Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (15): 3033-3041.doi: 10.3864/j.issn.0578-1752.2017.15.017

• ANIMAL SCIENCE·VETERINARY SCIENCERE·SOURCE INSECT • Previous Articles     Next Articles

Validation of Reference Genes for Quantitative RT-PCR Analysis in Porcine Testis Tissues

PENG FuZhi, RAN MaoLiang, WENG Bo, LI Zhi, DONG LianHua, CHEN Bin   

  1. College of Animal Science & Technology, Hunan Agricultural University / Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Changsha 410128
  • Received:2016-07-01 Online:2017-08-01 Published:2017-08-01

Abstract: 【Objective】Reference gene is the key to obtain the accurate analysis results when apply quantitative RT-PCR (qRT-PCR) technique to identify the gene expression level. However, reference gene and microRNA (miRNA) which are used in researching the molecular biology of porcine testis are not well characterized. Screening suitable reference gene will provide a reliable evidence for the quantitative analysis of target gene in different periods of porcine testis tissues.【Method】Porcine testis tissues at 8 different developmental stages (E 90, D 1, D 30, D 60, D 90, D 120, D 150, and DM) were selected as materials in this study. Trizol method was used to extract the total RNA and the concentration and purity of total RNA were detected by ND-2000 NanDrop spectrophotometer. The primers of 5 commonly used protein coding reference genes (GAPDH, TBP, β-actin, SDHA and B2M) and 5 miRNA reference genes (U6, ssc-miR-17-5p, ssc-miR-26a, ssc-miR-27a and ssc-miR-103) were designed and synthesized to reverse transcription. cDNA templates were diluted to 7 concentration gradients with 1:10 serial dilution to construct standard curves. The expression of 10 candidate reference genes in porcine testis tissues was systematically analyzed at specified times, then the Genorm 3.5 was used to analyze the results. The most stable reference genes were picked up according to the stability value which called M value, the smaller the value of M, the better the stability of the reference gene; otherwise, the stability would be worse.【Result】The melting curves of 10 candidate reference genes (GAPDH, TBP,β-actin, SDHA, B2M, U6, ssc-miR-17-5p, ssc-miR-26a, ssc-miR-27a, and ssc-miR-103) indicated that the expression of all the candidate reference genes was of some specificity, no primer-dimers and nonspecific amplification. The relationship between Ct value and the logarithm of relative copy number was coincidence with linear relation according to the standard curves which were made with Ct value as ordinate and the logarithm of relative copy number as abscissas in a series of diluted concentration gradients. Analysis showed that the most stable reference gene of protein encoding gene was TBP and the most unstable was GAPDH. U6 was the most suitable gene for miRNA expression analysis and ssc-miR-26a was the most unsuitable. 【Conclusion】 This study has screened the most suitable reference genes (TBP and U6) to identify porcine testis gene expression level successfully. The highly ranked reference genes identified from this study can provide a theoretical basis for the selection of the most suitable reference gene to detect differences in expression rates of genes and miRNAs in porcine testis tissues.

Key words: porcine testis tissue, reference genes, qRT-PCR, miRNA

[1]    蒋春燕, 王泰健, 王琴, 范学政. 实时荧光定量PCR技术. 动物医学进展, 2005, 26(12) : 97-101.
JIANG C Y, WANG T J, WANG Q, FAN X Z. Real-time fluorescence quantitative PCR. Progress in Veterinary Medicine, 2005, 26(12): 97-101. (in Chinese)
[2]    吴文凯, 刘成前, 周志刚, 卢山. 用于莱茵衣藻荧光定量PCR分析的内参基因选择. 植物生理学通讯, 2009(7): 667-672.
WU W K, LIU C Q, ZHOU Z G, LU S. The selection of reference genes in Chlamydomonas reinhardtii P. A. Dangeard by real-time quantitative PCR. Plant Physiology Communications, 2009(7): 667-672. (in Chinese)
[3]    陈瑞, 杨晓农, 曾婉秋, 文娟. 家兔不同发育阶段和组织中内参基因的稳定性分析. 畜牧兽医学报, 2016, 47(3) : 477-483.
CHEN R, YANG X L, ZENG W Q, WEN J. Expression stability analysis of reference genes in different development periods and tissues in Oryctolagus Cuniculus. Acta Veterinaria et Zootechnica Sinica, 2016, 47(3): 477-483. (in Chinese)
[4]    彭然.家蚕常用内参基因的稳定性分析及两种实时荧光定量PCR方法比较[D]. 苏州: 苏州大学, 2012.
PENG R. Analysis of reference gene expression for real time PCR based on relative quantitative and dual spike-in strategy in the silkworm Bombyx mori [D]. Suzhou: Suzhou University, 2012. (in Chinese)
[5]    陈利, 赵薇, 占思远, 李丹, 李利, 仲涛, 王林杰, 张红平. 山羊不同组织及不同发育时期骨骼肌内参基因的表达稳定性分析. 畜牧兽医学报, 2014, 45(8) : 1228-1236.
CHEN L, ZHAO W, ZHAN S Y, LI D, ZHONG T, WANG L J, ZHANG H P. The expression stability analysis of reference genes in different tissues and skeletal muscle of different development periods in goat. Acta Veterinaria et Zootechnica Sinica, 2014, 45(8): 1228-1236. (in Chinese)
[6]    张晓东. 山羊卵巢microRNA的鉴定及生物学功能分析[D]. 合肥: 安徽农业大学, 2013.
ZHANG X D. Identification and biological role analysis of microRNAs in goat ovaries[D]. Hefei: Anhui Agricultural University, 2013. (in Chinese)
[7]    GARCIA-CRESPO D, JUSTE R A, HURTADO A. Selection of ovine housekeeping genes for normalisation by real-time RT-PCR; analysis of PrP gene expression and genetic susceptibility to scrapie. BMC veterinary research, 2005, 1:3.
[8]    LISOWSKI P, PIERZCHALA M, GOSCIK J, PAREEK C S, ZWIERZCHOWSKI L. Evaluation of reference genes for studies of gene expression in the bovine liver, kidney, pituitary, and thyroid. Journal of applied genetics, 2008, 49(4) : 367-372.
[9]    冉茂良, 陈斌, 尹杰, 杨岸奇, 蒋明.睾丸发育和精子生成相关miRNA研究进展. 遗传, 2014, 36(7) : 646-654.
RAN M L, CHEN B, YIN J, YANG A Q, JIANG M. Advances in miRNA research related to testis development and spermatogenesis. Hereditas, 2014, 36(7) : 646-654. (in Chinese)
[10]   蔡婷, 刘志红, 王志新, 赵濛, 俎红丽, 李金泉. miRNA在调控皮肤和毛囊发育中的作用. 遗传, 2013, 35(9) : 1087-1094.
CAI T, LIU Z H, WANG Z X, ZHAO M, JU H L, LI J Q. miRNA in regulation of skin and hair follicle development. Hereditas, 2013, 35(9) : 1087-1094. (in Chinese)
[11]   SCHAEFER A, JUNG M, MILLER K, LEIN M, KRISTIANSEN G, ERBERSDOBLER A, JUNG K. Suitable reference genes for relative quantification of miRNA expression in prostate cancer. Experimental & Molecular Medicine, 2010, 42(11) : 749-758.
[12]   WOTSCHOFSKY Z, MEYER H A, JUNG M, FENDLER A, WAGNER I, STEPHAN C, BUSCH J, ERBERSDOBLER A, DISCH A C, MOLLENKOPF H J, JUNG K. Reference genes for the relative quantification of microRNAs in renal cell carcinomas and their metastases. Analytical Biochemistry, 2011, 417(2): 233-241.
[13]   陈旭. miRNA定量检测中内参基因的选择. 国际检验医学杂志, 2012, 33(11): 1338-1340.
CHEN X. The selection of reference genes for miRNA quantitative detection. International Journal of Laboratory Medicine, 2012, 33(11): 1338-1340. (in Chinese)
[14]   台玉磊, 韩立强, 杨国庆, 王艳玲, 常磊, 臧猛, 武宇晓, 王静, 张志强, 杨国宇. 仔猪组织基因表达中实时定量PCR内参基因的选择. 农业生物技术学报, 2010, 18(4): 732-736.
TAI Y L, HAN L Q, YANG G Q, WANG Y L, CHANG L, ZANG M, WU X Y, WANG J, ZHANG Z Q, YANG G Y. Selection of the reference genes of real-time quantitative PCR in the gene expression of piglet tissues. Journal of Agricultural Biotechnology, 2010, 18(4): 732-736. (in Chinese)
[15]   冯小婷. 梅山-大白猪肌肉组织差异表达基因的筛选、鉴定及功能研究[D]. 武汉: 华中农业大学, 2011.
FENG X T. Screening, identification and function analysis of genes differentially expressed in porcine skeletal muscle between Meishan and Yorkshire pigs[D]. Wuhan: Huazhong Agricultural University, 2011. (in Chinese)
[16]   朱鑫, 吴巧, 冯晓辉, 汤承, 岳华. H1N1猪流感病毒感染猪血管内皮细胞后内参基因的筛选. 西南民族大学学报:自然科学版, 2014, 40(4): 489-494.
ZHU X, WU Q, FENG X H, TANG C, YUE H. Selection of reference genes in porcine umbilicus vein endothelial cells infected with H1N1 swine influenza virus. Journal of Southwest University for Nationalities: Natural Science Edition, 2014, 40(4): 489-494. (in Chinese)
[17]   张晶. 骨骼肌发育中miR-148a功能与qPCR内参基因的研究[D]. 武汉: 华中农业大学, 2012.
ZHANG J. Study on function of miR-148a and the reference genes for qPCR in skeletal muscle development [D]. Wuhan: Huazhong Agricultural University, 2012. (in Chinese)
[18]   VANDSOMPELE J, PRETER K D, PATTYN F, POPPE B, ROY N V,
PAEPE A D, SPELEMAN F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7) : 1-12.
[19]   AIROLDI M, AMADORI D, BARNI S, CINIERI S, PLACIDO S D, LEO A D, GENNARI A, IACOBELLI S, IONTA M T, LORUSSO V, LOTRIONTE M, MARCHETTI P, MATTIOLI R, MINOTTI G, PAONZATO P, ROSTI G, TONDINI C A, VERONESI A. Clinical activity and cardiac tolerability of non-pegylated liposomal doxorubicin in breast cancer: a synthetic review. Tumori, 2012, 97(6): 690-692.
[20]   SEHLOTTER Y M, VEENHOF E Z, BRINKHOF B, RUTTEN V P M G, SPEE B, WILLEMSE T, PENNING L C. A GeNorm algorithm-based selection of reference genes for quantitative real-time PCR in skin biopsies of healthy dogs and dogs with atopic dermatitis. Veterinary Immunology and Immunopathology, 2009, 129(l/2): 115-118.
[21]   JAIN M, NIJHAWAN A, TYAGI A K, KHURANA J P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical Biophysical Research Communications, 2006, 345: 646-651.
[22]   FACCI M R, AURAY G, MEURENS F, BUCHANAN R, KESSEL J V, GERDTS V. Stability of expression of reference genes in porcine peripheral blood mononuclear and dendritic cells. Veterinary Immunology and Immunopathology, 2011, 141(1/2): 11-15.
[23]   VANDESOMPELE J, PRETER K D, PATTYN F, POPPE B, ROY N V, PAEPE A D, SPELEMAN F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 2002, 3(7): research0034.1-0034.11.
[24]   胡金川. 如何利用geNorm软件筛选基因表达测定的内参基因. 中华检验医学杂志, 2008, 31(8) : 918.
HU J C. How to screen the gene expression of reference genes determined by geNorm software. Chinese Journal of Laboratory Medicine, 2008, 31(8): 918. (in Chinese)
[25]   AKHTAR W, VEENSTRA G C. TBP-related factors: a paradigm of diversity in transcription initiation. Cell and Bioscience, 2011(1): 23.
[26]   THOMAS M C, CHIANG C M. The general transcription machinery and general cofactors. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41: 105-178.
[27]   ERKENS T, POUCKE M V, VANDESOMPELE J, GOOSSENS K, ZEVEREN A V, PEELMAN L J. Development of a new set of reference genes for normalization of real-time RT-PCR data of porcine backfat and longissimus dorsi muscle, and evaluation with PPARGC1A. BMC Biotechnology, 2006, 6: 41.
[28]   NYGARD A B, JORGENSEN C B, CIRERA S, FREDHOLM M. Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Molecular Biology, 2007, 8(1): 67.
[29]   王继英, 王彦平, 郭建凤, 王怀中, 林松, 张印, 武英. 仔猪外周血中内参基因的筛选及细胞因子和受体的表达水平. 中国农业科学, 2015, 48(7): 1437-1444.
WANG J Y, WANG Y P, GUO J F, WANG H Z, LIN S, ZHANG Y, WU Y. Selection of reference genes and determination of cytokines and receptor mRNA expression in peripheral blood of piglets. Scientia Agricultura Sinica, 2015, 48(7): 1437-1444. (in Chinese)
[30]   BESSONOV S, ANOKHINA M, WILL C L, URLAUB H, LUHRMANN R. Isolation of an active step I spliceosome and composition of its RNP core. Nature, 2008, 452(7189): 846-850.
[31]   张晓军, 李传民, 赵伟, 于海滨, 赵志辉, 孙博兴. 猪睾丸组织中miR-375的表达及靶基因预测. 中国兽医学报, 2014, 34(11): 1846-1849.
ZHANG X J, LI C M, ZHAO W, YU H B, ZHAO Z H, SUN B X. The expression of miR-375 and its target genes prediction in testicular tissue of junmu NO.1 white pig. Chinese Journal of Veterinary Science, 2014, 34(11): 1846-1849. (in Chinese)
[32]   罗志宇, 潘华, 冉雪琴, 王嘉福.香猪睾丸2种miRNA在不同生长发育阶段的变化.畜牧与兽医, 2015, 47(4): 91-96.
LUO Z Y, PAN H, RAN X Q, WANG J F. Changes of 2 kinds of miRNA in the testis of Xiang Pig in different developmental stages. Animal Husbandry and Veterinary Medicine, 2015, 47(4): 91-96. (in Chinese)
[33]   Esau C, Kang X L, Peralta E, Hanson E, Marcusson E G, Ravichandran L V, Sun Y Q, Koo S, Perera R J, Jain R, Dean N M, Freier S M, Frank Bennett C, Lollo B, Griffey R. MicroRNA-143 regulates adipocyte differentiation. Biochemistry and Molecular Biology,2004, 279(50): 52361-52365.
[34]   李国喜, 宁小敏, 李新建, 吴宗松, 杨公社.猪组织中miR-103实时定量PCR分析时合适内参的确定. 中国生物化学与分子生物学报, 2009(12): 1149-1154.
LI G X, NING X M, LI X J, WU Z S, YANG G S. Identification of suitable reference for quantitative RT-PCR assays of miR-103 in pig tissues. Chinese Journal of Biochemistry and Molecular Biology, 2009(12): 1149-1154. (in Chinese)`
[35]   李春枚. 猪microRNA内参基因稳定性的验证[D]. 雅安:四川农业大学, 2011. 
LI C M. Identification of suitable endogenous control microRNA genes in normal pig tissues[D]. Yaan: Sichuan Agricultural University, 2011. (in Chinese)
[1] XIAO Tao, LI Hui, LUO Wei, YE Tao, YU Huan, CHEN YouBo, SHI YuShi, ZHAO DePeng, WU Yun. Screening of Candidate Genes for Green Shell Egg Shell Color Traits in Chishui Black Bone Chicken Based on Transcriptome Sequencing [J]. Scientia Agricultura Sinica, 2023, 56(8): 1594-1605.
[2] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[3] WU Yan,ZHANG Hao,LIANG ZhenHua,PAN AiLuan,SHEN Jie,PU YueJin,HUANG Tao,PI JinSong,DU JinPing. circ-13267 Regulates Egg Duck Granulosa Cells Apoptosis Through Let-7-19/ERBB4 Pathway [J]. Scientia Agricultura Sinica, 2022, 55(8): 1657-1666.
[4] WANG Yong,LI SiYan,HE SiRui,ZHANG Di,LIAN Shuai,WANG JianFa,WU Rui. Prediction and Bioinformatics Analysis of BLV-miRNA Transboundary Regulation of Human Target Genes [J]. Scientia Agricultura Sinica, 2021, 54(3): 662-674.
[5] CHEN HuiFang,HUANG QiLiang,HU ZhiChao,PAN XiaoTing,WU ZhiSheng,BAI YinShan. Expression Differences and Functional Analysis of Exosomes microRNA in Porcine Mature and Atretic Follicles [J]. Scientia Agricultura Sinica, 2021, 54(21): 4664-4676.
[6] YU BaoJun,DENG ZhanZhao,XIN GuoSheng,CAI ZhengYun,GU YaLing,ZHANG Juan. Correlation Analysis of Inosine Monophosphate Specific Deposition Related LNC_003828-gga-miR-107-3P-MINPP1 in Jingyuan Chicken Muscle Tissue [J]. Scientia Agricultura Sinica, 2021, 54(19): 4229-4242.
[7] TAN ZhaoGuo,LI YanMei,BAI JianFang,GUO HaoYu,LI TingTing,DUAN WenJing,LIU ZiHan,YUAN ShaoHua,ZHANG TianBao,ZHANG FengTing,CHEN ZhaoBo,ZHAO FuYong,ZHAO ChangPing,ZHANG LiPing. Cloning of TaBG and Analysis of Its Function in Anther Dehiscence in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(13): 2710-2723.
[8] CHEN LuLu,WANG Hui,WANG JiKun,WANG JiaBo,CHAI ZhiXin,CHEN ZhiHua,ZHONG JinCheng. Comparative Analysis of miRNA Expression Profiles in the Hearts of Tibetan Cattle and Xuanhan Cattle [J]. Scientia Agricultura Sinica, 2020, 53(8): 1677-1687.
[9] ShuJun MENG,XueHai ZHANG,QiYue WANG,Wen ZHANG,Li HUANG,Dong DING,JiHua TANG. Identification of miRNAs and tRFs in Response to Salt Stress in Rice Roots [J]. Scientia Agricultura Sinica, 2020, 53(4): 669-682.
[10] KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan. Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis [J]. Scientia Agricultura Sinica, 2020, 53(2): 247-260.
[11] CHEN HuaZhi,ZHU ZhiWei,JIANG HaiBin,WANG Jie,FAN YuanChan,FAN XiaoXue,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. Comparative Analysis of MicroRNAs and Corresponding Target mRNAs in Ascosphaera apis Mycelium and Spore [J]. Scientia Agricultura Sinica, 2020, 53(17): 3606-3619.
[12] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[13] ZHU JingJing,ZHOU XiaoLong,WANG Han,LI XiangChen,ZHAO AYong,YANG SongBai. Prediction and Verification of MicroRNAs Targeting Porcine Endoplasmic Reticulum Stress Pathway [J]. Scientia Agricultura Sinica, 2020, 53(15): 3169-3179.
[14] GENG SiHai,SHI CaiYun,FAN XiaoXue,WANG Jie,ZHU ZhiWei,JIANG HaiBin,FAN YuanChan,CHEN HuaZhi,DU Yu,WANG XinRui,XIONG CuiLing,ZHENG YanZhen,FU ZhongMin,CHEN DaFu,GUO Rui. The Mechanism Underlying MicroRNAs-Mediated Nosema ceranae Infection to Apis mellifera ligustica Worker [J]. Scientia Agricultura Sinica, 2020, 53(15): 3187-3204.
[15] DU Yu,FAN XiaoXue,JIANG HaiBin,WANG Jie,FAN YuanChan,ZHU ZhiWei,ZHOU DingDing,WAN JieQi,LU JiaXuan,XIONG CuiLing,ZHENG YanZhen,CHEN DaFu,GUO Rui. The Potential Role of MicroRNAs and MicroRNA-Mediated Competing Endogenous Networks During the Developmental Process of Apis mellifera ligustica Worker’s Midgut [J]. Scientia Agricultura Sinica, 2020, 53(12): 2512-2526.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!