, 2008, 19(4): 901-910.
Yang L X, Wang Y L, Shi G Y, Wang Y X, Zhu J G, Kazuhiko K, Lai S K. Responses of rice growth and development to elevated near surface layer ozone(O3) concentration: A review. Chinese Journal of Applied Ecology, 2008, 19(4): 901-910. (in Chinese)
[20]   杨连新, 王云霞, 朱建国, 王余龙. 十年水稻FACE研究的产量响应. 生态学报, 2009, 29 (3): 1486-1497.
Yang L X, Wang Y X, Zhu J G, Wang Y L. What have we learned from 10 years of free air CO2 enrichment (FACE) experiments on rice? CO2 and grain yield. Acta Ecologica Sinica, 2009, 29 (3): 1486-1497. (in chinese)
[21]   杨连新, 王云霞, 朱建国, Toshihiro H, 王余龙. 开放式空气中CO2浓度增高(FACE)对水稻生长和发育的影响. 生态学报, 2010, 30(6): 1573-1585.
Yang L X, Wang Y X, Zhu J G, Toshihiro H, Wang Y L. What have we learned from 10 years of free air CO2 enrichment (FACE) experiments on rice? growth and development. Acta Ecologica Sinica, 2010, 30(6): 1573-1585. (in Chinese)
[22]   景立权, 赖上坤, 王云霞, 杨连新, 王余龙. 大气CO2浓度和温度互作对水稻生长发育的影响. 生态学报, 2016, 36(14): 4254-4265.
Jing L Q, Lai S K, Wang Y X, Yang L X, Wang Y L. Combined effect of increasing atmospheric CO2 concentration and temperature on growth and development of rice: A research review. Acta Ecologica Sinica, 2010, 30(6): 1573-1585. (in Chinese)
[23]   Wang Y X, Frei M. Stressed food: The impact of abiotic environmental stresses on crop quality. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 271-286.
[24]   Morita S, Wada H, Matsue Y. Countermeasures for heat damage in rice grain quality under climate change. Plant Production Science, 2016, 19(1): 1-11.
[25]   Long S P, Ainsworth E A, Leakey A, Nosberger J, Ort D R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science, 2006, 312(5782): 1918-1921.
[26]   HENDREY G R, MIGLIETTA F. FACE technology: past, present, and future//NOSBERGER J, LONG S P, NORBY R J, STITT M, HENDREY G R, BLUM H. Managed ecosystems and CO2. Germany, Springer, 2006: 187.
[27]   KOBAYASHI K, OKADA M, KIM H Y. The free-air CO2 enrichment (FACE) with rice in Japan//HORIE T, GENG S, AMANO T, INAMURA T, SHIRAIWA T. World Food Security and Crop Production Technologies for Tomorrow. Graduate School of Agriculture, Kyoto University, Kyoto, Japan, 1999: 213-215.
[28]   Tang H, Liu G, Han Y, Zhu J, Kobayashi K. A system for free-air ozone concentration elevation with rice and wheat: control performance and ozone exposure regime. Atmospheric Environment, 2011, 45(35): 6276-6282.
[29]   Jing L Q, Wang J, Shen S B, Wang Y X, Zhu J G, Wang Y L, Yang L X. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions. Journal of the Science of Food and Agriculture, 2016, 96(11): 3658-3667.
[30]   Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming. Global change biology, 2016, 22(3): 1256-1270.
[31]   Cai C, Yin X Y, He S Q, Jiang W, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments. Global Change Biology, 2016, 22(2): 856-874.
[32]   Terao T, Miura S, Yanagihara T, Hirose T, Nagata K, Tabuchi H, Kim H Y, Lieffering M, Okada M, Kobayashi K. Influence of free-air CO2 enrichment (FACE) on the eating quality of rice. Journal of the Science of Food and Agriculture, 2005, 85(11): 1861-1868.
[33]   Yang L X, Wang Y L, Dong G C,Gu H, Huang J Y, Zhu J G, Yang H J, Liu G, Han Y. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice. Field Crops Research, 2007, 102(2): 128-140.
[34]   徐长亮, 李军营, 谢辉, 朱建国, 范桂枝, 蔡庆生. 开放式空气CO2浓度升高对稻米品质的影响. 中国农学通报, 2008, 24(9): 391-397.
Xu C L, Li J Y, Xie H, Zhu J G, Fan G Z, Cai Q S. Effect of free air CO2 enrichment to rice quality of rice. Chinese Agricultural Science Bulletin, 2008, 24(9): 391-397. (in Chinese)
[35]   Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment. Rice, 2014, 7(1): 6-9.
[36]   Wang Y X , Yang L X , Han Y, Zhu J G, Kobayashi K, Tang H Y, Wang Y L. The impact of elevated tropospheric ozone on grain quality of hybrid rice: a free-air gas concentration enrichment (FACE) experiment. Field Crops Research, 2012, 129(1): 81-89.
[37]   Wang Y X, Song Q L, Frei M, Shao Z S, Yang L X. Effects of elevated ozone, carbon dioxide, and the combination of both on the grain quality of Chinese hybrid rice. Environmental Pollution, 2014, 189(12): 9-17.
[38]   沈士博, 张顶鹤, 杨开放, 王云霞, 朱建国, 杨连新, 王余龙. 近地层臭氧浓度增高对稻米品质的影响—FACE研究. 中国生态农业学报, 2016, 24(9): 1231-1238.
Shen S B, Zhang D H, Yang K F, Wang Y X, Zhu J G, Yang L X, Wang Y L. Effect of elevated surface layer ozone concentration on grain quality of two rice cultivars— A FACE study. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1231-1238. (in Chinese)
[39]   谢立勇, 马占云, 韩雪, 林而达. CO2浓度与温度增高对水稻品质的影响. 东北农业大学学报, 2009, 40 (3): 1-6.
Xie L Y, Ma Z Y, Han X, Lin E D. Impacts of CO2 enrichment and temperature increasing on grain quality of rice. Journal of Northeast Agricultural University, 2009, 40(3): 1-6. (in Chinese)
[40]   Yang L X, Wang Y L, Huang J Y, Zhu J G, Yang H J, Liu G, Liu H J, Dong G C, Hu J. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Research, 2007, 102(2): 141-150.
[41]   董桂春, 王余龙, 黄建晔, 杨洪建, 顾晖, 彭斌, 居静, 杨连新, 朱建国, 单玉华. 稻米品质性状对开放式空气二氧化碳浓度增高的响应. 应用生态学报, 2004, 15(7): 1217-1222.
Dong G C, Wang Y L, Huang J Y, Yang H J, Gu H, Peng B, Ju J, Yang L X, Zhu J G, Shan Y H. Response of rice grain quality traits to free-air CO2 enrichment. Chinese Journal of Applied Ecology, 2004, 15(7): 1217-1222. (in Chinese).
[42]   Zhang G Y, Sakai H, Usui Y, Tokida T, Nakamura H, Zhu C W, Fukuoka M, Kobayashi K, Hasegawa T. Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality. Field Crops Research, 2015, 179: 72-80.
[43]   Madan P, Jagadish S V K, Craufurd P Q, Fitzgerald M, Lafarge T, Wheeler T R. Effect of elevated CO2 and high temperature on seed-set and grain quality of rice. Journal of Experimental Botany, 2012, 63(10): 3843-3852.
[44]   Jing L Q, Wu Y Z, Zhuang S T, Wang Y X, Zhu J G, Wang Y L, Yang L X. Effects of CO2 enrichment and spikelet removal on rice quality under open-air field conditions. Journal of Integrative Agriculture, 2016, 15(9): 2012-2022.
[45]   Yoshimoto M, Oue H, Kobayashi K. Energy balance and water use efficiency of rice canopies under free-air CO2 enrichment. Agricultural & Forest Meteorology, 2005, 133(1/4): 226-246.
[46]   Chen C L, Sung J M. Carbohydrate metabolism enzymes in CO2-enriched developing rice grains varying in grain size. Physiologia Plantarum, 1994, 90(1): 79-85.
[47]   Frei M, Kohno Y, Tietze S, Jekle M, Hussein M A, Becker T, Becker K. The response of rice grain quality to ozone exposure during growth depends on ozone level and genotype. Environmental Pollution, 2012, 163(4): 199-206.
[48]   Jing L Q, Dombiniv V, Shen S B, Wu Y Z, Yang L X, Wang Y X, Frei M. Physiological and genotype-specific factors associated with grain quality changes in rice exposed to high ozone. Environmental Pollution, 2016, 210: 397-408.
[49]   Wang Y X, Yang L X, Höller M, Shao Z S, Pariasca- Tanaka J, Wissuwa M, Frei M. Pyramiding of ozone tolerance QTLs OzT8 and OzT9 confers improved tolerance to season-long ozone exposure in rice. Environmental and Experimental Botany, 2014, 104(2): 26-33.
[50]   Morita S. Prospect for developing measures to prevent high- temperature damage to rice grain ripening. Japanese Journal of Crop Science, 2008, 77(1): 1-12.
[51]   邵在胜, 赵轶鹏, 宋琪玲, 贾一磊, 王云霞, 杨连新, 王余龙. 大气CO2和O3浓度升高对水稻‘汕优63’叶片光合作用的影响. 中国生态农业学报, 2014, 22(4): 422-429.
Shao Z S, Zhao Y P, Song Q L, Jia Y L, Wang Y X, Yang L X, Wang Y L. Impact of elevated atmospheric carbon dioxide and ozone concentrations on leaf photosynthesis of ‘Shanyou 63’ hybrid rice. Chinese Journal of Eco-Agriculture, 2014, 22(4): 422-429. (in Chinese)
[52]   赵轶鹏, 邵在胜, 王云霞, 宋琪玲, 王余龙, 杨连新. 大气 CO2和 O3浓度升高对汕优 63 生长动态?物质生产和氮素吸收的影响. 生态学报, 2015, 35(24): 8128?8138.
Zhao Y P, Shao Z S, Wang Y X, Song Q L, Wang Y L, Yang L X. Impact of elevated atmospheric carbon dioxide and ozone concentration on growth dynamic, dry matter production, and nitrogen uptake of hybrid rice Shanyou 63. Acta Ecologica Sinica, 2015, 35(24): 8128?8138. (in Chinese)
[53]   Seneweera S, Blakeney A, Milham P, Basra A S, Barlow E W R, Conroy J. Influence of rising atmospheric CO2 and phosphorus nutrition on the grain yield and quality of rice (Oryza sativa cv. Jarrah). Cereal Chemistry, 1996, 73(2): 239-243.
[54]   Seneweera S P, Conroy J P. Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition. Soil Science and Plant Nutrition, 1997, 43: 1131-1136.
[55]   Goufo P, Ferreira L M M, Carranca C, Rosa E A S, Trindade H. Effect of elevated carbon dioxide concentration on rice quality: Proximate composition, dietary fibers, and free sugars. Cereal Chemistry, 2014, 91(1): 293-299.
[56]   Zhang X, Liu Y Z, Kong Q N,Huang N Y, Chen Y, Pan D J. Growth, grain yield and kernel quality of high yield rice variety Te San Ai 2 growing in a simulated CO2 enriched habitat. Chinese Journal of Applied & Environmental Biology, 1998, 4(3): 238-242.
[57]   赵轶鹏, 宋琪玲, 王云霞, 赖上坤, 周娟, 朱建国, 杨连新, 王余 龙. 大气CO2浓度升高对粳稻稻米物性及食味品质的影响. 农业环境科学学报, 2012, 31(8): 1475-1482.
Zhao Y P, Song Q L, Wang Y L, Lai S K, Zhou J, Zhu J G, Yang L X, Wang Y L. Impacts of elevated CO2 concentration on texture and palatability of cooked japonica rice. Journal of Agro-Environment Science, 2012, 31(8): 1475-1482. (in Chinese)
[58]   Zheng F X, Wang X K, Zhang W W, Hou P Q, Lu F, Du K M, Sun Z F. Effects of elevated O3 exposure on nutrient elements and quality of winter wheat and rice grain in Yangtze River Delta, China. Environmental Pollution, 2013, 179(8): 19-26.
[59]   宋琪玲, 齐义涛, 赵轶鹏, 王云霞, 李潘林, 朱建国, 王余龙, 杨连新. 自由空气中臭氧浓度升高对“武运粳21”稻米物性及食味品质的影响. 中国生态农业学报, 2013, 21(5): 566-571.
Song Q L, Qi Y T, Zhao Y P, Wang Y X, Li P L, Zhu J G, Wang Y L, Yang L X. Impact of free air ozone concentration enrichment on cooked rice (Wuyunjing 21) texture and palatability. Chinese Journal of Eco-Agriculture, 2013, 21(5): 566-571. (in Chinese)
[60]   Ziska L H, Namuco O, Moya T, Quilang J. Growth and yield response of field-grown tropical rice to increasing carbon dioxide and air temperature. Agronomy Journal, 1997, 89(1): 45-53.
[61]   吴健, 蒋跃林. CO2浓度对水稻籽粒蛋白质及氨基酸含量的影响. 安徽农学通报, 2008, 14(11): 84-86.
Wu J, Jiang Y L. Effect of CO2 levels on content of protein and amino acid in rice grain. Anhui Agricultural Science Bulletin, 2008, 14(11): 84-86. (in Chinese)
[62]   周晓冬, 赖上坤, 周娟, 王云霞, 董桂春, 朱建国, 杨连新, 王余龙. 开放式空气中CO2浓度增高 (FACE) 对常规粳稻蛋白质和氨基酸含量的影响. 农业环境科学学报, 2012, 31(7): 1264-1270.
Zhou X D, Lai S K, Zhou J, Wang Y X, Dong G C, Zhu J G, Yang L X, Wang Y L. The impact of free air CO2 enrichment (FACE) on protein and amino acids concentration of conventional japonica rice. Journal of Agro-Environment Science, 2012, 31(7): 1264-1270. (in Chinese)
[63]   Myers S S, Zanobetti A, Kloog I, Huybers P, Leakey A D, Bloom A J, Carlisle E, Dietterich L H, Fitzgerald G, Hasegawa T, Holbrook N M, Nelson R L, Ottman M J, Raboy V, Sakai H M, Sartor Karla, Schwartz J, Seneweera S, Tausz M, Usui Y. Increasing CO2 threatens human nutrition. Nature, 2014, 510(7503): 139-142.
[64]   周三妮, 赖上坤, 吴艳珍, 王云霞, 朱建国, 王余龙, 杨连新. 大气CO2浓度升高和叶面施锌对武运粳23稻米不同部位锌浓度和有效性的影响. 农业环境科学学报, 2014, 33(9): 1686-1692.
Zhou S N, Lai S K, Wu Y Z, Wang Y X, Zhu J G, Wang Y L, Yang L X. Effects of elevated CO2 concentration and foliar Zn application on Zn concentration and bioavailability in different parts of grains of rice Wuyunjing 23. Journal of Agro-Environment Science, 2014, 33(9): 1686-1692. (in Chinese)
[65]   Taub D R, Miller B, Allen H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Global Change Biology, 2008, 14(3): 565-575.
[66]   Gifford R M, Barrett D J, Lutze J L. The effects of elevated CO2 on the C: N and C: P mass ratios of plant tissues. Plant and Soil, 2000, 224(1): 1-14.
[67]   Lieffering M, Kim H Y, Kobayashi K, Okada M. The impact of elevated CO2 on the elemental concentrations of field grown rice grains. Field Crops Research, 2004, 88(2/3): 279-286.
[68]   Zhang G Y, Sakai H, Tokida T, Usui Y, Zhu C W, Nakamura H, Yoshimoto M, Fukuoka M, Kobayashi K, Hasegawa T. The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.). Journal of Experimental Botany, 2013, 64(11): 3179-3188.
[69]   Bloom A J, Burger M, Kimball B A, Jr Pinter P J. Nitrate assimilation is inhibited by elevated CO2 in field-grown wheat. Nature Climate Change, 2014, 4(6): 477-480.
[70]   郭建平, 王春乙, 温民, 白月明,霍治刚. 大气中O3浓度变化对水稻影响的试验研究. 作物学报, 2001, 27(6): 822-826.
Guo J P, Wang C Y, Wen M, Bai Y M, Huo Z G. The excperimental study on the impact of atmospheric O3 variation. Acta Agronomica Sinica, 2001, 27(6): 822-826.
[71]   邵在胜, 沈士博, 贾一磊, 穆海蓉, 王云霞, 杨连新, 王余龙. 臭氧浓度增加对不同敏感型水稻元素吸收与分配的影响. 农业环境科学学报, 2016, 35(9):1642-2652.
Shao Z S, Shen S B, Jia Y L, Mu H R, Wang Y X, Yang L X, Wang Y L. Impact of ozone stress on element absorption and distribution of rice genotypes with different ozone sensitivities. Journal of Agro-Environment Science, 2016, 35(3): 1642-1652. (in Chinese)
[72]   穆海蓉, 邵在胜, 沈士博, 景立权, 王云霞, 王余龙, 杨连新. 臭氧浓度增加对超级稻南粳9108稻穗不同部位籽粒氨基酸含量的影响. 农业环境科学学报, 2017, 36(3): 420-427.
Mu H R, Shao Z S, Shen S B, Jing L Q, Wang Y X, Wang Y L, Yang L X. Impacts of ozone stress on grain amino acids of super rice cultivar Nanjing 9108 differ with grain positions on a panicle. Journal of Agro-Environment Science, 2017, 36(3): 420-427. (in Chinese)
[73]   刘硕, 游松财, 李玉娥, 万运帆, 秦晓波, 高清竹. 基于模拟试验的CO2浓度和气温升高对水稻产量的影响. 湖南农业科学, 2013(1): 94-96.
Liu S, You S C, Li Y E, Wan Y F, Qin X B, Gao Q Z. Effects of elevated CO2 concentration and air temperature on yield of rice based on simulation controlling experiment. Hunan Agricutural Sciences, 2013(1): 94-96. (in Chinese)
[74]   Li Z Y, Tang S R, Deng X F, Wang R G, Song Z G. Contrasting effects of elevated CO2 on Cu and Cd uptake by different rice varieties grown on contaminated soils with two levels of metals: Implication for phytoextraction and food safety. Journal of Hazardous Materials, 2010, 177(1/3): 352-361.
[75]   Guo H Y, Zhu J G, Zhou H, Sun Y Y, Yin Y, Pei D P, Ji R, Wu J C, Wang X R. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions. Environmental Science & Technology, 2011, 45(16): 6997-7003.
[76]   王潇, 宋正国, 武慧斌, 廉菲, 邹洪涛. CO2浓度升高对铜镉污染土壤粳稻稻米安全品质的影响. 生态学杂志, 2014, 33(5): 1319-1326.
Wang X, Song Z G, Wu H B, Lian F, Zou H T. Effects of elevated CO2 on the rice quality of japonica rice in copper and cadmium contaminated soil. Chinese Journal of Ecology, 2014, 33(5): 1319-1326. (in Chinese)
[77]   王潇, 谢丽坤, 武慧斌, 邹洪涛, 宋正国. 铜镉污染土壤上CO2浓度升高对籼稻稻米品质的影响. 生态学报, 2015, 35(17): 5728-5737.
Wang X, Xie L K, Wu H B, zou h t, song z g. Effects of elevated CO2 on indica rice quality in soils combined with Cu and Cd heavy metal. Acta Ecologica Sinica, 2015, 35(17): 5728-5737. (in Chinese)
[78]   庞静, 朱建国, 谢祖彬, 陈改苹, 刘刚, 张雅丽. 自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响. 中国水稻科学, 2005, 19(4): 350-354.
Pang J, Zhu J G, Xie Z B, Chen G P, Liu G, Zhang Y L. Effects of elevated pCO2 on nutrient uptake by rice and nutrient contents in rice grain. Chinese Journal of Rice Science, 2005, 19(4): 350-354. (in Chinese)
[79]   陈旭, 沈士博, 赖上坤, 朱建国, 王余龙. 大气二氧化碳体积分数、氮肥、移栽密度对汕优63稻米矿质元素的影响——FACE研究. 江苏农业科学, 2016, 44(2): 94-98.
Chen X, Shen S B, Lai S K, Zhu J G, Wang Y L. Effects of different CO2 concentration, nitrogen and transplanting density on rice grain mineral element of Shan You 63. Jiangsu Agricutural Sciences, 2016, 44(2): 94-98. (in Chinese)
[80]   Loladze I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. Elife, 2014, 3(4): e02245.
[81]   Loladze I. Rising atmospheric CO2 and human nutrition: towards globally imbalanced plant stoichiometry. Trends in Ecology & Evolution, 2002, 17(10): 457-461.
[82]   Miller L V, Krebs N F, Hambidge M K. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. The Journal of nutrition, 2007, 137(1): 135-141.
[83]   Morris E R, Ellis R. Usefulness of the dietary phytic acid/zinc molar ratio as an index of zinc bioavailability to rats and humans. Biological Trace Element Research, 1989, 19(1/2): 107-117
[84]   周三妮, 王云霞, 赖上坤, 齐义涛, 朱建国, 杨连新, 王余龙. FACE下二氧化碳、施氮量、密度和锌肥对Ⅱ优084稻米锌浓度及有效性的影响. 中国水稻科学, 2014, 28(3): 289-296.
Zhou S N, Wang Y X, Lai S K, Qi Y T, Zhu J G, Yang L X, Wang Y L. Effects of elevated CO2 concentration, nitrogen fertilization, planting density and foliar Zn application on rice Zn concentration and bioavailability of supper riceⅡyou084 under FACE conditions. Chinese Journal of Rice Science, 2014, 28(3): 289-296. (in Chinese)
[85]   Devendra C, Sevilla C C. Availability and use of feed resources in crop-animal systems in Asia. Agricultural Systems, 2002, 71(1/2): 59-73.
[86]   Xie Z B, Zhu J G, Pan H L, Ma H L, Liu G, Georg C, Pang J. Stimulated rice growth and decreased straw quality under free air CO2 enrichment (FACE)//Proceedings of the fifth annual conference for young scientists of China Association for Science and Technology. Shanghai: Science Press, 2004.
[87]   谢祖彬, 朱建国, 张雅丽, 马红亮, 刘刚, 韩勇, 曾青, 蔡祖聪. 水稻生长及其体内C、N、P组成对开放式空气CO2浓度增高和N、P施肥的响应. 应用生态学报, 2002, 13 (10) : 1223-1230.
Xie Z B, Zhu J G, Zhang Y L, Ma H L, Liu G, Han Y, Zeng Q, Cai Z C. Responses of rice (Oryza sativa) growth and its C, N and P composition to FACE (free-air carbon dioxide enrichment) and N, P fertilization. Chinese Journal of Applied Ecology, 2002, 13(10): 1223-1230. (in Chinese)
[88]   Yamakawa Y, Saigusa M, Okada M, Kobayashi K. Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant and Soil, 2004, 259(1/2): 367-372.
[89]   Frei M, Makkar H P S, Becker K, Wissuwa M. Ozone exposure during growth affects the feeding value of rice shoots. Animal Feed Science and Technology, 2010, 155(1): 74-79.
[90]   Frei M, Kohno Y, Wissuwa M, Makkar H P S, Becker K. Negative effects of tropospheric ozone on the feed value of rice straw are mitigated by an ozone tolerance QTL. Global Change Biology, 2011, 17(7): 2319-2329.
[91]   YANG L X, PENG S B. Agronomic avenues to maximize the benefits of rising atmospheric CO2 concentration in the Asian irrigated rice sys-tem//ARAUS J L, SLAFER G A. Crop Stress Management and Global Climate Change (CABI Climate Change Series Vol. 2). Oxon, UK: CABI International Publishing, 2011: 37-46.
[92]   Burkey K O, Booker F L, Ainsworth E A, Nelson R L. Field assessment of a snap bean ozone bioindicator system under elevated ozone and carbon dioxide in a free air system. Environmental Pollution, 2012, 166(11): 167-171.
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] ZHANG XiaoLi, TAO Wei, GAO GuoQing, CHEN Lei, GUO Hui, ZHANG Hua, TANG MaoYan, LIANG TianFeng. Effects of Direct Seeding Cultivation Method on Growth Stage, Lodging Resistance and Yield Benefit of Double-Cropping Early Rice [J]. Scientia Agricultura Sinica, 2023, 56(2): 249-263.
[3] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[4] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[5] ZHAO ZhengXin,WANG XiaoYun,TIAN YaJie,WANG Rui,PENG Qing,CAI HuanJie. Effects of Straw Returning and Nitrogen Fertilizer Types on Summer Maize Yield and Soil Ammonia Volatilization Under Future Climate Change [J]. Scientia Agricultura Sinica, 2023, 56(1): 104-117.
[6] ZHANG Wei,YAN LingLing,FU ZhiQiang,XU Ying,GUO HuiJuan,ZHOU MengYao,LONG Pan. Effects of Sowing Date on Yield of Double Cropping Rice and Utilization Efficiency of Light and Heat Energy in Hunan Province [J]. Scientia Agricultura Sinica, 2023, 56(1): 31-45.
[7] FENG XiangQian,YIN Min,WANG MengJia,MA HengYu,CHU Guang,LIU YuanHui,XU ChunMei,ZHANG XiuFu,ZHANG YunBo,WANG DanYing,CHEN Song. Effects of Meteorological Factors on Quality of Late Japonica Rice During Late Season Grain Filling Stage Under ‘Early Indica and Late Japonica’ Cultivation Pattern in Southern China [J]. Scientia Agricultura Sinica, 2023, 56(1): 46-63.
[8] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[9] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[10] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[11] GUI RunFei,WANG ZaiMan,PAN ShengGang,ZHANG MingHua,TANG XiangRu,MO ZhaoWen. Effects of Nitrogen-Reducing Side Deep Application of Liquid Fertilizer at Tillering Stage on Yield and Nitrogen Utilization of Fragrant Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1529-1545.
[12] LIAO Ping,MENG Yi,WENG WenAn,HUANG Shan,ZENG YongJun,ZHANG HongCheng. Effects of Hybrid Rice on Grain Yield and Nitrogen Use Efficiency: A Meta-Analysis [J]. Scientia Agricultura Sinica, 2022, 55(8): 1546-1556.
[13] HAN XiaoTong,YANG BaoJun,LI SuXuan,LIAO FuBing,LIU ShuHua,TANG Jian,YAO Qing. Intelligent Forecasting Method of Rice Sheath Blight Based on Images [J]. Scientia Agricultura Sinica, 2022, 55(8): 1557-1567.
[14] GAO JiaRui,FANG ShengZhi,ZHANG YuLing,AN Jing,YU Na,ZOU HongTao. Characteristics of Organic Nitrogen Mineralization in Paddy Soil with Different Reclamation Years in Black Soil of Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(8): 1579-1588.
[15] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!