Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (20): 3908-3917.doi: 10.3864/j.issn.0578-1752.2017.20.007

• PLANT PROTECTION • Previous Articles     Next Articles

Molecular identification of FHB resistance gene in varieties derived from common wheat-Thinopyrum ponticum partial amphiploid

LIU XinLun1, WANG Chao1, NIU LiHua1, LIU ZhiLi2, ZHANG LuDe3, CHEN ChunHuan1, ZHANG RongQi1, ZHANG Hong1, WANG ChangYou1, WANG YaJuan1, TIAN ZengRong1, JI WanQuan1   

  1. 1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi; 2Seed Administration Station of Chenggu County, Hanzhong 723200, Shaanxi; 3Shaanxi provincial Office of Poverty Alleviation and Development, Xi’an 710006
  • Received:2017-05-17 Online:2017-10-16 Published:2017-10-16

Abstract: 【Objective】 Fusarium head blight (FHB) is one of the most devastating diseases of wheat. Thinopyrum ponticum is one of the important source resistance cultivars of wheat disease resistance breeding, with high tolerance to FHB. Three derived varieties of common wheat-Th. ponticum Xinong 509, Xinong 511 and Xinong 529 showed moderate resistance to FHB in field. The objective of this study is to clarify the genetic constitution of resistance gene in three varieties.【Method】 Single drop injection with Fusarium graminearum was performed to detect the reaction of the three derived varieties of common wheat-Th. ponticum to FHB. Specific molecular markers located on homologous group 1 to 7 of Thinopyrum E chromosome were employed to detect the sources of resistance to FHB, screening the three derived varieties of common wheat-Th. ponticum, and their major donor parents Xiaoyan 693, Xiaoyan 597 and Th. ponticum. Specific molecular markers closely linked with ?anking Fhb7 were used to analyze the relationship between the gene conferring resistance to FHB and Fhb7.【Result】 Three derived varieties were moderately resistant to FHB in the field experiment, and had no much difference compared with the medium-resistant control variety. Seven of the 105 chromosome E specific molecular markers of Thinopyrum could be amplified polymorphism bands in the three derived varieties and Th. ponticum, which located on the chromosome 7E. A total of 97 specific markers located on the chromosome 7E,20 showed specific bands of Th. ponticum in the three derived varieties of /span>common wheat-Th. ponticum, and their major donor parents Xiaoyan 693, Xiaoyan 597. The results indicate that the 89 cM genetic fragment derived from Th. ponticum 7E chromosome. Of them, six molecular markers (XsdauK8, XsdauK144, XsdauK27, XsdauK99, Xcfa2040 and XsdauK116), which were located on 7EL 149.00-7EL 153.77, tightly linked to Fhb7. However, XsdauK60 (7EL 153.77), Xmag1932 (7EL 154.70), Xcfa2240 (7EL 156.27), XsdauK66 (7EL 158.02), XsdauK71 (7EL 158.97) and Xsews19 (7EL 160.00),which are next to Fhb7, showed no specific bands ofTh. ponticum among the three derived varieties of common wheat-Th. ponticum and Xiaoyan 597. 【Conclusion】 Xinong 509, Xinong 511 and Xinong 529, derived from Th. ponticum with good FHB resistance, possess a novel FHB resistance gene, which derived from Th. ponticum and was different from Fhb7.

Key words: common wheat, Thinopyrum ponticum;Fusarium head blight, Fhb7, molecular marker

[1]    GOSWAMI R S, KISTLER H C. Heading for disaster: Fusarium graminearum on cereal crops. Molecular Plant Pathology, 2004, 5(6): 515-525.
[2]    MATTHIES A, BUCHENAUER H. Effect of tebuconazole (Folicur®) and prochloraz (Sportak®) treatments on Fusarium head scab development, yield and deoxynivalenol (DON) content in grains of wheat following artificial inoculation with Fusarium culmorum. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, 2000, 107(1): 33-52.
[3]    PLACINTA C, DMELLO J P F, MACDONALD A M C. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal Feed Science & Technology, 1999, 78(2): 21-37.
[4]    GOSMAN N, SRINIVASACHARY A, STEED A, CHANDLER E, THOMSETT M, NICHOLSON P. Evaluation of type I Fusarium head blight resistance of wheat using non-deoxynivalenol-producing fungi. Plant Pathology, 2010, 59(1): 147-157.
[5]    曾娟, 姜玉英. 2012年我国小麦赤霉病暴发原因分析及持续监控与治理对策. 中国植保导刊, 2013, 33(4): 38-41.
ZEND J, JIANG Y Y. Outbreak reasons and control strategies of fusarium head blight in China during 2012. China Plant Protection, 2013, 33(4): 38-41. (in Chinese)
[6]    赵虹, 王西成, 胡卫国, 曹廷杰, 刘钊, 陈渝. 黄淮南片麦区小麦品种利用现状及建议. 河南农业科学, 2016, 45(8): 18-24, 38.
ZHAO H, WANG X C, HU W G, CAO T J, LIU Z, CHEN Y. Status and suggestion of wheat variety utilization in Southern Huang-Huai wheat region. Journal of Henan Agricultural Sciences, 2016, 45(8): 18-24, 38. (in Chinese)
[7]    CUTHERT P A, SOMERS D J, THOMAS J, CLOUTIER S, BRULE-BABEL A. Fine mapping Fhbl, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 112(8): 1465-1472.
[8]    CUTHER P A, SOMERS D J, BRULE-BABEL A. Mapping of Fhb2 on chromosome 6BS: a gene controlling fusarium head blight field resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2007, 114(3): 429-437.
[9]    QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to fusarium head blight disease of wheat. Theoretical and Applied Genetics, 2008, 117(7): 1155-1166.
[10]   XUE S L, LI G Q, JIA H Y, XU F, LIN F, TANG M Z, WANG Y, AN X, XU H B, ZHANG L X, KONG Z X, MA Z Q. Fine mapping Fhb4, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2010, 121(1): 147-156.
[11]   XUE S L, XU F, TANG M Z, ZHOU Y, LI G Q, AN X, LIN F, XU H B, JIA H Y, ZHANG L X, KONG Z X, MA Z Q. Precise mapping Fhb5, a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2011, 123(6): 1055-1063.
[12]   CAINONG J C, BOCKUS W W, FEND Y G, CHEN P D, QI L L, SEHGAL S K, DANILOVA T V, KOO D H, FRIEBE B, GILL B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theoretical and Applied Genetics, 2015, 128(6): 1019-1027.
[13]   GUO J, ZHANG X L,HOU Y L, CAI J J, SHEN X R, ZHOU T T, XU H H, OHM H W, WANG H W, LI A F, HAN F P, WANG H G, KONG L R. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015, 128(11): 2301-2316.
[14]   程顺和, 张勇, 别同德, 高德荣, 张伯桥. 中国小麦赤霉病的危害及抗性遗传改良. 江苏农业学报, 2012, 28(5): 938-942.
CHENG S H, ZHANG Y, BIE T D, GAO D R, ZHANG B Q. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China. Jiangsu Journal of Agricultural Sciences, 2012, 28(5): 938-942. (in Chinese)
[15]   GILBERT J, HABER S. Overview of some recent research developments in fusarium head blight of wheat, Canadian Journal of Plant Pathology, 2013, 35(2): 149-174.
[16]   GILL B S, FRIEBE B R, WHITE F F. Alien introgressions represent a rich source of genes for crop improvement. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(19): 7657-7658.
[17]   LIU S B, WANG H G. Characterization of a wheat-Thinopyron intermedium substitution line with resistance to powdery mildew. Euphytica, 2005, 143: 229-233.
[18]   ZHANG X L, SHEN X R, HAO Y F, CAI J J, OHM H W, KONG L R. A genetic map of Lophopyrum ponticum chromosome 7E, haroring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011, 122(2): 263-270.
[19]   ZHANG Z Y, XU J S, XU Q J, LARKIN P, XIN Z Y. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection. Theoretical and Applied Genetics, 2004, 109(2): 433-439.
[20]   AYALA-NAVARRETE L, THOMPSON N, OHM H, ANDERSON J. Molecular markers show a complex mosaic pattern of wheat- Thinopyrum intermedium translocations carrying resistance to YDV. Theoretical and Applied Genetics, 2010, 121(5): 961-970.
[21]   英加, 陈佩度, 刘大钧. 将Thinopyrum bessarabicumThinopyrum elongatum的种质导入普通小麦的研究. 西北植物学报, 2000, 20(3): 321-326.
YING J, CHEN P D, LIU D J. Studies on transfer germplasm from Thinopyrum bessarabicum and Thinopyrum elongatum into common wheat. Acta Botanica Boreal-Occidentalia Sinica, 2000, 20(3): 321-326. (in Chinese)
[22] SHEN X R, KONG L R, OHM H. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics, 2004, 108(5): 808-813.
[23]   SHEN X R, OHM H. Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Molecular Breeding, 2007, 20(2): 131-140.
[24]   李振声, 陈漱阳, 张楷. 普通小麦与长穗偃麦草的杂交育种及其遗传分析. 遗传学报, 1977, 4(4): 283-293.
LI Z S, CHEN S Y, ZHANG K. The cross breeding and its genetic analysis between Triticum aestivum and Agropyron elongatum. Acta Genetica Sinica, 1977, 4(4): 283-293. (in Chinese)
[25]   何方. 小麦—长穗偃麦草杂种后代的分子细胞遗传学分析及种质材料的筛选鉴定[D]. 泰安: 山东农业大学, 2014.
HE F. Molecular cytogenetic analysis of wheat-Elytrigia elongata hybrids and identification of Trititrigia germplasms [D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[26]   贺润丽, 畅志坚, 刘建霞, 詹海仙, 张晓军, 董春林. 源于长穗偃麦草的小麦新品系CH7034抗白粉病基因的染色体定位. 分子植物育种, 2008, 6(2): 251-256.
HE R L, CHANG Z J, LIU J X, ZHAN H X, ZHANG X J, DONG C L. Chromosomal location of powdery mildew resistance gene in Thinopyrum ponticum-derived wheat germplasm line CH7034. Molecular Plant Breeding, 2008, 6(2): 251-256. (in Chinese)
[27]   白云, 李欣, 张丛卓, 张晓军, 詹海仙, 畅志坚. 小麦新抗源CH7103抗条锈基因的遗传及其与已知基因的关系. 麦类作物学报, 2011, 31(2): 364-369.
BAI Y, LI X, ZHANG C Z, ZHANG X J, ZHAN H X, CHANG Z J. Inheritance of stripe rust resistance gene in wheat line CH7103 introgressed from Thinopyrum ponticum and its allelism with known genes. Journal of Triticeae Crops, 2011, 31(2): 364-369. (in Chinese)
[28]   ZHENG Q, LV Z L, NIU Z X, LI B, LI H W, XU S S, HAN F P, LI Z S. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. Journal of Genetics and Genomics, 2014, 41(11): 591-599.
[29]   张荣琦, 陈春环, 赵晓农, 钟冠昌. 利用远缘杂交技术选育小麦新品种之研究. 中国农学通报, 2006, 22(6): 186-188.
ZHANG R Q, CHEN C H, ZHAO X N, ZHONG G C. The study on selection of wheat varieties with distant hybrid technique. Chinese Agricultural Science Bulletin, 2006, 22(6): 186-188. (in Chinese)
[30]   刘登才, 郑有良, 王志容, 侯永翠, 兰秀锦, 魏育明. 影响小麦赤霉病抗性的Lophopyrum elongatum 染色体定位. 四川农业大学学报, 2001, 19(3): 200-205.
LIU D C, ZHENG Y L, WANG Z R, HOU Y C, LAN X J, WEI Y M. Distribution of chromosomes in diploid Lophopyrum elongatum (Host) A. Löve that influences resistance to head scab of common wheat. Journal of Sichuan Agricultural University, 2001, 19(3): 200-205. (in Chinese)
[31]   JAUHAR P P, PETERSON T S, XU S S. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome, 2009, 52(5): 467-483.
[32]   陈士强, 黄泽峰, 张勇, 葛江燕, 朱雪, 高勇, 陈建民. 中国春背景下长穗偃麦草抗赤霉病相关基因的染色体定位. 麦类作物学报, 2012, 32(5): 839-845.
CHEN S Q, HUANG Z F, ZHANG Y, GE J Y, ZHU X, GAO Y, CHEN J M. Chromosomal location of the genes associated with FHB resistance of Lophopyrum elongatum in Chinese Spring background. Journal of Triticeae Crops, 2012, 32(5): 839-845. (in Chinese)
[33]   张荣琦, 陈春环, 吉万全. 高产抗病优质小麦新品种西农509的选育及稳定性分析. 种子, 2014, 33(10): 100-101.
ZHANG R Q, CHEN C H, JI W Q. The selective breeding and stability analysis of high-yield, disease-resistant and good-quality wheat cultivar Xinong 509. Seed, 2014, 33(10): 100-101. (in Chinese)
[34]   吉万全, 张荣琦, 陈春环, 王长有, 张宏, 朱建峰, 王亚娟, 刘新伦, 田增荣, 蔡东明. 优质高产小麦新品种—西农529. 麦类作物学报, 2014, 34(7): 1019.
JI W Q, ZHANG R Q, CHEN C H, WANG C Y, ZHANG H, ZHU J F, WANG Y J, LIU X L, TIAN Z R, CAI D M. Good quality and high yield wheat cultivar Xinong 529. Journal of Triticeae Crops, 2014, 34(7): 1019. (in Chinese)
[35]   严虎, 唐怀坡, 王瑞永. 2015-2016年度西农大新马桥点小麦新品种示范及产量分析. 安徽农学通报, 2016, 22(24): 148-149.
YAN H, TANG H P, wang R Y. New wheat varieties demonstration and yield analysis in Xinmaqiaodian Northwest A&F University during 2015 and 2016. Anhui Agricultural Science Bulletin, 2016, 22(24): 148-149. (in Chinese)
[36]   孙道杰, 张玲丽, 冯毅, 陈春环, 张荣琦, 奚亚军, 何心尧, 王辉, 宋哲明. 西农系列小麦骨干新品种赤霉病抗源浅析. 麦类作物学报, 2016, 36(6): 822-823.
SUN D J, ZHANG L L, FENG Y, CHEN C H, ZHANG R Q, XI Y J, HE X Y, WANG H, SONG Z M. Analysis of FHB resistance sources for newly released Xinong varieties. Journal of Triticeae Crops, 2016, 36(6): 822-823. (in Chinese)
[37]   蔡诚, 何流, 徐超艳, 单府, 陶珂, 杨磊, 汪文彦, 刘萍. 2015-2016年度12个小麦新品系在淮北地区的生态适应性试验. 安徽农学通报, 2016, 22(19): 48-49, 84.
CAI C, HE L, XU C Y, SHAN F, TAO K, YANG L, WANG W Y, LIU P. The experiment in the ecological adaptability of 12 new wheat varieties in Huaibei area during 2015 and 2016. Anhui Agricultural Science Bulletin, 2016, 22(19): 48-49, 84. (in Chinese)
[38]   中国人民共和国农业部. 小麦抗病虫性评价技术规范. 第4部分:小麦抗赤霉病评价技术规范: NY/T 1443.4-2007[S]. 2007-01-14 [2017-05-17].
Ministry of Agriculture of the People’s Republic of China. Rules for resistance evaluation of wheat to diseases and insect pests part 4: Rules for resistance evaluation of wheat to wheat scab {Fusarium graminearum Schwabe [Teleomorph Gibberella zeae (Schwein) Petch]}: NY/T 1443.4-2007[S]. 2007-01-14[2017-05-17]. (in Chinese)
[39]   MULLAN D J, PLATTETER A, TEAKLE N L, APPELS R, COLMER, ANDERSON J M, FRANCKI M G. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005, 48(5): 811-822.
[40]   秦树文, 戴毅, 陈士强, 张璐璐, 刘慧萍, 曹文广, FEDAK George, 高勇, 陈建民. 基于TRAP的长穗偃麦草SCAR标记的开发及应用. 麦类作物学报, 2014, 34(12): 1595-1602.
QIN S W, DAI Y, CHEN S Q, ZHANG L L, LIU H P, CAO W G, FEDAK G, GAO Y, CHEN J M. Development and applications of SCAR markers specific to Thinopyrum elongatum by TRAP technology. Journal of Triticeae Crops, 2014, 34(12): 1595-1602. (in Chinese)
[41]   张丽, 颜泽洪, 郑有良, 刘登才, 代寿芬, 张连全, 魏育明. 小麦中国春背景下长穗偃麦草Ee染色体组特异AFLP及STS标记的建立. 农业生物技术学报, 2008, 16(3): 465-473.
ZHANG L, YAN Z H, ZHENG Y L, LIU D C, DAI S F, ZHANG L Q, WEI Y M. Development of Ee-chromosome specific AFLP and STS molecular marker for Lophopyrum elongatum in Chinese Spring wheat background. Journal of Agricultural Biotechnology, 2008, 16(3): 465-473. (in Chinese)
[42]   陈士强, 秦树文, 黄泽峰, 戴毅, 张璐璐, 高营营, 高勇, 陈建民. 基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记. 作物学报, 2013, 39(4): 727-734.
CHEN S Q, QIN S W, HUANG Z F, DAI Y, ZHANG L L, GAO Y Y, GAO Y, CHEN J M. Development of specific molecular markers for Thinopyrum elongatum chromosome using SLAF-seq technique. Acta Agronomica Sinica, 2013, 39(4): 727-734. (in Chinese)
[43]   HU L J, LIU C, ZENG Z X, LI G R, SONG X J, YANG Z J. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes & Genomics, 2012, 34: 67-75.
[44]   XUE S, ZHANG Z, LIN F, KONG Z, CAO Y, LI C, YI H, MEI M, ZHU H, WU J, XU H, ZHAO D, TIAN D, ZHANG C, MA Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 117: 181-189.
[45]   Ishikawa G, Yonemaru J, Saito M, Nakamura T. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes. BMC Genomics, 2007, 8: 135.
[46]   黄泽峰. 长穗偃麦草分子标记开发及硬粒小麦-长穗偃麦草附加系创建[D]. 扬州: 扬州大学, 2013.
HUANG Z F. Development of molecular markers for Lophopyrum elongatum and establishment of Triticum durum-Lophopyrum elongatum alien disomic addition lines[D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
[47]   朱雪. 小麦中国春背景中长穗偃麦草E染色体组SCAR标记发展[D]. 扬州: 扬州大学, 2011.
ZHU X. Development of E-chromosome specific SCAR markers for Thinopyrum elongatum in Chinese spring wheat background[D]. Yangzhou: Yangzhou University, 2011. (in Chinese)
[48]   郭军. 长穗偃麦草抗赤霉病基因Fhb7遗传图谱的加密及其标记辅助转移[D]. 泰安: 山东农业大学, 2015.
GUO J. Saturation mapping of FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its marker assisted selection[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[49]   ZHANG X L, SHEN X R, HAO Y F, CAI J J, OHM H W, KONG L  R. A genetic map of Lophopyrum ponticum chromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011, 122: 263-270.
[50]   陆维忠, 程顺和, 王裕中. 小麦赤霉病研究. 北京: 科学出版社, 2001: 78-170.
LU W Z, CHENG S H, WANG Y Z. Studies on Fusarium Head Blight of Wheat. Beijing: Science Press, 2001: 78-170. (in Chinese)
[51]   姚金保, 陆维忠. 中国小麦抗赤霉病育种研究进展. 江苏农业学 报, 2000, 16(4): 242-248.
Yao J B, Lu W Z. Research advances in wheat breeding for scab resistance in China. Jiangsu Journal of Agricultural Sciences, 2000, 16(4): 242-248. (in Chinese)
[52]   张璐璐, 陈士强, 李海凤, 刘慧萍, 戴毅, 高勇, 陈建民. 小麦-长穗偃麦草7E抗赤霉病易位系. 中国农业科学, 2016, 49(18): 3477-3488.  
ZHANG L L, CHEN S Q, LI H F, LIU H P, DAI Y, GAO Y, CHEN J M. Development of wheat -Thinopyrum elongatum translocation lines resistant to Fusarium head blight. Scientia Agricultura Sinica, 2016, 49(18): 3477-3488. (in Chinese)
[1] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] ZHAO ChunFang,ZHAO QingYong,LÜ YuanDa,CHEN Tao,YAO Shu,ZHAO Ling,ZHOU LiHui,LIANG WenHua,ZHU Zhen,WANG CaiLin,ZHANG YaDong. Screening of Core Markers and Construction of DNA Fingerprints of Semi-Waxy Japonica Rice Varieties [J]. Scientia Agricultura Sinica, 2022, 55(23): 4567-4582.
[4] LinHan ZOU,XinYing ZHOU,ZeYuan ZHANG,Rui YU,Meng YUAN,XiaoPeng SONG,JunTao JIAN,ChuanLiang ZHANG,DeJun HAN,QuanHao SONG. QTL Mapping of Thousand-Grain-Weight and Its Related Traits in Zhou 8425B × Xiaoyan 81 Population and Haplotype Analysis [J]. Scientia Agricultura Sinica, 2022, 55(18): 3473-3483.
[5] DUAN YaRu,GAO MeiLing,GUO Yu,LIANG XiaoXue,LIU XiuJie,XU HongGuo,LIU JiXiu,GAO Yue,LUAN Feishi. Map-Based Cloning and Molecular Marker Development of Watermelon Fruit Shape Gene [J]. Scientia Agricultura Sinica, 2022, 55(14): 2812-2824.
[6] FANG TaoHong,ZHANG Min,MA ChunHua,ZHENG XiaoChen,TAN WenJing,TIAN Ran,YAN Qiong,ZHOU XinLi,LI Xin,YANG SuiZhuang,HUANG KeBing,WANG JianFeng,HAN DeJun,WANG XiaoJie,KANG ZhenSheng. Application of Yr52 Gene in Wheat Improvement for Stripe Rust Resistance [J]. Scientia Agricultura Sinica, 2022, 55(11): 2077-2091.
[7] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[8] XI Ling, WANG YuQi, YANG Xiu, ZHU Wei, CHEN GuoYue, WANG Yi, QIN Peng, ZHOU YongHong, KANG HouYang. Evaluation of Resistance to Stripe Rust and Molecular Detection of Resistance Gene(s) in 243 Common Wheat Landraces from the Yunnan Province [J]. Scientia Agricultura Sinica, 2021, 54(4): 684-695.
[9] CHEN DouDou, GUAN LiPing, HE LiangLiang, SONG YinHua, ZHANG Peng, LIU SanJun. Commonality Identification of Molecular Markers Linked to Seedless Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(22): 4880-4893.
[10] ZHANG Yong,YAN Jun,XIAO YongGui,HAO YuanFeng,ZHANG Yan,XU KaiJie,CAO ShuangHe,TIAN YuBing,LI SiMin,YAN JunLiang,ZHANG ZhaoXing,CHEN XinMin,WANG DeSen,XIA XianChun,HE ZhongHu. Characterization of Wheat Cultivar Zhongmai 895 with High Yield Potential, Broad Adaptability, and Good Quality [J]. Scientia Agricultura Sinica, 2021, 54(15): 3158-3167.
[11] LIU HaiYing,FENG BiDe,RU ZhenGang,CHEN XiangDong,HUANG PeiXin,XING ChenTao,PAN YinYin,ZHEN JunQi. Relationship Between Phytohormones and Male Sterility of BNS and BNS366 in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(1): 1-18.
[12] Xiao ZHANG,Man LI,DaTong LIU,Wei JIANG,Yong ZHANG,DeRong GAO. Analysis of Quality Traits and Breeding Inspiration in Yangmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2020, 53(7): 1309-1321.
[13] HAN GuangJie,LIU Qin,LI ChuanMing,QI JianHang,XU Bin,LU YuRong,XU Jian. The Persistent Infection and Detection of Cnaphalocrocis medinalis Granulovirus in Cnaphalocrocis medinalis [J]. Scientia Agricultura Sinica, 2020, 53(19): 3988-3995.
[14] NIU Hao,PING JunAi,WANG YuBin,ZHANG FuYao,LÜ Xin,LI HuiMing,CHU JianQiang. Molecular Aided Breeding System of Photosensitive Forage Sorghum Based on SSR [J]. Scientia Agricultura Sinica, 2020, 53(14): 2795-2803.
[15] WANG FangQuan,CHEN ZhiHui,XU Yang,WANG Jun,LI WenQi,FAN FangJun,CHEN LiQin,TAO YaJun,ZHONG WeiGong,YANG Jie. Development and Application of the Functional Marker for the Broad-Spectrum Blast Resistance Gene PigmR in Rice [J]. Scientia Agricultura Sinica, 2019, 52(6): 955-967.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!