Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (24): 4692-4704.doi: 10.3864/j.issn.0578-1752.2017.24.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Construction of Cotton Variety Fingerprints Using CottonSNP63K Array

SUN Zhengwen1, KUANG Meng2, MA Zhiying1, WANG Xingfen1   

  1. 1College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Ministry of Education, Baoding 071001, Hebei; 2Institute of Cotton Research, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2017-05-25 Online:2017-12-16 Published:2017-12-16

Abstract: 【Objective】 The objective of this study is to screen genomic-specific SNPs, considering the SNP with single loci and the reference genomic sequence information of upland cotton TM-1. 【Method】 Based on 719 natural germplasm resources with plentiful genetic backgrounds, using the CottonSNP63K array developed by Illumina, quality control of the original genotyping data obtained from chip scanning was performed by GenomeStudio software, the genotyping data of the SNP locus of the tested samples were obtained. According to the two published Gossypium hirsutum TM-1 genome versions, including the G. hirsutum (AD1) genome BGI v1.0 of Cotton Research Institute of Chinese Academy of Agricultural Sciences and the G. hirsutum (AD1) genome NBI v1.1 of Nanjing Agricultural University, the genome-wide BLAST analysis was performed on the flanking sequences of each SNP with CottonSNP63K (63 058 SNPs) array to screen specific SNP loci with single copy, and these SNPs were used for the construction of fingerprints. 【Result】 SNP genotyping of 719 materials using CottonSNP63K was classified into SNP locus without detectable signal, SNP locus without polymorphism and the polymorphism SNP loci. The polymorphism SNP loci could be divided into double-site SNP, multiple-site SNP and single-site SNP (genomic-specific SNP). The results of the Blast analysis with the two upland cotton TM-1 reference genome sequences showed that there were 5 474 specific SNP markers in the BGI v1.0 version, while NBI v1.1 TM-1 version only 1 850, and the common specific SNPs of both were 1 594. Further considering the three evaluation indexes including the genotyping effect, call rate and polymorphism, the SNPs with scores≥0.7, call frequency≥0.95 and MAF≥0.2 were screened, and 471 specific SNPs with high call rate and high polymorphism were obtained. Among these SNP loci, 430 were on chromosomes and 41 were on scaffolds. Taking into account of the degree of linkage between the markers, finally 393 core SNP loci were obtained after removing 37 linkage markers, and the DNA fingerprints of 719 resource materials were constructed by using 393 core SNPs. The results showed that 97% of the materials could be accurately and effectively identified except for some accessions with similar genetic background. 【Conclusion】 A total of 393 genomic-specific SNPs were screened out, and these core SNPs were used to construct the DNA fingerprints of 719 resource materials. This study will provide a reference for application of SNP molecular markers in genetic improvement of important cotton traits.

Key words: cotton, SNP marker, GenomeStudio, genotyping array, fingerprints

[1]    CHEN Z J, SCHEFFLER B E, DENNIS E, TRIPLETT B A, ZHANG T, GUO W, CHEN X, STELLY D M, RABINOWICZ P D, TOWN C D, ARIOLI T, BRUBAKER C, CANTRELL R G, LACAPE J M, ULLOA M, CHEE P, GINGLE A R, HAIGLER C H, PERCY R, SAHA S, WILKINS T, WRIGHT R J, VAN DEYNZE A, ZHU Y, YU S, ABDURAKHMONOV I, KATAGERI I, KUMAR P A, MEHBOOB UR R, ZAFAR Y, YU J Z, KOHEL R J, WENDEL J F, PATERSON A H. Toward sequencing cotton (Gossypium) genomes. Plant Physiology, 2007, 145(4): 1303-1310.
[2]    PATERSON A H, WENDEL J F, GUNDLACH H, GUO H, JENKINS J, JIN D, LLEWELLYN D, SHOWMAKER K C, SHU S, UDALL J, YOO M J, BYERS R, CHEN W, DORON-FAIGENBOIM A, DUKE M V, GONG L, GRIMWOOD J, GROVER C, GRUPP K, HU G, LEE T H, LI J, LIN L, LIU T, MARLER B S, PAGE J T, ROBERTS A W, ROMANEL E, SANDERS W S, SZADKOWSKI E, TAN X, TANG H, XU C, WANG J, WANG Z, ZHANG D, ZHANG L, ASHRAFI H, BEDON F, BOWERS J E, BRUBAKER C L, CHEE P W, DAS S, GINGLE A R, HAIGLER C H, HARKER D, HOFFMANN L V, HOVAV R, JONES D C, LEMKE C, MANSOOR S, UR RAHMAN M, RAINVILLE L N, RAMBANI A, REDDY U K, RONG J K, SARANGA Y, SCHEFFLER B E, SCHEFFLER J A, STELLY D M, TRIPLETT B A, VAN DEYNZE A, VASLIN M F, WAGHMARE V N, WALFORD S A, WRIGHT R J, ZAKI E A, ZHANG T, DENNIS E S, MAYER K F, PETERSON D G, ROKHSAR D S, WANG X, SCHMUTZ J. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature, 2012, 492(7429): 423-427.
[3]    ZHANG H B, LI Y, WANG B, CHEE P W. Recent advances in cotton genomics. International Journal of Plant Genomics, 2008, 2008: 742304.
[4]    WRAY N R, YANG J, HAYES B J, PRICE A L, GODDARD M E, VISSCHER P M. Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics, 2013, 14(7): 507-515.
[5]    CICHY K A, WIESINGER J A, MENDOZA F A. Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 2015, 128(8): 1555-1567.
[6]    ROSTOKS N, RAMSAY L, MACKENZIE K, CARDLE L, BHAT P R, ROOSE M L, SVENSSON J T, STEIN N, VARSHNEY R K, MARSHALL D F, GRANER A, CLOSE T J, WAUGH R. Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49): 18656-18661.
[7]    LU H, LIN T, KLEIN J, WANGS H, QI J, ZHOU Q, SUN J, ZHANG Z, WENG Y, HUANG S. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theoretical and Applied Genetics, 2014, 127(7): 1491-1499.
[8]    WANG K, WANG Z, LI F, YE W, WANG J, SONG G, YUE Z, CONG L, SHANG H, ZHU S, ZOU C, LI Q, YUAN Y, LU C, WEI H, GOU C, ZHENG Z, YIN Y, ZHANG X, LIU K, WANG B, SONG C, SHI N, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.
[9]    LI F, FAN G, WANG K, SUN F, YUAN Y, SONG G, LI Q, MA Z, LU C, ZOU C, CHEN W, LIANG X, SHANG H, LIU W, SHI C, XIAO G, GOU C, YE W, XU X, ZHANG X, WEI H, LI Z, ZHANG G, WANG J, LIU K, KOHEL R J, PERCY R G, YU J Z, ZHU Y X, WANG J, YU S. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46(6): 567-572.
[10]   LI F, FAN G, LU C, XIAO G, ZOU C, KOHEL R J, MA Z, SHANG H, MA X, WU J, LIANG X, HUANG G, PERCY R G, LIU K, YANG W, CHEN W, DU X, SHI C, YUAN Y, YE W, LIU X, ZHANG X, LIU W, WEI H, WEI S, HUANG G, ZHANG X, ZHU S, ZHANG H, SUN F, WANG X, LIANG J, WANG J, HE Q, HUANG L, WANG J, CUI J, SONG G, WANG K, XU X, YU J Z, ZHU Y, YU S. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.
[11]   ZHANG T, HU Y, JIANG W, FANG L, GUAN X, CHEN J, ZHANG J, SASKI C A, SCHEFFLER B E, STELLY D M, HULSE-KEMP A M, WAN Q, LIU B, LIU C, WANG S, PAN M, WANG Y, WANG D, YE W, CHANG L, ZHANG W, SONG Q, KIRKBRIDE R C, CHEN X, DENNIS E, LLEWELLYN D J, PETERSON D G, THAXTON P, JONES D C, WANG Q, XU X, ZHANG H, WU H, ZHOU L, MEI G, CHEN S, TIAN Y, XIANG D, LI X, DING J, ZUO Q, TAO L, LIU Y, LI J, LIN Y, HUI Y, CAO Z, CAI C, ZHU X, JIANG Z, ZHOU B, GUO W, LI R, CHEN Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
[12]   WANG S, WONG D, FORREST K, ALLEN A, CHAO S, HUANG B E, MACCAFERRI M, SALVI S, MILNER S G, CATTIVELLI L, MASTRANGELO A M, WHAN A, STEPHEN S, BARKER G, WIESEKE R, PLIESKE J, INTERNATIONAL WHEAT GENOME SEQUENCING C, LILLEMO M, MATHER D, APPELS R, DOLFERUS R, BROWN-GUEDIRA G, KOROL A, AKHUNOVA A R, FEUILLET C, SALSE J, MORGANTE M, POZNIAK C, LUO M C, DVORAK J, MORELL M, DUBCOVSKY J, GANAL M, TUBEROSA R, LAWLEY C, MIKOULITCH I, CAVANAGH C, EDWARDS K J, HAYDEN M, AKHUNOV E. Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnology Journal, 2014, 12(6): 787-796.
[13]   LI X, GAO W, GUO H, ZHANG X, FANG D D, LIN Z. Development of EST-based SNP and InDel markers and their utilization in tetraploid cotton genetic mapping. BMC Genomics, 2014, 15: 1046.
[14]   RITCHIE M E, LIU R, CARVALHO B S, AUSTRALIA, The Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), IRIZARRY R A. Comparing genotyping algorithms for Illumina’s Infinium whole-genome SNP BeadChips. BMC Bioinformatics, 2011, 12: 68.
[15]   CONRAD D F, JAKOBSSON M, COOP G, WEN X, WALL J D, ROSENBERG N A, PRITCHARD J K. A worldwide survey of haplotype variation and linkage disequilibrium in the human genome. Nature Genetics, 2006, 38(11): 1251-1260.
[16]   MANCUSO N, SHI H, GODDARD P, KICHAEV G, GUSEV A, PASANIUC B. Integrating gene expression with summary association statistics to identify genes associated with 30 complex traits. American Journal of Human Genetics, 2017, 100(3): 473-487.
[17]   REN X, YANG G L, PENG W F, ZHAO Y X, ZHANG M, CHEN Z H, WU F A, KANTANEN J, SHEN M, LI M H. A genome-wide association study identifies a genomic region for the polycerate phenotype in sheep (Ovis aries). Scientific Reports, 2016, 6: 21111.
[18]   WANG Z, ZHANG H, YANG H, WANG S, RONG E, PEI W, LI H, WANG N. Genome-wide association study for wool production traits in a Chinese Merino sheep population. PloS One, 2014, 9(9): e107101.
[19]   HULSE-KEMP A M, LEMM J, PLIESKE J, ASHRAFI H, BUYYARAPU R, FANG D D, FRELICHOWSKI J, GIBAND M, HAGUE S, HINZE L L, KOCHAN K J, RIGGS P K, SCHEFFLER J A, UDALL J A, ULLOA M, WANG S S, ZHU Q H, BAG S K, BHARDWAJ A, BURKE J J, BYERS R L, CLAVERIE M, GORE M A, HARKER D B, ISLAM M S, JENKINS J N, JONES D C, LACAPE J M, LLEWELLYN D J, PERCY R G, PEPPER A E, POLAND J A, MOHAN RAI K, SAWANT S V, SINGH S K, SPRIGGS A, TAYLOR J M, WANG F, YOURSTONE S M, ZHENG X, LAWLEY C T, GANAL M W, VAN DEYNZE A, WILSON I W, STELLY D M. Development of a 63K SNP array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Genes, Genomes, Genetics), 2015, 5(6): 1187-1209.
[20]   KUANG M, WEI S J, WANG Y Q, ZHOU D Y, MA L, FANG D, YANG W H, MA Z Y. Development of a core set of SNP markers for the identification of upland cotton cultivars in China. Journal of Integrative Agriculture, 2016, 15(5): 954-962.
[21]   匡猛, 王延琴, 周大云, 马磊, 方丹, 徐双娇, 杨伟华, 魏守军, 马峙英. 基于单拷贝SNP标记的棉花杂交种纯度高通量检测技术. 棉花学报, 2016, 28(3): 227-233.
KUANG M, WANG Y Q, ZHOU D Y, MA L, FANG D, XU S J, YANG W H, WEI S J, MA Z Y. High-throughput genotyping assay technology for cotton hybrid purity based on single-copy SNP markers. Cotton Science, 2016, 28(3): 227-233. (in Chinese)
[22]   SUN Z, WANG X, LIU Z, GU Q, ZHANG Y, LI Z, KE H, YANG J, WU J, WU L, ZHANG G, ZHANG C, MA Z. Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnology Journal, 2017, doi:10.1111/pbi.12693.
[23]   HUANG C, NIE X, SHEN C, YOU C, LI W, ZHAO W, ZHANG X, LIN Z. Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnology Journal, 2017, doi:10.1111/pbi.12722.
[24]   ZHAO K, TUNG C W, EIZENGA G C, WRIGHT M H, ALI M L, PRICE A H, NORTON G J, ISLAM M R, REYNOLDS A, MEZEY J, MCCLUNG A M, BUSTAMANTE C D, MCCOUCH S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communications, 2011, 2: 467.
[25]   ZHANG X, WARBURTON M L, SETTER T, LIU H, XUE Y, YANG N, YAN J, XIAO Y. Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel. Theoretical and Applied Genetics, 2016, 129(8): 1449-1463.
[26]   ZHANG J, STEWART J M. Economical and rapid method for extracting cotton genomic DNA. Journal of Cotton Science, 2000, 4(3): 193-201.
[27]   LIU K, MUSE S V. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 2005, 21(9): 2128-2129.
[28]   王省芬, 马峙英, 张桂寅, 温小杰, 李喜焕. SSR和AFLP技术鉴定棉花遗传资源的比较研究. 棉花学报, 2006, 18(6): 391-393.
WANG X F, MA Z Y, ZHANG G Y, WEN X J, LI X H. Comparision of identification for cotton genetic resources using ssr and aflp markers. Cotton Science, 2006, 18(6): 391-393. (in Chinese)
[29]   匡猛, 杨伟华, 许红霞, 王延琴, 周大云, 冯新爱. 中国棉花主栽品种DNA指纹图谱构建及SSR标记遗传多样性分析. 中国农业科学, 2011, 44(1): 20-27.
KUANG M, YANG W H, XU H X, WANG Y Q, ZHOU D Y, FENG A X. Construction of DNA fingerprinting and analysis of genetic diversity with SSR markers for cotton major cultivars in china. Scientia Agricultura Sinica, 2011, 44(1): 20-27.
[30]   RAFALSKI A. Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 2002, 5(2): 94-100.
[31]   JONES E S, SULLIVAN H, BHATTRAMAKKI D, SMITH J S. A comparison of simple sequence repeat and single nucleotide polymorphism marker technologies for the genotypic analysis of maize (Zea mays L.). Theoretical and Applied Genetics, 2007, 115(3): 361-371.
[32]   王晓歌, 阴祖军, 王俊娟, 王德龙, 樊伟丽, 王帅, 叶武威. 陆地棉转录组耐盐相关SNP挖掘及分析. 分子植物育种, 2016, 14(6): 1524-1532.
WANG X G, YIN Z J, WANG J J, WANG D L, FAN W L, WANG S, YE W W. Mining and analyzing of SNP related to salinity stress in transcriptome of upload cotton (Gossypium hirsutum L.). Molecular Plant Breeding, 2016, 14(6): 1524-1532. (in Chinese)
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[4] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[5] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[6] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[7] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[8] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[9] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[10] LI Qing,YU HaiPeng,ZHANG ZiHao,SUN ZhengWen,ZHANG Yan,ZHANG DongMei,WANG XingFen,MA ZhiYing,YAN YuanYuan. Optimization of Cotton Mesophyll Protoplast Transient Expression System [J]. Scientia Agricultura Sinica, 2021, 54(21): 4514-4524.
[11] NIE JunJun,DAI JianLong,DU MingWei,ZHANG YanJun,TIAN XiaoLi,LI ZhaoHu,DONG HeZhong. New Development of Modern Cotton Farming Theory and Technology in China - Concentrated Maturation Cultivation of Cotton [J]. Scientia Agricultura Sinica, 2021, 54(20): 4286-4298.
[12] ZHOU Meng,HAN XiaoXu,ZHENG HengBiao,CHENG Tao,TIAN YongChao,ZHU Yan,CAO WeiXing,YAO Xia. Remote Sensing Estimation of Cotton Biomass Based on Parametric and Nonparametric Methods by Using Hyperspectral Reflectance [J]. Scientia Agricultura Sinica, 2021, 54(20): 4299-4311.
[13] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[14] ZHOU JingLong,FENG ZiLi,WEI Feng,ZHAO LiHong,ZHANG YaLin,ZHOU Yi,FENG HongJie,ZHU HeQin. Biocontrol Effect and Mechanism of Cotton Endophytic Bacterium YUPP-10 and Its Secretory Protein CGTase Against Fusarium Wilt in Cotton [J]. Scientia Agricultura Sinica, 2021, 54(17): 3691-3701.
[15] WEN Ming, LI MingHua, JIANG JiaLe, MA XueHua, LI RongWang, ZHAO WenQing, CUI Jing, LIU Yang, MA FuYu. Effects of Nitrogen, Phosphorus and Potassium on Drip-Irrigated Cotton Growth and Yield in Northern Xinjiang [J]. Scientia Agricultura Sinica, 2021, 54(16): 3473-3487.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!