Scientia Agricultura Sinica ›› 2018, Vol. 51 ›› Issue (10): 1890-1898.doi: 10.3864/j.issn.0578-1752.2018.10.008

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Analysis of Sowing and Harvesting Allocation of Maize Based on Cultivar Maturity and Grain Dehydration Characteristics

WanXu ZHANG1,2(), Bo MING2(), KeRu WANG2, ChaoWei LIU1, Peng HOU2, JiangLu CHEN3, GuoQiang ZHANG1,2, JingJing YANG3, ShuLing CHE4, RuiZhi XIE2(), ShaoKun LI1,2()   

  1. 1Agricultural College, Shihezi University/Key Laboratory of Oasis Ecology Agriculture, Xinjiang Production and Construction Corps, Shihezi 832003, Xinjiang
    2Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
    3 Institute of Agricultural Science, the Sixth Division of Xinjiang Production and Construction Corps, Wujiaqu 831301, Xinjiang
    4 Qitai Farm Meteorological Station, the Sixth Division of Xinjiang Production and Construction Corps, Qitai 831809, Xinjiang
  • Received:2018-01-18 Accepted:2018-04-10 Online:2018-05-16 Published:2018-05-16

Abstract:

【Objective】 Yield and production efficiency are two equally important things under the condition of large-scale production. The sowing time and the harvesting time can be prolonged by various combinations of sowing date and different maturity cultivars, thus improving the utilization efficiency of combine machine and the maize production efficiency.【Method】 In this study, three maize cultivars, including KWS9384, Xinyu77 and M751, with different growth stages were selected to monitor the dynamic process of grain moisture content from 2015 to 2017. The predictive relationship model between the grain moisture content and the accumulated temperature (> 0°C) after pollination was established to analyze the key growth nodes of different combinations based on the local meteorological data.【Result】 The results showed that there were significant differences of grain yield and suitable sowing date between cultivars. The early maturity cultivar KWS9384 had a longer time of sowing and harvesting but a lower yield compared with the late maturity cultivars. The late maturity cultivars Xinyu77 and M751 both had higher yields but they needed more time to finish physiological maturity and to dry down grain to meet grain mechanical harvest. The combination plans of late maturity cultivar/early sowing or early maturity cultivar/late sowing could be used to coordinate the relationship between yield and grain moisture content, thus extending the sowing time and the grain harvesting time.【Conclusion】 This paper studied on the suitable sowing time and harvesting time of different maturity cultivars and gave the combination principle of cultivar and sowing date under the background of high yield and high efficiency production. The principle could maximize the utilization efficiency and benefit of combine machine under the specific ecology and production condition. This study provided the new information regarding the relevant researches and application of the maize grain mechanical harvesting technology.

Key words: maize, mechanical grain harvest, grain moisture content, suitable harvest period, large-scale production

Table 1

Statistics on temperature and rainfall during maize growing season in experimental area"

年份
Year
月平均温度Mean temperature (°C) 平均温度
Average temperature (°C)
全年积温
Accumulated temperature (>0°C)
降雨量
Rainfall
(mm)
4 5 6 7 8 9 10 11
2015 10.7 17.3 19.2 23.8 20.9 12.2 6.3 -2.4 13.5 3481.7 365
2016 12.1 14.2 21.8 22.4 20.9 18.7 3.4 -5.4 13.5 3618.1 366
2017 12.3 17.2 21 24.3 20.5 14.9 5.2 -2.2 14.2 3610 229.4
2004-2014 11.2ns 16.9ns 21.6ns 22.9ns 21.5ns 15.7ns 7.7ns -2.5ns 14.4ns 3713.8ns 238.9ns

Table 2

The growth stage, yield and grain moisture content at maize physiological maturity of the tested cultivars"

年份
Year
品种
cultivar
生育进程Growth process 产量及含水率Yield and moisture content
播种日期
Sowing
date
(M-D)
出苗日期
Date of emergence
(M-D)
吐丝期
Silking
period
(M-D)
生理成熟期
Physiological maturity
(M-D)
播种-吐丝期
Sowing - Pollination period (d)
播种-生理
成熟期
Sowing - Physiological maturity (d)
产量
Yield
(kg·hm-2)
生理成熟期
籽粒含水率
Moisture content of physiological maturity (%)
收获期籽粒
含水率
Grain moisture content of harvest period (%)
2015 KWS9384 4-15 4-29 7-1 9-18 77 156 14187.0 29.2 18.6
新玉77 Xinyu 77 4-15 4-28 7-9 9-25 85 163 19047.0 31.5 22.0
M751 4-15 4-29 7-18 10-6 94 174 17703.0 29.2 28.6
2016 KWS9384 4-14 4-24 7-1 9-14 78 153 18999.0 29.7 16.5
新玉77 Xinyu 77 4-14 4-24 7-10 9-21 87 160 18266.6 32.2 22.1
M751 4-14 4-24 7-16 9-26 93 165 20933.3 30.6 24.9
2017 KWS9384 4-22 5-2 7-3 9-17 72 148 19062.6 29.5 17.1
新玉77 Xinyu 77 4-22 5-2 7-11 9-29 80 160 21775.7 33.3 21.8
M751 4-22 5-2 7-17 86 20706.2 17.6

Table 3

Variance analysis of maize grain moisture content at physiological maturity"

源 Source 平方和 Sum of squares 自由度 df 均方 Mean square FF-value
品种Cultivar 45.69 2 22.85 24.36**
年份Year 6.32 2 3.16 3.37ns
品种×年份 Cultivars×Year 3.28 4 0.82 0.87ns
误差Error 20.63 22 0.94

Table 4

Variance analysis of the demand for accumulated temperature during the growth period of different maize cultivars in different years"

年份
Year
品种
Cultivar
播种-吐丝所需积温
Accumulated temperature from sowing to silking (°C)
吐丝-生理成熟所需积温
Accumulated temperature from silking to physiological maturity (°C)
播种-生理成熟所需积温
Accumulated temperature from sowing to physiological maturity (°C)
2015 KWS9384 1357.9 1623.3 2981.2
新玉77 Xinyu 77 1523.1 1538.6 3061.7
M751 1648.8 1500.4 3149.2
2016 KWS9384 1326.3 1607.8 2934.1
新玉77 Xinyu 77 1515.4 1552.6 3068
M751 1653.5 1494.3 3147.8
2017 KWS9384 1329.9 1632.5 2962.4
新玉77 Xinyu 77 1533.3 1561.6 3094.9
M751 1647.6
年份Year ns ns ns
品种Cultivar ** * *

Fig. 1

Relationship between grain moisture content and accumulated temperature after silk period of different maize maturity types of cultivars"

Table 5

Relationship between grain moisture content and accumulated temperature of different maize cultivars"

品种
Cultivar
播种-授粉所需积温
Accumulated temperature from sowing to pollination (°C)
授粉-含水率降至25%所需积温
Accumulated temperature from pollination to 25% moisture content (°C)
授粉-含水率降至20%所需积温
Accumulated temperature from pollination to 20% moisture content (°C)
播种-生理成熟
所需积温
Accumulated temperature from sowing to physiological maturity (°C)
播种-含水率25%
所需积温
Accumulated temperature from sowing to 25% moisture content (°C)
播种-含水率20%
所需积温
Accumulated temperature from sowing-20% moisture content (°C)
KWS9384 1509.9 1705.5 1958.2 2867.5 3043.5 3296.2
新玉77 Xinyu 77 1498.4 1768.1 2028.8 3010.1 3292.0 3552.7
M751 1503.6 1708.4 1973.1 3154.4 3358.4 3623.1

Fig. 2

Suitable sowing and grain harvest date for different maize maturity types of cultivars"

[1] 许庆, 尹荣梁, 章辉.规模经济、规模报酬与农业适度规模经营——基于我国粮食生产的实证研究. 经济研究, 2011(3): 59-71.
XU Q, YIN R L, ZHANG H.Economies of scale, returns to scale and the problem of optimum-scale farm management: An empirical study based on grain production in China.Economic Research Journal, 2011(3): 59-71. (in Chinese)
[2] 朱颖.我国粮食生产组织形式创新的实现途径. 农业经济, 2011(11):65-66.
doi: 10.3969/j.issn.1001-6139.2011.11.026
ZHU Y.The way to realize the innovation of the form of grain production organization in China.Agricultural Economy, 2011(11): 65-66. (in Chinese)
doi: 10.3969/j.issn.1001-6139.2011.11.026
[3] 李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华.实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016(4): 1-6.
doi: 10.16035/j.issn.1001-7283.2016.04.001
LI S K, WANG K R, XIE R Z, HOU P, MING B, YANG X X, HAN D S, WANG Y H.Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production.Crops, 2016(4): 1-6. (in Chinese)
doi: 10.16035/j.issn.1001-7283.2016.04.001
[4] 李璐璐, 雷晓鹏, 谢瑞芝, 王克如, 侯鹏, 张凤路, 李少昆. 夏玉米机械粒收质量影响因素分析. 中国农业科学, 2017, 50(11): 2044-2051.
doi: 10.3864/j.issn.0578-1752.2017.11.010
LI L L, LEI X P, XIE R Z, WANG K R, HOU P, ZHANG F L, LI S K.Analysis of influential factors on mechanical grain harvest quality of summer maize. Scientia Agricultura Sinica, 2017, 50(11): 2044-2051. (in Chinese)
doi: 10.3864/j.issn.0578-1752.2017.11.010
[5] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自科版), 2017, 35(3):265-272.
doi: 10.13880/j.cnki.65-1174/n.2017.03.001
LI S K.Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology.Journal of Shihezi University(Natural Science), 2017, 35(3): 265-272. (in Chinese)
doi: 10.13880/j.cnki.65-1174/n.2017.03.001
[6] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆. 影响玉米机械收粒质量因素的分析. 作物杂志, 2013(4):116-119.
LIU F H, WANG K R, LI J, WANG X M, SUN Y L, CHEN Y S, WANG Y H, HAN D S, LI S K.>Factors affecting corn mechanically harvesting grain quality. Crops, 2013(4): 116-119. (in Chinese)
[7] 柴宗文, 王克如, 郭银巧, 谢瑞芝, 李璐璐, 明博, 侯鹏, 刘朝巍, 初振东, 张万旭, 张国强, 刘广周, 李少昆. 玉米机械粒收质量现状及其与含水率的关系. 中国农业科学, 2017, 50(11): 2036-2043.
CHAI Z W, WANG K R, GUO Y Q, XIE R Z, LI L L, MING B, HOU P, LIU C W, CHU Z D, ZHANG W X, ZHANG G Q, LIU G Z, LI S K.Current status of maize mechanical grain harvesting and its relationship with grain moisture content.Scientia Agricultura Sinica, 2017, 50(11): 2036-2043. (in Chinese)
[8] 谢瑞芝, 雷晓鹏, 王克如, 郭银巧, 柴宗文, 侯鹏, 李少昆.黄淮海夏玉米子粒机械收获研究初报. 作物杂志, 2014(2): 76-79.
XIE R Z, LEI X P, WANG K R, GUO Y Q, CHAI Z W, HOU P, LI S K.Research on corn mechanically harvesting grain quality in Huanghuaihai Plain. Crops, 2014(2): 76-79. (in Chinese)
[9] 李少昆. 美国玉米生产技术特点与启示. 玉米科学, 2013, 21(3): 1-5.
doi: 10.3969/j.issn.1005-0906.2013.03.001
LI S K.Characteristics and enlightenment of corn production technologies in the U.S.Journal of Maize Sciences, 2013, 21(3): 1-5. (in Chinese)
doi: 10.3969/j.issn.1005-0906.2013.03.001
[10] 徐芳.发展粮食烘干机械提高粮食品质. 农业装备技术, 2013(2): 13.
XU F.Developing grain drying machinery to improve grain quality.Agricultural Equipment and Technology, 2013(2): 13. (in Chinese)
[11] 赵明, 李少昆, 董树亭, 张东兴, 王璞, 薛吉全, 高聚林, 孙士明, 张吉旺, 刘鹏, 刘永红, 王永军. 美国玉米生产关键技术与中国现代玉米生产发展的思考——赴美国考察报告.作物杂志, 2011(2): 1-3.
ZHAO M, LI S K, DONG S T, ZHANG D X, WANG P, XUE J Q, GAO J L, SUN S M, ZHANG J W, LIU P, LIU Y H, WANG Y J.The key technology of corn production in the United States and the development of modern Chinese corn production—an investigation report to the United States.Crops, 2011(2): 1-3. (in Chinese)
[12] 李璐璐, 明博, 谢瑞芝, 侯鹏, 王克如, 李少昆. 玉米子粒脱水特征及其与灌浆特性关系的研究. 中国农业科学, 2017, (未定).
LI L L, MING B, XIE R Z, HOU P, WANG K R, LI S K. Study on grain dehydration characteristics of maize and its relationship with grain filling. Scientia Agricultural Sinica, 2017, (未定).
[13] 姜晓艳, 张菁, 高杰, 陈鹏狮, 臧俏冰, 姜淼. 沈阳地区农作物生长季热量资源变化特征. 气象与环境学报, 2011, 27(2):19-24.
doi: 10.3969/j.issn.1673-503X.2011.02.004
JIANG X Y, ZHANG J, GAO J, CHEN P S, ZANG Q B, JIANG M.Characteristics of heat resources during crop growth season in Shenyang region Liaoning Province.Journal of Meteorology and Environment, 2011, 27(2): 19-24. (in Chinese)
doi: 10.3969/j.issn.1673-503X.2011.02.004
[14] 米娜, 纪瑞鹏, 张玉书, 张淑杰, 蔡福, 陈鹏狮, 赵先丽, 于秀捷. 辽宁省玉米适宜播种期的热量资源分析. 中国农学通报, 2010, 26(18): 329-334.
MI N, JI R P, ZHANG S Y, ZHANG S J, CAI F, CHEN P S, ZHAO X L, YU X J.Analysis of the thermal resources for optimized planting date of maize in Liaoning Province.Chinese Agricultural Science Bulletin, 2010, 26(18): 329-334. (in Chinese)
[15] 田彦君, 张山清, 徐文修, 只娟. 近52年来北疆≥10℃初日时空变化特征及其对春玉米播期的影响. 干旱地区农业研究, 2017, 35(1):271-276.
doi: 10.7606/j.issn.1000-7601.2017.01.40
TIAN Y J, ZHANG S X, XU W X, ZHI J.Spatial-temporal variation of first ≥10℃ date in the past 52 years and its impact on the sowing date of spring maize in northern Xinjiang.Agricultural Research in the Arid Areas, 2017, 35(1): 271-276. (in Chinese)
doi: 10.7606/j.issn.1000-7601.2017.01.40
[16] 王荣晓, 徐文修, 只娟, 田彦军. 气候变暖对阿勒泰地区春玉米播种期和种植布局的影响. 干旱地区农业研究, 2015, 33(1): 219-224.
doi: 10.16302/j.cnki.1000-7601.2015.01.036
WANG X R, XU W X, ZHI J, TIAN Y J.Influence of climate warming on seeding time and cultivation pattern of spring maize in Altai region.Agricultural Research in the Arid Areas, 2015, 33(1): 219-224. (in Chinese)
doi: 10.16302/j.cnki.1000-7601.2015.01.036
[17] 欧阳海. 农业气候学. 北京: 气象出版社, 1990: 65-71.
OU Y H. Agricultural Climatology.Beijing: Meteorology Press, 1990: 65-71. (in Chinese)
[18] 王秀萍, 任国玉, 赵春雨, 于德华. 近46年大连地区初、终霜冻事件和无霜冻期变化. 应用气象学报, 2008, 19(6):673-678.
doi: 10.11898/1001-7313.20080606
WANG X P, REN G Y, ZHAO C Y, YU D H.Characteristics of first/last frost date events and frost-free period in Dalian area during recent 46 Years.Journal of Applied Meteorological Science, 2008, 19(6): 673-678. (in Chinese)
doi: 10.11898/1001-7313.20080606
[19] 张静, 龙魁, 刘进宝, 张佳, 杨宛章.新疆玉米机械化收获模式分析与探讨.农业科技与装备, 2013(3): 24-26.
ZHANG J, LONG K, LIU J B, ZHANG J, YANG W Z.Analysis and discussion of Xinjiang mechanized corn harvesting mode.Agricultural Science Technology and Equipment, 2013(3): 24-26. (in Chinese)
[20] 王瑛.新疆加快推广玉米收获机械化技术. 现代农业装备, 2008(3): 49-50.
WANG Y.Accelerating the popularization of mechanization technology for maize harvest in Xinjiang.Modern Agricultural Equipments. 2008(3): 49-50. (in Chinese)
[21] HALLETT S H,JONES R J A.Compilation of an accumulated temperature database for use in an environmental information system.Agricultural & Forest Meteorology, 1993, 63(1/2): 21-34.
[22] 白彩云, 李少昆, 柏军华, 张厚宝, 谢瑞芝. 我国东北地区不同生态条件下玉米品种积温需求及利用特征. 应用生态学报, 2011, 22(9):2337-2342.
BAI C Y, LI S K, BAI J H, ZHANG H B, XIE R Z.Characteristics of accumulated temperature demand and its utilization of maize under different ecological conditions in Northeast China.Chinese Journal of Applied Ecology , 2011, 22(9): 2337-2342. (in Chinese)
[23] 张东兴. 农机农艺技术融合推动我国玉米机械化生产的发展. 农业技术与装备, 2011(9): 22-25.
doi: 10.3969/j.issn.1673-887X.2011.09.006
ZHANG D X.Integration of agricultural machinery and agricultural technology to promote the development of corn mechanized production in China.Agricultural Technology and Equipment, 2011(9): 22-25. (in Chinese)
doi: 10.3969/j.issn.1673-887X.2011.09.006
[24] 栗建枝, 李齐霞, 李中青, 祁丽婷, 王敏, 王瑞, 孙万荣. 不同玉米品种子粒脱水特性. 山西农业科学, 2014, 42(5):438-442.
LI J Z, LI Q X, LI Z Q, QI L T, WANG M, WANG R, SUN W R.Kernel dehydration characteristics of maize cultivars. Journal of Shanxi Agricultural Sciences,2014, 42(5): 438-442. (in Chinese)
[25] 刘武仁, 郑金玉, 罗洋, 郑洪兵, 李伟堂. 影响玉米子粒含水量的因素及低水分玉米生产技术. 吉林农业科学, 2009, 34(1): 1-2.
doi: 10.3969/j.issn.1003-8701.2009.01.001
LIU W R, ZHEN J Y, LUO Y, ZHEN H B, LI W T.Factors affecting water content of maize and cultural practice for low water content maize.Journal of Jilin Agricultural Sciences, 2009, 34(1): 1-2. (in Chinese)
doi: 10.3969/j.issn.1003-8701.2009.01.001
[26] HILLSON M T, PENNY L H.Dry matter accumulation and moisture loss during maturation of corn grain.Agronomy Journal, 1965, 57(2): 150-153.
doi: 10.2134/agronj1965.00021962005700020007x
[27] NASS H G, CRANE P L.Effect of endosperm mutants on drying rate in corn (Zea mays L). Crop Science, 1970, 10(2): 141-144.
doi: 10.2135/cropsci1970.0011183X001000020005x
[28] HICKS D R, GEADEL, PETERSON R H. Drying rates of frosted maturing maize.Agronomy Journal, 1976, 68(3): 452-455.
doi: 10.2134/agronj1976.00021962006800030004x
[29] SCHMIDT J L, HALLAUER A R.Estimating harvest date of corn in the field.Crop Science, 1966, 6(3): 227-231.
doi: 10.2135/cropsci1966.0011183X000600030003x
[30] 谭福忠, 韩翠波, 邹双利, 刘振江, 籍依安. 极早熟玉米品种子粒脱水特性的初步研究. 中国农学通报, 2008, 24(7):161-168.
TAN F Z, HAN C B, ZOU S L, LIU Z J, JI Y A.Elementary study on kernel dry-down traits in earliest-maturity maize hybrid. Chinese Agricultural Science Bulletin, 2008, 24(7): 161-168. (in Chinese)
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[8] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[9] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[10] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[11] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[12] LI Yan, TAO KeYu, HU Yue, LI YongXiang, ZHANG DengFeng, LI ChunHui, HE GuanHua, SONG YanChun, SHI YunSu, LI Yu, WANG TianYu, ZOU HuaWen, LIU XuYang. Function of Maize ZCN7 in Regulating Drought Resistance at Flowering Stage [J]. Scientia Agricultura Sinica, 2023, 56(16): 3051-3061.
[13] LIU ShuJun, LI DongChu, HUANG Jing, QU XiaoLin, MA ChangBao, WANG HuiYing, YU ZiKun, ZHANG Lu, HAN TianFu, LIU KaiLou, SHEN Zhe, ZHANG HuiMin. Spatial-Temporal Variation Characteristics of Wheat and Maize Stalk Resources and Chemical Fertilizer Reduction Potential of Returning to Farmland in Recent 30 Years in China [J]. Scientia Agricultura Sinica, 2023, 56(16): 3140-3155.
[14] LIU GaoYuan, HE AiLing, DU Jun, LÜ JinLing, NIE ShengWei, PAN XiuYan, XU JiDong, LI Jue, YANG ZhanPing. Effect of Organic Fertilizer Replacing Chemical Fertilizer on Nitrous Oxide Emission from Wheat-Maize Rotation System in Lime Concretion Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(16): 3156-3167.
[15] MU XinYuan, LÜ ShanShan, LU LiangTao, LIU TianXue, LI ShuYan, XUE ChangYing, WANG HongWei, ZHAO Xia, XIA LaiKun, TANG BaoJun. Effects of Tassel Sizes on Post-Flowering Dry Matter Accumulation and Yield of Different Maize Varieties Under High Temperature Stress During Pollination [J]. Scientia Agricultura Sinica, 2023, 56(15): 2880-2894.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!