Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (18): 3572-3580.doi: 10.3864/j.issn.0578-1752.2017.18.013

• HORTICULTURE • Previous Articles     Next Articles

Fine Mapping of Dwarfing Gene for Peach Based on SNP Markers

LU ZhenHua1, NIU Liang1, ZHANG NanNan1, YAO JiaLong2, CUI GuoChao1, ZENG WenFang 1, PAN Lei 1, WANG ZhiQiang1   

  1. 1Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach and Grape Improvement Center/ Key Laboratory of Fruit Breeding Technology of Ministry of Agriculture, Zhengzhou 450009, China; 2The New Zealand Institute for Plant & Food Research Limited, Auckland 1142, New Zealand
  • Received:2017-05-02 Online:2017-09-16 Published:2017-09-16

Abstract: 【Objective】 Dwarfing peach, due to the small trees, shorter internodes, is an important genetic resources in ornamental and rootstock breeding program. The fine mapping of peach dwarfing genes and explication of the genetic mechanism will provide a basis for the establishment of a molecular-assisted selection system and desired variety improvement, which could be used in breeding dwarf ornamental peach and rootstock varieties. 【Method】 Based on the results of genetic analysis in this study, 395 individuals generated from a self-pollinated population of 05-2-144 were selected for fine mapping the dwarfing gene in peach (Prunus persica (L.) Batsch). By referencing the peach genome sequence, SNP markers were developed in the parents and progenies to generate markers linked to the locus and used to map the gene based on Sanger sequencing. Subsequently, the parent was resequenced to generate SNP markers in the mapping region and acquire heterozyous SNPs for fine mapping. Within the fine mapping region, SNP primers were designed to verify the phenotype of 89 individuals generated from the F1 segregation population of 10-7×96-5-1.【Result】The segregating population of 05-2-144 was generated to assess the genetic characteristics, resulting in observed 3:1 (300 standard type and 95 dwarfing type individuals) Mendelian ratio fitting with the expected ratio for a monogenic recessive genetic control (P=0.67, χ2=0.19). Moreover, the ratio of standard type to dwarf type corresponded to the expected 3:1 (66 standard type and 23 dwarfing type individuals) segregation (P=0.854, χ2=0.034) for molecular detection. Based on Sanger sequencing results, the linked SNP markers were identified in the position 25 230 425 bp and 27 191 090 bp on Pp06 of peach genome and the locus were on the right side of these two markers. For fine mapping, the parent of this segregation population was resequenced with 66.89X depth and identified the heterozygous SNP to develop SNP markers. Totally, fifteen SNP primers were designed and 12 SNPs (80.0%) were consistent with resequencing data. The dwarfing locus of this type was narrowed on Pp06 between the position 28 712 165 bp and 28 899 661 bp with genetic distances of 0.38 cM and 0.13 cM. The physical region of fine mapping was 277 kb containing 54 known transcripts. Within 28 108 436bp and 29 247 763 bp on Pp06, SNP markers were developed and detected the progeny phenotype of a segregation population of 10-7×96-5-1 with 100% accuracy, constituted of 89 individuals. 【Conclusion】 The dwarfing gene was fine mapped on Pp06 within a physical distance 277 kb. The results of this study will be helpful to clone dwarfing gene and select parents for breeding dwarfing ornamental peach and rootstock varieties. 

Key words: peach, dwarfing gene, SNP, fine mapping

[1]     BASSI D, DIMA A, SCORZA R. Tree structure and pruning response of six peach growth forms. Journal of the American Society for Horticultural Science, 1994, 119(3): 378-382.
[2]        LAMMERTS W E. The breeding of ornamental edible peaches for mild climates.I. inheritance of tree and flower characters. American Journal of Botany, 1945, 32: 53-61.
[3]        SCORZA R. Characterization of four distinct peach tree growth types. Journal of the American Society for Horticultural Science, 1984, 109(4): 455-457.
[4]        MOORE J N, ROM R C, BROWN S A, KLINGAMAN G L. ‘Bonfire’ dwarf peach, ‘Leprechaun’ dwarf nectarine, and ‘Crimson Cascade’ and ‘Pink Cascade’ weeping peaches. Hortscience, 1993, 28(8): 854.
[5]        宗学普, 张贵荣, 王志强, 刘淑娥. 矮化型油桃新品种-矮丽红. 落叶果树, 1997(2): 26.
ZONG X P, ZHANG G R, WANG Z Q, LIU S E. Dwarf nectarine variety - ‘Ailihong’. Deciduous Fruits, 1997(2): 26. (in Chinese)
[6]    YAMAMOTO T, SHIMADA T, IMAI T, YAEGAKI H, HAJI T, MATSUTA N, YAMAGUCHI M, HAYASHI T. Characterization of morphological traits based on a genetic linkage map in peach. Breeding Science, 2001, 51: 271-278.
[7]        HOLLENDER C A, HADIARTOT, SRINIVASAN C, SCORZA R, DARDICK C. A brachytic dwar?sm trait (dw) in peach trees is caused by anonsense mutation within the gibberellic acid receptor PpeGID1c. New Phytologist, 2015, 210(1): 227-239.
[8]        DOYLE J J, DOYLE J L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 1987, 19: 11-15.
[9]        ROBINSON J T, THORVALDSDÓTTIR H, WINCKLER W, GUTTMAN M, LANDER E S, GETZ G, MESIROV J P. Integrative genomics viewer. Nature Biotechnology, 2011, 29: 24-26.
[10]     鲁振华, 牛良, 张南南, 崔国朝, 潘磊, 曾文芳, 王志强. 基于HRM获得与桃Tssd紧密连锁的SNP标记. 中国农业科学, 2017, 50(8): 1505-1513.
LU Z H, NIU L, ZHANG N N, CUI G C, PAN L, ZENG W F, WANG Z Q. SNP marker tightly linked to Tssd for peach using high resolution melting analysis. Scientia Agricultura Sinica, 2017, 50(8): 1505-1513. (in Chinese)
[11]     VAN OOIJEN J W, VOORRIPS R E. JionMap version 3.0: Software for the calculation of genetic linkage maps. Plant Research International, Wageningen, The Netherlands, 2001.
[12]   BALL A, STAPLEY J, DAWSON D, BIRKHEAD T, BURKE T, SLATE J. A comparison of SNPs and microsatellites as linkage mapping markers: lessons from the zebra finch (Taeniopygia guttata). BMC Genomics, 2010, 11(1): 218.
[13]   MARTÍNEZ-GARCÍA P J, PARFITT D E, OGUNDIWIN E A, FASS J, CHAN H M, AHMAD R, LURIE S, DANDEKAR A, GRADZIEL T M, CRISOSTO C H. High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L.). Tree Genetics and Genomes, 2013, 9: 19-36.
[14]   TAKAGI H, ABE A, YOSHIDA K, KOSUGI S, NATSUME S, MITSUOKA C, UEMURA A, UTSUSHI H, TAMIRU M, TAKUNO S, INNAN H, CANO L M, KAMOUN S, TERAUCHI R. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. The Plant Journal, 2013, 74: 174-183.
[15]     ABE A, KOSUGI S, YOSHIDA K, NATSUME S, TAKAGI H, KANZAKI H, MATSUMURA H, YOSHIDA K, MITSUOKA C, TAMIRU M, INNAN H, CANO L, KAMOUN S, TERAUCHI R. Genome sequencing reveals agronomically important loci in rice using MutMap. Nature Biotechnology, 2012, 30(2): 174-179.
[16]     李娜, 王吉明, 尚建立, 李楠楠, 徐永阳, 马双武. 西瓜枯萎病生理小种1抗性QTL精细定位与InDel标记开发. 中国农业科学, 2017, 50(1): 131-141.
LI N, WANG J M, SHANG J L, LI N N, XU Y Y, MA S W. Fine-mapping of QTL and development of InDel markers for Fusarium oxysporum race 1 resistance in watermelon. Scientia Agricultura Sinica, 2017, 50(1): 131-141. (in Chinese)
[17]   LU Z H, NIU L, CHAGNÉ D, CUI GG C, PAN L, FOSTER T, ZHANG R P, ZENG W F, WANG Z Q. Fine mapping of the temperature-sensitive semi-dwarf (Tssd) locus regulating the internode length in peach (Prunus persica). Molecular Breeding, 2016, 36: 20. DOI: 10.1007/s11032-016-0442-6.
[18]   SHEN Z J, CONFOLENT C, LAMBERT P, POËSSEL J-L, QUILOT-TURION B, YU M L, MA R J, PASCAL T. Characterization and genetic mapping of a new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genetics and Genomes, 2013, 9: 1435-1446.
[19]     ADAMI M, FRANCESCHI P D, BRANDI F, LIVERANI A, GIOVANNINI D, ROSATI C, DONDINI L, TARTARINI S. Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Molecular Biology Reporter, 2013, 31(5): 1166-1175.
[20]     MA J J, LI J, ZHAO J B, ZHOU H, REN F, WANG L, GU C, LIAO L, HAN Y P. Inactivation of a gene encoding carotenoid cleavage dioxygenase (CCD4) leads to carotenoid-based yellow coloration of fruit flesh and leaf midvein in Peach. Plant Molecular Biology Reporter, 2014, 32(4): 246-257.
[21]   BRETÓ M P, CANTÍN C M, IGLESIAS I, ARÚS P, EDUARDO I. Mapping a major gene for red skin color suppression (highlighter) in peach. Euphytica, 2017, 213: 14. DOI: 10.1007/s10681-016-1812-1.
[22]   PAN L, ZENG W F, NIU L, LU Z H, WANG X B, LIU H, CUI G C, ZHU Y Q, CHU J F , LI W P, FANGC, CAI Z G, LI G H, WANG Z Q. PpYUC11, a strong candidate gene for the stony hard phenotype in peach (Prunus persica L. Batsch), participates in IAA biosynthesis during fruit ripening. Journal of Experimental Botany, 2015. Doi: 10.1093/jxb/erv400.
[23]   DARDICK C, CALLAHAN A, HORN R, RUIZ KB, ZHEBENTYAYEVA T, HOLLENDER C, WHITAKER M, ABBOTT A, SCORZA R. PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. The Plant Journal, 2013, 75: 618-630.
[24]     OTTO D, PETERSEN R, BRAUKSIEPE B, BRAUN P, SCHMIDT E R. The columnar mutation (‘Co gene’) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Molecular Breeding, 2013, 33(4): 863-880.
[25]     MORIYA S, OKADA K, HAJI T, YAMAMOTO T, ABE K. Fine mapping of Co, a gene controlling columnar growth habit located on apple (Malus × domestica Borkh.) linkage group 10. Plant Breeding, 2012, 131(5): 641-647.
[26]     OGNJANOV V, VUJANIC-VARGA D, GASIC K. Breeding columnar apples in Novi Sad. Acta Horticulturae, 1999, 484: 207-209.
[27]     MORIYA S, IWANAMI H, KOTODA N, TAKAHASHI S, YAMAMOTO T, ABE K. Development of a marker-assisted selection system for columnar growth habit in apple breeding. Journal of the Japanese Society for Horticultural Science, 2009, 78: 279-287.
[28]     VERDE I, BASSIL N, SCALABRIN S, GILMORE B, LAWLEY C T. Correction: Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS ONE, 2012, 7(6): e35668. DOI: 10.1371/ journal.pone.0035668.
[29]     CANTÍNA C M, CRISOSTOB C H, OGUNDIWINB E A, GRADZIELB T, TORRENTSC J, MORENOA M A, GOGORCENA Y. Chilling injury susceptibility in an intra-speci?c peach [Prunus persica (L.) Batsch] progeny. Postharvest Biology and Technology, 2010, 58: 79-87.
[30]     VERDE I, QUARTA R, CEDROLA C, DETTORI M T. QTL analysis of agronomic traits in a BC1 peach population. Acta Horticulturae, 2002, 592: 291-297.
[31]   张妤艳, 俞明亮, 马瑞娟, 蔡志翔, 沈志军, 许建兰. 与桃树性高/矮性状相关的SRAP标记. 果树学报, 2011, 28(4): 586-590.
ZHANG Y Y, YU M L, MA R J, CAI Z X, SHEN Z J, XU J L. Identification of SRAP markers linked to peach gene with the character of tall normal/brachytic dwarf. Journal of Fruit Science, 2011, 28 (4): 586-590. (in Chinese)
[1] LIN Ping, WANG KaiLiang, YAO XiaoHua, REN HuaDong. Development of DNA Molecular ID in Camellia oleifera Germplasm Based on Transcriptome-Wide SNPs [J]. Scientia Agricultura Sinica, 2023, 56(2): 217-235.
[2] TANG HuaPing,CHEN HuangXin,LI Cong,GOU LuLu,TAN Cui,MU Yang,TANG LiWei,LAN XiuJin,WEI YuMing,MA Jian. Unconditional and Conditional QTL Analysis of Wheat Spike Length in Common Wheat Based on 55K SNP Array [J]. Scientia Agricultura Sinica, 2022, 55(8): 1492-1502.
[3] YAN LeLe,BU LuLu,NIU Liang,ZENG WenFang,LU ZhenHua,CUI GuoChao,MIAO YuLe,PAN Lei,WANG ZhiQiang. Widely Targeted Metabolomics Analysis of the Effects of Myzus persicae Feeding on Prunus persica Secondary Metabolites [J]. Scientia Agricultura Sinica, 2022, 55(6): 1149-1158.
[4] GUO ShaoLei,XU JianLan,WANG XiaoJun,SU ZiWen,ZHANG BinBin,MA RuiJuan,YU MingLiang. Genome-Wide Identification and Expression Analysis of XTH Gene Family in Peach Fruit During Storage [J]. Scientia Agricultura Sinica, 2022, 55(23): 4702-4716.
[5] TU YunJie,JI GaiGe,ZHANG Ming,LIU YiFan,JU XiaoJun,SHAN YanJu,ZOU JianMin,LI Hua,CHEN ZhiWu,SHU JingTing. Screening of Wnt3a SNPs and Its Association Analysis with Skin Feather Follicle Density Traits in Chicken [J]. Scientia Agricultura Sinica, 2022, 55(23): 4769-4780.
[6] HAO Yan,LI XiaoYing,YE Mao,LIU YaTing,WANG TianYu,WANG HaiJing,ZHANG LiBin,XIAO Xiao,WU JunKai. Characteristics of Volatile Components in Peach Fruits of 21shiji and Jiucui and Their Hybrid Progenies [J]. Scientia Agricultura Sinica, 2022, 55(22): 4487-4499.
[7] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[8] WANG LuWei,SHEN ZhiJun,LI HeHuan,PAN Lei,NIU Liang,CUI GuoChao,ZENG WenFang,WANG ZhiQiang,LU ZhenHua. Analysis of Genetic Diversity of 79 Cultivars Based on SSR Fluorescence Markers for Peach [J]. Scientia Agricultura Sinica, 2022, 55(15): 3002-3017.
[9] SHEN ZhiJun, TIAN Yu, CAI ZhiXiang, XU ZiYuan, YAN Juan, SUN Meng, MA RuiJuan, YU MingLiang. Evaluation of Brown Rot Resistance in Peach Based on Genetic Resources Conserved in National Germplasm Repository of Peach in Nanjing [J]. Scientia Agricultura Sinica, 2022, 55(15): 3018-3028.
[10] TAN FengLing,ZHAN Ping,WANG Peng,TIAN HongLei. Effects of Thermal Sterilization on Aroma Quality of Flat Peach Juice Based on Sensory Evaluation and GC-MS Combined with OPLS-DA [J]. Scientia Agricultura Sinica, 2022, 55(12): 2425-2435.
[11] LI Ang,MIAO YuLe,MENG JunRen,NIU Liang,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Peptidome Analysis of Mesocarp in Melting Flesh and Stony Hard Peach During Fruit Ripening [J]. Scientia Agricultura Sinica, 2022, 55(11): 2202-2213.
[12] ZHANG YuanYuan,LIU WenJing,ZHANG BinBin,CAI ZhiXiang,SONG HongFeng,YU MingLiang,MA RuiJuan. Characterization of the Lactone Volatile Compounds in Different Types of Peach (Prunus persica L.) Fruit and Evaluations of Their Contributions to Fruit Overall Aroma [J]. Scientia Agricultura Sinica, 2022, 55(10): 2026-2037.
[13] XU ZhiYing,WANG BaiCui,MA XiaoLan,JIA ZiMiao,YE XingGuo,LIN ZhiShan,HU HanQiao. Polymorphism Analysis Among Chromosomes of Dasypyrum villosum 6V#2 and 6V#4 and Wheat 6A and 6D Based on Wheat SNP Chip [J]. Scientia Agricultura Sinica, 2021, 54(8): 1579-1589.
[14] FAN XiaoJing, YU WenTao, CAI ChunPing, LIN Yi, WANG ZeHan, FANG WanPing, ZHANG JianMing, YE NaiXing. Construction of Molecular ID for Tea Cultivars by Using of Single- nucleotide Polymorphism (SNP) Markers [J]. Scientia Agricultura Sinica, 2021, 54(8): 1751-1760.
[15] MENG JunRen,NIU Liang,DENG Li,PAN Lei,LU ZhenHua,CUI GuoChao,WANG ZhiQiang,ZENG WenFang. Screening and Sequence Analysis of BAC Clone Contained PG Gene Controlling Clingstone/Freestone Characteristic of Peach [J]. Scientia Agricultura Sinica, 2021, 54(20): 4396-4404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!