Scientia Agricultura Sinica ›› 2020, Vol. 53 ›› Issue (2): 247-260.doi: 10.3864/j.issn.0578-1752.2020.02.003

• Crop Genetics & Breeding·Germplasm Resources·Molecular Genetics • Previous Articles     Next Articles

Cloning MsSQE1 from Alfalfa and Functional Analysis in Saponin Synthesis

KANG JunMei,ZHANG QiaoYan,JIANG Xu,WANG Zhen,ZHANG TieJun,LONG RuiCai,CUI HuiTing,YANG QingChuan()   

  1. Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193
  • Received:2019-07-02 Accepted:2019-09-24 Online:2020-01-16 Published:2020-02-17
  • Contact: QingChuan YANG E-mail:qchyang66@163.com

Abstract:

【Objective】Squalene epoxidase (SQE) is a rate-limiting enzyme in sterols and triterpenoids biosynthesis pathway, which is closely related to the synthesis of saponins. This study focused on the regulatory function of MsSQE1 on saponin biosynthesis in alfalfa,【Method】MsSQE1 was isolated from alfalfa based on SQE sequence of model plant Medicago truncatula. MEGA software was used for bioinformatic analysis of MsSQE1. Subcellular localization of MsSQE1 protein was examined by micro projectile bombardment. qRT-PCR was used to examine tissue-specific expression and the expression patterns of MsSQE1 under UV radiation, MeJA, ABA and GA3 treatments. The MsSQE1 overexpressing transgenic alfalfa was obtained by Agrobacterium-mediated transformation, and the saponins content of the transgenic plants was determined by spectrophotometer【Result】The cDNA sequence of MsSQE1 was cloned, which contained an ORF of 1 578 bp encoding a protein of 525 amino acids with an isoelectric point of 8.59. Bioinformatic analysis showed that the deduced of MsSQE1 shared high sequence homology with SQE1 from M. truncatula (98.6%) and Arabidopsis thaliana (80%). Subcellular localization indicated that MsSQE1 may be located in the cell membrane of onion epidermis. The expression level of MsSQE1 was highest in leaves compared with stems and roots. MsSQE1 was enhanced by the simulation of UV radiation, ABA and GA3. The expression level of MsSQE1 in leaves was highest in 24 h treated by UV, and in 8 h treated of GA3 (50 μmol·L -1) and ABA(100 μmol·L -1). Moreover, MsSQE1 was upregulated by MeJA, and the enhanced expression of MsSQE1 resulted in the increase of total saponins. Overexpression of MsSQE1 in alfalfa led to the accumulation of total saponins in the transgenic plants and MsSQE1 expression level was correlated with the contents of saponins. The expression level of MsSQE1 in transgenic alfalfa was 3.11-9.45 times of control, and the content of saponins was 14.26%-28.05% higher than control. These findings suggested that the novel identified MsSQE1 encodes epoxidase and it contributes to the synthesis of saponins in alfalfa.【Conclusion】This study reported the cloning and functional characterization of squalene epoxidase (SQE) encoding gene from legume forage alfalfa (MsSQE). Overexpression MsSQE1 in alfalfa improved the content of total saponins suggesting that MsSQE affects the saponin biosynthesis.

Key words: Medicago sativa L.(alfalfa), squalene epoxidase(SQE), saponins, qRT-PCR

Table 1

The sequences of primers used in this study"

引物名称 Primer name 引物序列 Sequence of primer (5′-3′) 用途 Function
P1 GTTCTTTGAGATGGATTATCAGTAT ORF分离
ORF isolation
P2 AAATGACATGAATACTACAGTGACA
SQE1-PE-SPt-f GAAAAGAAGAAAACAGGTTCAAGTT 原核表达
Prokaryotic expression
SQE1-PE-f ATGGATTATCAGTATATTCTTGGAGGG
SQE1-PE-r ATGGACAGGAGGCATTCTGTAATAT
SQE1-GFP-f CCctcgagATGGATTATCAGTATATTCTTGGAGGG 亚细胞定位
Subcellular localization
SQE1-GFP-r TGgtcgacATGGACAGGAGGCATTCTGTAATAT
SQE1-RTf-1 GCAAAGGCTCCTCTCACCATAG 实时荧光定量
PCR/qRT-PCR
SQE1-RTr-1 GCACATCAACCAAACAGCGAAT
Actin-s CAAAAGATGGCAGATGCTGAGGAT 内参基因
House-keeping gene
Actin-a CATGACACCAGTATGACGAGGTCG
SQE1-P1 tctagaATGGATTATCAGTATATTCTTGGAGGG 扩增目的基因
Amplification of target genes
SQE1-P2 ggatccTTAATGGACAGGAGGCATTCTGTAATATGC
35S-f ACTATCCTTCGCAAGACCCTTCCTC 转基因株系的鉴定
Identification of transgenic lines
SQE1-r TTAATGGACAGGAGGCATTCTGTAAT

Fig. 1

Cloning and full sequence of MsSQE1 from alfalfa A: PCR Amplification of MsSQE1; B: Full sequence of MsSQE1"

Fig. 2

Sequence alignment of the representative squalene epoxidase amino acid sequences from the indicated species"

Fig. 3

Phylogenetic tree of SQE protein sequences from alfalfa and other species"

Fig. 4

Analysis of the secondary structure of MsSQE1 protein A: The prediction of signal peptide of MsSQE1, C-score: Raw cleavage site score; S-score: Signal peptide score; Y-score: Combined cleavage site score; mean S: The average S-score of the possible signal peptide; D: Discrimination score; B: The prediction of transmembrane regions of MsSQE1; C: Analysis of the secondary structure of MsSQE1"

Fig. 5

Subcellular localization of 35S::MsSQE1-GFP in onion epidermal cell a-c: Images of onion epidermal cells expressing 35S::GFP taken under GFP fluorescence; d-f: Images of onion epidermal cells expressing 35S::MsSQS-GFP taken under GFP fluorescence; g-i: Images of dehydrated (0.3 g·mL-1 sucrose ) onion epidermal cells expressing 35S::MsSQS-GFP taken under GFP fluorescence. Bar=100 µm"

Fig. 6

Expression analysis of MsSQE1/MsSQE1ΔN25 by SDS-PAGE in E.coli M: Protein ladder; 1: Total protein expressed by E.coli. harboring pEASY-E2-Control(inducted 5 h with IPTG inducement); 2: Total protein expressed by E.coli. harboring pEASY-E2-MsSQE1ΔN25 (without IPTG inducement); 3: Soluble protein expressed by E.coli. harboring pEASY-E2- MsSQE1ΔN25 (inducted 5 h with IPTG inducement); 4: Inclusion membrane protein expressed by E.coli. harboring pEASY-E2- MsSQE1ΔN25 (inducted 5 h with IPTG inducement); 5: Total protein expressed by E.coli. harboring pEASY-E2- MsSQE1(without IPTG inducement); 6: Soluble protein expressed by E.coli. harboring pEASY-E2-MsSQE1(inducted 5 h with IPTG inducement); 7: Inclusion membrane protein expressed by E.coli. harboring pEASY-E2-MsSQE1 (inducted 5 h with IPTG inducement)); Arrows represent expression of MsSQE1 protein"

Fig. 7

Expression analysis of MsSQE1 in the indicated alfalfa tissues and under different conditions A: Analysis of the relative expression level of MsSQE1 in the indicated alfalfa tissues using qRT-PCR; B, C, D: Relative expression level of MsSQE1 in alfalfa seedlings treated with UV, GA3 or ABA, * and ** indicate P<0.05 and P<0.01, respectively (Student’s t-test). The same as below"

Fig. 8

The relative expression level of MsSQE1 (A) and the change of saponin concertation(B) in different tissues induced by MeJA in alfalfa"

Fig. 9

Identification of transgenic alfalfa and effect of overexpression MsSQE1 on total saponin content of alfalfa A: Verification of positive transgenic plants; B: Analysis of the relative expression level of MsSQS by qRT-PCR in the three representative transgenic lines; C: Content of total saponins in the indicated transgenic lines. CK+: Plasmid harboring 35S::MsSQS (positive control); CK-: pBI-121 empty vector (negative control); 1-10: Regenerated alfalfa plants resistant to kanamycin; 1,9,10: Three independent transgenic alfalfa lines. Bars represent the mean ± SD of three biological replicates"

[1] GHOLAMI A, GEYTER D N, POLLIER J, GOORMACHTIG S, GOOSSENS A . Natural product biosynthesis inMedicago species. Natural Product Reports, 2014,31(3):356-380.
[2] GAIDI G, CORREIA M, CHAUFFERT B, BELTRAMO J L, WAGNER H, LACAILLE-DUBOIS M A . Saponins-mediated potentiation of cisplatin accumulation and cytotoxicity in human colon cancer cells. Planta Medica, 2002,68(1):70-72.
[3] SYLWIA G, LESZCZYNSKI B, WIESLAW O . Effect of low and high-saponin lines of alfalfa on pea aphid. Journal of Insect Physiology, 2006,52(7):737-743.
[4] WANG J K, YE J A, LIU J X . Effects of tea saponins on rumen microbiota, rumen fermentation, methane production and growth performance-A review. Tropical Animal Health & Production, 2012,44(4):697-706.
[5] VINCKEN J P, HENG L, GROOT A D, GRUPPEN H . Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 2007,68(3):275-297.
[6] SUZUKI H, ACHNINE L, XU R, MATSUDA S P, DIXON R A . A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant Journal for Cell and Molecular Biology, 2002,32(6):1033-1048.
[7] JURZYSTA M, WALLER G R . Antifungal and hemolytic activity of aerial parts of alfalfa (Medicago) species in relation to saponin composition. Advances in Experimental Medicine and Biology. 1996,404:565-574.
[8] BELTER A, SKUPINSKA M, GIEL-PIETRASZUK M, GRABARKIEWICZ T, RYCHLEWSKI L, BARCISZEWSKI J . Squalene monooxygenase- A target for hypercholesterolemic therapy. Biological Chemistry, 2011,392:1053-1075.
[9] NOWOSIELSKI M, HOFFMANN M, WYRWICZ L S, STEPNIAK P, PLEWCZYNSKI D M, LAZNIEWSKI M, GINALSKI K, RYCHLEWSKI L . Detailed mechanism of squalene epoxidase inhibition by terbinafine. Journal of Chemical Information and Modeling, 2011,51(2):455-462.
[10] HIDENOBU U, KOREMITSU S, EMMANUEL F V M, KENJI I, KIYOTAKA S, KENICHI F, SHIGEKI M, SHIGERU O . Isolation and characterization of two squalene epoxidase genes from Botryococcus braunii, Race B. PLOS ONE, 2015,10(4):e0122649.
[11] HOAGLAND R E, ZABLOTOWICZ R M, OLESZEK W A . Effects of alfalfa saponins on in vitro physiological activity of soil and rhizosphere bacteria. Journal of Crop Production, 2001,4:349-361.
[12] LARANJEIRA S, AMORIM-SILVA V, ESTEBAN A, ARRO M, FERRER A, TAVARES M R, BOTELLA M A, ROSADO A, AZEVEDO H . Arabidopsis squalene epoxidase 3 (SQE3) complements SQE1 and is important for embryo development and bulk squalene epoxidase activity. Molecular Plant, 2015,8:1090-1102.
[13] RASBERY J M, SHAN H, LECLAIR R J, NORMAN M, MATSUDA S P, BARTEL B . Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development. Journal of Biological Chemistry, 2007,282(23):17002-17013.
[14] HAN J Y, IN J G, KWON Y S, CHOI Y E . Regulation of ginsenoside and phytosterol biosynthesis by RNA interferences of squalene epoxidase gene in Panax ginseng. Phytochemistry, 2010,71(1):36-46.
[15] CHOI D W, JUNG J D, HA Y I, PARK H W, IN D S, CHUNG H J, JANG R L . Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites. Plant Cell Reports, 2005,23(8):557-566.
[16] LI J, WANG J, WU X, LIU D, LI J, LI J, LIU S, GAO W . Jasmonic acid and methyl dihydrojasmonate enhance saponin biosynthesis as well as expression of functional genes in adventitious roots of Panax notoginseng F.H. Chen. Biotechnology and Applied Biochemistry, 2017,64(2):225-238.
[17] HE F, ZHU Y, HE M, ZHANG Y . Molecular cloning and characterization of the gene encoding squalene epoxidase in Panax notoginseng. DNA Sequence, 2008,19(3):270-273.
[18] NIU Y, LUO H, SUN C, YANG, T J, DONG L, HUANG L, CHEN S L . Expression profiling of the triterpene saponin biosynthesis genes FPS, SS, SE, and DS in the medicinal plant Panax notoginseng. Gene, 2014,533(1):295-303.
[19] RAZDAN S, BHAT W W, RANA S, DHAR N, LATTOO S K, DHAR R S, VISHWAKARMA R A . Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Molecular Biology Reports, 2013,40:905-916.
[20] ZHOU J W, ZHANG Y, HU T Y, SU P, ZHANG Y F, LIU Y J, HUANG L Q, GAO W . Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. International Journal of Biological Macromolecules, 2018,120:203-212.
[21] 祝传书, 刘艳, 陈蒙蒙, 蒲时, 冯俊涛, 张兴 . 雷公藤鲨烯环氧酶基因克隆与表达分析. 西北植物学报, 2018,38(5):785-791.
ZHU C S, LIU Y, CHEN M M, PU S, FENG J T, ZHANG X . Cloning and expression analysis of squalene epoxidase genes in Tripterygium wilfordii. Acta Botanica Boreali-Occidentalia Sinica, 2018,38(5):785-791. (in Chinese)
[22] HIROAKI H, PENGYU H, KENICHIRO I . Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant & Cell Physiology, 2003,44(4):404-411.
[23] GUO H, LI R, LIU S, ZHAO N, HAN S, LU M, LIU X, XIA X . Molecular characterization, expression, and regulation of Gynostemma pentaphyllum squalene epoxidase gene 1. Plant Physiology and Biochemistry, 2016,109:230-239.
[24] ZHANG M Y, WANG S Y, YIN J, LI C X, ZHAN Y G, XIAO J L, LIANG T, LI X . Molecular cloning and promoter analysis of squalene synthase and squalene epoxidase genes from Betula platyphylla. Protoplasma, 2016,253:1347-1363.
[25] 赵欢, 郭娟, 唐其, 郭兰萍, 黄璐琦, 马小军 . 罗汉果角鲨烯环氧酶基因的克隆及表达分析. 中国中药杂志, 2018,43(16):3255-3262.
ZHAO H, GUO J, TANG Q, GUO L P, HUANG L Q, MA X J . Cloning and expression analysis of squalene epoxidase genes from Siraitia grosvenorii. China Journal of Chinese Materia Medica, 2018,43(16):3255-3262. (in Chinese)
[26] LIPINSKI M, SCHOLZ M, PIEPER K, FISCHER R, PRüFER D, MüLLER K J . A squalene epoxidase from Nigella sativa participates in saponin biosynthesis and mediates terbinafine resistance in yeast. Central European Journal of Biology, 2009,4(2):163-169.
[27] RUCKENSTUHL C, POSCHENEL A, POSSERT R, BARAL P K, GRUBER K, TURNOWSKY F . Structure-function correlations of two highly conserved motifs in saccharomyces cerevisiae squalene epoxidase. Antimicrobial Agents and Chemotherapy, 2008: 1496-1499.
[28] 李晶, 林雄杰, 王泽辉, 刘艳玲, 林占熺 . 牛樟芝鲨烯环氧酶基因的克隆、生物信息学及表达分析. 中草药, 2018,49(10):2440-2446.
LI J, LIN X J, WANG Z H, LIU Y L, LIN Z X . Cloning, bioinformatics, and expression analysis of squalene epoxidase in Antrodia cinnamomea. Chinese Traditional and Herbal Drugs, 2018,49(10):2440-2446. (in Chinese)
[29] MICHIHARA A, MIDO M, MATSUOKA H, MIZUTANI Y . Lower squalene epoxidase and higher scavenger receptor Class B type 1 protein levels are involved in reduced serum cholesterol levels in stroke-prone spontaneously hypertensive rats. Biological and Pharmaceutical Bulletin, 2015,38:1879-1890.
[30] 徐琅, 宋晓峰, 龚祝南 . 3种苜蓿不同部位皂苷含量的测定研究. 安徽农业科学, 2010,38(28):15566-15567.
XU L, SONG X F, GONG Z N . Determination of saponin content in different parts of 3 kinds of alfalfa. Journal of Anhui Agricultural Sciences, 2010,38(28):15566-15567. (in Chinese)
[31] COSSON V, DURAND P D'ERFURTH I, KONDOROSI A, RATET P, . Medicago truncatula transformation using leaf explants. Methods in Molecular Biology, 2015,343:115-127.
[32] GAO K, XU J S, SUN J, XU Y H, WEI J H, SUI C . Molecular cloning and expression of squalene epoxidase from a medicinal plant, Bupleurum chinense. Chinese Herbal Medicines, 2016,8(1):67-74.
[1] WANG SiTong,CHEN Yan,LUO YuJia,YANG YuanYuan,JIANG ZhiYang,JIANG XinYi,ZHONG Fan,CHEN Hao,XU HongXing,WU Yan,DUAN HongXia,TANG Bin. Effect of Three Novel Compounds on Trehalose and Chitin Metabolism and Development of Spodoptera frugiperda [J]. Scientia Agricultura Sinica, 2022, 55(8): 1568-1578.
[2] ZHANG DaoWei,KANG Kui,YU YaYa,KUANG FuPing,PAN BiYing,CHEN Jing,TANG Bin. Characteristics and Immune Response of Prophenoloxidase Genes in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2020, 53(15): 3108-3119.
[3] LIU YiRan,ZHANG Hong,JIN JiSu,ZHOU ZhongShi,GUO JianYing. Identification and Expression Analysis of the Halloween Gene Family in Agasicles hygrophila [J]. Scientia Agricultura Sinica, 2020, 53(10): 2009-2019.
[4] DING YanJuan,LIU YongKang,LUO YuJia,DENG YingMei,XU HongXing,TANG Bin,XU CaiDi. Potential Functions of Nilaparvata lugens GSK-3 in Regulating Glycogen and Trehalose Metabolism [J]. Scientia Agricultura Sinica, 2019, 52(7): 1237-1246.
[5] TANG Bin,SHEN QiDa,ZENG BoPing,XIAO ZhongJiu,QIU LingYu,PAN BiYing,LI Kun,ZHANG DaoWei. Characteristics, Developmental Expression and RNAi Effect Analysis of a Novel Trehalose-6-Phosphate Synthase Gene in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2019, 52(3): 466-477.
[6] JunBo PENG,XingHong LI,Wei ZHANG,Ying ZHOU,JinBao HUANG,JiYe YAN. Pathogenicity and Gene Expression Pattern of the Exocrine Protein LtGH61A of Grape Canker Fungus [J]. Scientia Agricultura Sinica, 2019, 52(24): 4518-4526.
[7] WAN DongLi,HOU XiangYang,DING Yong,REN WeiBo,WANG Kai,LI XiLiang,WAN YongQing. Response and the Expression of Pi-Responsive Genes in Leymus chinensis Under Inorganic Phosphate Treatment [J]. Scientia Agricultura Sinica, 2019, 52(23): 4215-4227.
[8] YUAN JunHu,DING YiJuan,YANG WenJing,YAN BaoQin,CHAI YaRu,MEI JiaQin,QIAN Wei. Identification of Genes Encoding Secretory Proteins Related to the Pathogenicity of Sclerotinia sclerotiorum Using TRV-HIGS [J]. Scientia Agricultura Sinica, 2019, 52(23): 4274-4284.
[9] LIU FanQi,WAN GuiJun,ZENG LuYing,LI ChunXu,PAN WeiDong,CHEN FaJun. Selection of Stable Internal Reference Genes for Transcript Expression Analyses in Laodelphax striatellus Under Near-Zero Magnetic Field [J]. Scientia Agricultura Sinica, 2019, 52(19): 3346-3356.
[10] ZHANG DaoWei,YU YaYa,PAN BiYing,KANG Kui,ZENG BoPing,CHEN Jing,TANG Bin. Regulation Function of Trehalose-6-phosphate Synthase Genes on Chitin Synthesis in Sogatella furcifera [J]. Scientia Agricultura Sinica, 2019, 52(19): 3357-3366.
[11] LIU XiaoChen, WU ShengYong, LEI ZhongRen, WANG HaiHong. Growth Kinetics and Virulence of Two Beauveria bassiana Strains in Frankliniella occidentalis Under Different Temperatures [J]. Scientia Agricultura Sinica, 2018, 51(8): 1484-1492.
[12] ZHANG Xu,LING Hui,LIU Feng,HUANG Ning,WANG Ling,MAO HuaYing,LI CongNa,TANG HanChen,SU WeiHua,SU YaChun,QUE YouXiong. Cloning and Expression Analysis of a Ⅱd Sub-Group WRKY Transcription Factor Gene from Sugarcane [J]. Scientia Agricultura Sinica, 2018, 51(23): 4409-4423.
[13] HongHong HE,ZongHuan MA,YuanXia ZHANG,Juan ZHANG,ShiXiong LU,ZhiQiang ZHANG,Xin ZHAO,YuXia WU,Juan MAO. Identification and Expression Analysis of LBD Gene Family in Grape [J]. Scientia Agricultura Sinica, 2018, 51(21): 4102-4118.
[14] ZHAO WanYing, YU TaiFei, YANG JunFeng, LIU Pei, CHEN Jun, CHEN Ming, ZHOU YongBin, MA YouZhi, XU ZhaoShi, MIN DongHong. Verification and Analyses of Soybean GmbZIP16 Gene Resistance to Drought [J]. Scientia Agricultura Sinica, 2018, 51(15): 2835-2845.
[15] ZHANG Lu, ZHU ShiCheng, ZHENG Hao, SHEN QiDa, WANG ShiGui, TANG Bin. Regulatory Function of Trehalase Genes on Chitin Metabolism in the Cuticle of Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2017, 50(6): 1047-1056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!