Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (20): 3898-3907.doi: 10.3864/j.issn.0578-1752.2017.20.006


Analysis of Morphological and Physiological Responses to Low Pi Stress in Different Alfalfas

LI ZhenYi1, ZHANG QiXin2, Tong ZongYong1, Li Yue1, XU HongYu1, WAN XiuFu1, BI ShuYi1, CAO Jing1, He Feng1, WAN LiQiang1, LI XiangLin1   

  1. 1Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193; 2College of Pastoral Agriculture Science and Technology/State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou 730020
  • Received:2017-02-23 Online:2017-10-16 Published:2017-10-16

Abstract: 【Objective】 The objective of this study is to screen low Pi (inorganic phosphate) tolerant alfalfa and related characters, and to provide the theoretical basis for deficient Pi tolerance mechanism and then for application in production. 【Method】 In the condition of nutrient solution, twenty 24-day-old alfalfa seedlings were cultured in nutrient solution with sufficient phosphate (500 μmol·L1 KH2PO4) and deficient phosphate (5 μmol·L1 KH2PO4). After 30 days of treatment, a variety of physiological indexes, including dry weight of stems and leaves (SLW), plant height (PH), dry weight of root (RW), ratio of root to shoot (RS), total root length (TRL), root square area (RSA), total Pi content (TP), phosphate utilization efficiency (PUE), acid phosphatase activity (ACPA), were measured, and coefficients of resistance to deficient-Pi of each index were calculated. Furthermore, the correlation was carried out on the deficient-Pi coefficient of each index. Based on principal component analysis, subordinate function analysis, regression analysis and cluster analysis, deficient-Pi tolerance of different varieties were evaluated, and the indexes closely related to deficient-Pi tolerance were screened. At the same time, the evaluation model of deficient-Pi tolerance was established. 【Result】 Under deficient-Pi stress, the aboveground growth of all varieties were inhibited. However, the root system and the content of total Pi were decreased (P<0.01). Through principal component analysis, nine primary indexes could be transformed into four new mutual independent comprehensive indexes, which covered 92.04% of information. Then four new indexes were used to comprehensively assess the characters of deficient-Pi tolerance by subordinate function analysis. Combined with the clusters result, 20 alfalfa varieties were divided into three clusters. The varieties resistant to deficient-Pi include Aohan, Xinmu NO.1, Magnum Salt, Phabulous; varieties moderate resistant to deficient-Pi include nine varieties, such as Knight T, Caribou, Amerigraze 37CR, Longmu 801 and so on; varieties sensitive to deficient-Pi include seven varieties, such as Magnum II, Zhongmu NO. 2, Concept and so on. Furthermore, the mathematic evaluation model of resistance to deficient-Pi, D=﹣0.7997+0.3856 SLW+0.2025 PH+0.3789 RW+0.1051 TRL+0.4188 TP+0.1347 ACPA (R2 = 0.9982).【Conclusion】The analysis of the ability of deficient-Pi tolerance in different alfalfa varieties showed Aohan, Xinmu NO.1, Magnum Salt and Phabulous have strong resistance to deficient-Pi stress. And the dry weight of stems and leaves, plant height, root dry weight, total root length, total Pi content and acid phosphatase activity were the most suitable indicators for the tolerance to deficient-Pi.

Key words: Medicago sativa, deficient-Pi tolerance, principal component analysis, comprehensive evolution, regression analysis

[1]    张福锁, 崔振岭, 王激清, 李春俭, 陈新平. 中国土壤和植物养分管理现状与改进策略. 植物学通报, 2007, 24(6): 687-694.
Zhang F S, Cui Z L, Wang J Q, Li C J, Chen X P. Current status of soil and plant nutrient management in China and improvement strategies. Chinese Bulletin of Botany, 2007, 24(6): 687-694. (in Chinese)
[2]    李向林, 何峰. 苜蓿营养与施肥. 北京: 中国农业出版社, 2013, 118-120.
Li X L, He F. Alfalfa Nutrition and Fertilization. Beijing: China Agriculture Press, 2013: 118-120. (in Chinese)
[3]    BAKER A, CEASAR S A, PALMER A J, PATERSON J B, QI W, MUENCH S P, BALDWIN S A. Replace, reuse, recycle: Improving the sustainable use of phosphorus by plants. Journal of Experimental Botany, 2015, 66(12): 3523-3540.
[4]    李生秀. 植物营养与肥料学科的现状与展望. 植物营养与肥料学报, 1999, 5(3): 193-205.
Li S X. The current state and prospect of plant nutrition and fertilizer science. Plant Nutrition and Fertilizer Science, 1999, 5(3): 193-205. (in Chinese)
[5]    戴开结, 何方, 官会林, 沈有信, 张光明. 植物与低磷环境研究进展诱导、适应与对策. 生态学杂志, 2006, 25(12): 1580-1585.
Dai K J, He F, Guan H L, Shen Y X, Zhang G M. Research advances in plant and its low-phosphorus environment-inducement, adaptation and countermeasures. Chinese Journal of Ecology, 2006, 25(12): 1580-1585. (in Chinese)
[6]    CORNISH P S. Research directions: Improving plant uptake of soil phosphorus, and reducing dependency on input of phosphorus fertiliser. Crop & Pasture Science, 2009, 60(2): 190-196.
[7]    王萍, 陈爱群, 余玲, 徐国华. 植物磷转运蛋白基因及其表达调控的研究进展. 植物营养与肥料学报, 2006, 12(4): 584-591.
WANG P, CHEN A Q, YU L, XU G H. Advance of plant phosphate transporter genes and their regulated expression. Plant Nutrition and Fertilizer Science, 2006, 12(4): 584-591. (in Chinese)
[8]    张丽梅, 贺立源, 李建生, 徐尚忠. 不同耐低磷基因型玉米磷营养特性研究. 中国农业科学, 2005, 38(1):110-115.
ZHANG L M, HE L Y, LI J S, XU S Z. Phosphorus nutrient characteristics of different maize inbreds with tolerance to low-P stress. Scientia Agricultura Sinica, 2005, 38(1): 110-115. (in Chinese)
[9]    CHEN B D, XIAO X Y, ZHU Y G, SMITH F A, XIE Z M, SMITH S E. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn. Science of the total Environment, 2007, 379(2): 226-234.
[10]   LOPEZ-ARREDONDO D L, LEYVA-GONZALEZ M A, GONZALEZ- MORALES S I, LOPEZ-BUCIO J, HERRERA-ESTRELLA L. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology, 2014, 65(1): 95-123.
[11]   王琪, 徐程扬. 氮磷对植物光合作用及碳分配的影响. 山东林业科技, 2005(5): 63-66.
WANG Q, XU C Y. Affects of nitrogen and phosphorus on plant leaf photosynthesis and carbon partitioning. Journal of Shandong Forestry Science and Technology, 2005(5): 63-66. (in Chinese)
[12]   JOHNSON J F, VANCE C P, ALLAN D L. Phosphorus deficiency in Lupinus albus-Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiology, 1996, 112(1): 31-41.
[13]   TURNER B L, CADE-MENUN B J, CONDRON L M, NEWMAN S. Extraction of soil organic phosphorus. Talanta, 2005, 66(2): 294-306.
[14] BOLAN N S, NAIDU R, MAHIMAIRAJA S, BASKARAN S. Influence of low-molecular-weight organic acids on the solubilization of phosphates. Biology and Fertility of Soils, 1994, 18(4): 311-319.
[15]   LIPTON D S, BLANCHAR R W, BLEVINSl D G. Citrate, malate, and succinate concentration in exudates from P-sufficient and P-stressed medicago sativa L. seedlings. Plant Physiology, 1987, 85(2): 315-317.
[16]   丁玉川, 陈明昌, 程滨, 李丽君, 李典友. 不同大豆品种磷吸收利用特性比较研究. 西北植物学报, 2005, 25(9): 1791-1797.
DING Y C, CHEN M C, CHENG B, LI L J, LI D Y. Phosphorous uptakes and uses of different soybean varieties. Acta Botanica Boreali-Occidentalia Sinica, 2005, 25(9): 1791-1797. (in Chinese)
[17]   刘渊, 李喜焕, 王瑞霞, 张彩英. 大豆耐低磷指标筛选与耐低磷品种鉴定. 中国农业科技导报, 2015, 17(4): 30-41.
LIU Y, LI X H, WANG R X, ZHANG C Y. Screen indexes for soybean tolerance to phosphorus deficiency and identification of low-P tolerant soybean varieties. Journal of Agricultural Science and Technology, 2015, 17(4): 30-41. (in Chinese)
[18]   王英, 李喜焕, 张彩英. 河北大豆地方品种耐低磷种质筛选. 大豆科学, 2009, 28(4): 588-594.
WANG Y, LI X H, ZHANG C Y. Screening of low-P tolerant soybean landraces from Heibei growing-areas. Soybean Science, 2009, 28(4): 588-594. (in Chinese)
[19]   高艳, 田秋英, 石凤翎, 李凌浩, 张文浩. 黄花苜蓿与蒺藜苜蓿对土壤低磷胁迫适应策略的比较研究. 植物生态学报, 2011, 35(6): 632-640.
GAO Y, TIAN Q Y, SHI F L, LI L H, ZHANG W H. Comparative studies on adaptive strategies of Medicago falcata and M. truncatula to phosphorus deficiency in soil. Chinese Journal of Plant Ecology, 2011, 35(6): 632-640. (in Chinese)
[20]   任立飞, 张文浩, 李衍素. 低磷胁迫对黄花苜蓿生理特性的影响. 草业学报, 2012, 21(3): 242-249.
REN L F, ZHANG W H, LI Y S. Effect of phosphorus deficiency on physiological properties of Medicago falcata. Acta Prataculturae Sinica, 2012, 21(3): 242-249. (in Chinese)
[21]   李会娟. 2种植物磷含量的检测方法比较研究. 现代农业科技, 2012(11): 16-17.
LI H J. Comparative study on determination of phosphorus content in two kinds of plants. Modern Agricultural Sciences and Technology, 2012(11): 16-17. (in Chinese)
[22]   戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松. 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学, 2014, 47(7): 1290-1300.
DAI H F, WU H, AMANGULI M, WANG L H, MAIMAITI A, ZHANG J S. Analysis of salt-tolerance and determination of salt-tolerant evaluation indicators in cotton seedlings of different genotypes. Scientia Agricultura Sinica, 2014, 47(7): 1290-1300. (in Chinese)
[23]   周广生, 梅方竹, 周竹青, 朱旭彤. 小麦不同品种耐湿性生理指标综合评价及其预测. 中国农业科学, 2003, 36(11): 1378-1382.
ZHOU G S, MEI F Z, ZHOU Z Q, ZHU X T. Comprehensive evaluation and forecast on physiological indices of waterlogging resistance of different wheat varieties. Scientia Agricultura Sinica, 2003, 36(11): 1378-1382. (in Chinese)
[24]   管志勇, 陈素梅, 陈发棣, 尹冬梅, 刘兆磊, 唐娟, 杨帆. 32个菊花近缘种属植物耐盐性筛选. 中国农业科学, 2010, 43(19): 4063-4071.
GUAN Z Y, CHEN S M, CHEN F D, YIN D M, LIU Z L, TANG J, YANG F. Salt tolerance screening of 32 taxa from chrysanthemum and its relative genera. Scientia Agricultura Sinica, 2010, 43(19): 4063-4071. (in Chinese)
[25]   孙璐, 周宇飞, 汪澈, 肖木辑, 陶冶, 许文娟, 黄瑞冬. 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学, 2012, 45(9): 1714-1722.
SUN L, ZHOU Y F, WANG C, XIAO M J, TAO Y, XU W J, HUANG R D. Screening and identification of sorghum cultivars for salinity tolerance during germination. Scientia Agricultura Sinica, 2012, 45(9): 1714-1722. (in Chinese)
[26]   HINSINGER P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant and Soil,2001, 237(2): 173-195.
[27]   ZHOU J, XIE J, LIAO H, WANG X. Overexpression of β-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiologia Plantarum, 2014, 150(2): 194-204.
[28]   ZENG H Q, ZHU Y Y, HUANG S Q, YANG Z M. Analysis of phosphorus-deficient responsive miRNAs and cis-elements from soybean (Glycine max L.). Journal of Plant Physiology, 2010, 167(15): 1289-1297.
[29]   陈俊意, 徐莉. 玉米苗期磷效率的相关和通径分析. 西南师范大学学报(自然科学版), 2008, 33(5): 82-85.
CHEN J Y, XU L. Correlation and path analysis of relative biologic characters and phosphorus efficiency in seedlings of maize. Journal of Southwest China Normal University (Natural Science Edition), 2008, 33(5): 82-85. (in Chinese)
[30]   LYNCH J P. Root architecture and phosphorus acquisition efficiency in common bean. Radical Biology: Advances and Perspectives on the Function of Plant Roots, 1998(18): 81-91.
[31]   王庆仁, 李继云, 李振声. 植物高效利用土壤难溶态磷研究动态及展望. 植物营养与肥料学报, 1998, 4(2): 107-116.
WANG Q R, LI J Y, LI Z S. Dynamics and prospect on studies of high acquisition of soil unavailable phosphorus by plants. Plant Nutrition and Fertilizer Science, 1998, 4(2): 107-116. (in Chinese)
[32]   RICHARDSON A E, HOCKING P J, SIMPSON R J, GEORGE T S. Plant mechanisms to optimise access to soil phosphorus. Crop & Pasture Science, 2009, 60(2): 124-143.
[33]   李绍长. 低磷胁迫对植物光合和呼吸作用的影响. 石河子大学学报(自然科学版), 2003, 7(2): 157-160.
LI S C. Effects of low phosphate stress on plant photosynthesis and respiration. Journal of Shihezi University(Natural Science), 2003, 7(2): 157-160. (in Chinese)
[34]   JACOB J, LAWLOR D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. Journal of Experimental Botany, 1991, 42(8): 1003-1011.
[35]   MOLLIER A, PELLERIN S. Maize root system growth and development as influenced by phosphorus deficiency. Journal of Experimental Botany, 1999, 50(333): 487-497.
[36]   FREDEEN A L, RAAB T K, RAO I M, TERRY N. Effects of phosphorus nutrition on photosynthesis in Glycine max. Planta, 1990, 181(3): 399-405.
[37]   RAO I M, TERRY N. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet I. Changes in growth, gas exchange, and Calvin Cycle enzymes. Plant Physiology, 1989, 90(3): 814-819.
[38]   HUANG C Y, SHIRLEY N, GENC Y, SHI B, LANGRIDGE P. Phosphate utilization efficiency correlates with expression of low-affinity phosphate transporters and noncoding RNA, IPS1, in barley. Plant Physiology, 2011, 156(3): 1217-1229.
[39]   RAGHOTHAMA K G. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50(1): 665-693.
[40]   黄宇, 张海伟, 徐芳森. 植物酸性磷酸酶的研究进展. 华中农业大学学报, 2008, 27(1): 148-154.
HUANG Y, ZHANG H W, XU F S. Research progress on plant acid phosphatase. Journal of Huazhong Agricultural University, 2008, 27(1): 148-154. (in Chinese)
[41]   高彬, 曹翠玲, 李涛. 乙烯对低磷胁迫下大豆根形态和生理特性的影响. 大豆科学, 2012, 31(1): 58-63.
GAO B, CAO C L, LI T. Effect of ethylene on morphology and physiological characteristic of soybean seedlings under low- phosphorus stress. Soybean Science, 2012, 31(1): 58-63. (in Chinese)
[1] WANG XiuXiu,XING AiShuang,YANG Ru,HE ShouPu,JIA YinHua,PAN ZhaoE,WANG LiRu,DU XiongMing,SONG XianLiang. Comprehensive Evaluation of Phenotypic Characters of Nature Population in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(6): 1082-1094.
[2] DU JinXia,LI YiSha,LI MeiLin,CHEN WenHan,ZHANG MuQing. Evaluation of Resistance to Leaf Scald Disease in Different Sugarcane Genotypes [J]. Scientia Agricultura Sinica, 2022, 55(21): 4118-4130.
[3] XIE Bin,AN XiuHong,CHEN YanHui,CHENG CunGang,KANG GuoDong,ZHOU JiangTao,ZHAO DeYing,LI Zhuang,ZHANG YanZhen,YANG An. Response and Adaptability Evaluation of Different Apple Rootstocks to Continuous Phosphorus Deficiency [J]. Scientia Agricultura Sinica, 2022, 55(13): 2598-2612.
[4] ZHANG Yan,WANG JinSong,DONG ErWei,WU AiLian,WANG Yuan,JIAO XiaoYan. Comprehensive Evaluation of Low-Fertility Tolerance of Different Sorghum Cultivars in Middle-Late-Maturing Area [J]. Scientia Agricultura Sinica, 2021, 54(23): 4954-4968.
[5] ZHANG BinBin,CAI ZhiXiang,SHEN ZhiJun,YAN Juan,MA RuiJuan,YU MingLiang. Diversity Analysis of Phenotypic Characters in Germplasm Resources of Ornamental Peaches [J]. Scientia Agricultura Sinica, 2021, 54(11): 2406-2418.
[6] WANG ShanShan,ZHAO ChenHui,LI HongLian,ZHANG BingBing,LIANG YingHai,SONG HongWei. Analysis of Fruit Aromatic Components of Ten Plum Germplasm Resources in Northeast China [J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486.
[7] ZHU LingXiao,LIU LianTao,ZHANG YongJiang,SUN HongChun,ZHANG Ke,BAI ZhiYing,DONG HeZhong,LI CunDong. The Regulation and Evaluation Indexes Screening of Chemical Topping on Cotton’s Plant Architecture [J]. Scientia Agricultura Sinica, 2020, 53(20): 4152-4163.
[8] SONG ChuJun,FAN FangYuan,GONG ShuYing,GUO HaoWei,LI ChunLin,ZONG BangZheng. Taste Characteristic and Main Contributing Compounds of Different Origin Black tea [J]. Scientia Agricultura Sinica, 2020, 53(2): 383-394.
[9] WANG YuanPeng,HUANG Jing,SUN YuXiang,LIU KaiLou,ZHOU Hu,HAN TianFu,DU JiangXue,JIANG XianJun,CHEN Jin,ZHANG HuiMin. Spatiotemporal Variability Characteristics of Soil Fertility in Red Soil Paddy Region in the Past 35 Years—A Case Study of Jinxian County [J]. Scientia Agricultura Sinica, 2020, 53(16): 3294-3306.
[10] ZHU Yan,CAI HuanJie,SONG LiBing,SHANG ZiHui,CHEN Hui. Comprehensive Evaluation of Different Oxygation Treatments Based on Fruit Yield and Quality of Greenhouse Tomato [J]. Scientia Agricultura Sinica, 2020, 53(11): 2241-2252.
[11] ZHAO LiLi,LI LuSheng,CAI HuanJie,SHI XiaoHu,XUE ShaoPing. Comprehensive Effects of Organic Materials Incorporation on Soil Hydraulic Conductivity and Air Permeability [J]. Scientia Agricultura Sinica, 2019, 52(6): 1045-1057.
[12] ZHAO Yong,ZHAO PeiFang,HU Xin,ZHAO Jun,ZAN FengGang,YAO Li,ZHAO LiPing,YANG Kun,QIN Wei,XIA HongMing,LIU JiaYong. Evaluation of 317 Sugarcane Germplasm Based on Agronomic Traits Rating Data [J]. Scientia Agricultura Sinica, 2019, 52(4): 602-615.
[13] CHEN ErYing, QIN Ling, YANG YanBing, LI FeiFei, WANG RunFeng, ZHANG HuaWen, WANG HaiLian, LIU Bin, KONG QingHua, GUAN YanAn. Variation and Comprehensive Evaluation of Salt and Alkali Tolerance of Different Foxtail Millet Cultivars Under Production Conditions [J]. Scientia Agricultura Sinica, 2019, 52(22): 4050-4065.
[14] SHI TianTian, HE JieLi, GAO ZhiJun, CHEN Ling, WANG HaiGang, QIAO ZhiJun, WANG RuiYun. Genetic Diversity of Common Millet Resources Assessed with EST-SSR Markers [J]. Scientia Agricultura Sinica, 2019, 52(22): 4100-4109.
[15] BAI YiXiong,YAO XiaoHua,YAO YouHua,WU KunLun. Difference of Traits Relating to Lodging Resistance in Hulless Barley Genotypes [J]. Scientia Agricultura Sinica, 2019, 52(2): 228-238.
Full text



No Suggested Reading articles found!