Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (14): 2670-2682.doi: 10.3864/j.issn.0578-1752.2017.14.004

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Advances and Perspectives in Research of Physiological and Molecular Mechanism of Soybean Response to High Temperature Stress

LI JiaJia1, ZHENG ShuangYu1, SUN GenLou1, ZHANG WenMing1, WANG XiaoBo1, QIU LiJuan2   

  1. 1College of Agriculture, Anhui Agricultural University, Hefei 230036; 2Institute of Crop Science, Chinese Academy of Agricultural Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Beijing 100081
  • Received:2016-12-26 Online:2017-07-16 Published:2017-07-16

Abstract: Soybean is a key economic crop, and is an important source of plant protein and oil. In recent years, high temperature (HT) stress caused by global climate change has threatened the key growth period of soybean, and has become one of the main environmental factors which limited the yield and quality of soybean. In order to reveal the molecular mechanism, establish a comprehensive efficiency evaluation system and promoting genetic improvement of soybean resistance to HT stress, the physiological and biochemical basis and molecular regulation mechanism responding to HT stress of soybean were reviewed in this paper. Compared to optimum temperature, the thickness of leaves increased, the stomatal conductance decreased, the membrane permeability increased, cell microstructure and its integrity damaged, the osmoregulation substances (proline, soluble sugar and protein) changed and the key enzyme activities of the antioxidant defense system in soybean have been lost under HT stress, these results will lead to disorders of a series of physiological processes in soybean, which include the photosynthesis, transpiration, respiration and substance content, etc. Besides, HT stress also caused the abnormalities of pollen morphology, the tapetum cytoplasm is not dense, showing vacuolated and autolysis, the pollen vigour and germination rate are significantly decreased, and pollen abortion rate increased, thus resulting in the pod-set rate and seed-set percentage remarkable decrease, and affecting the normal development and protein accumulation of seed and yield formation of soybean, and ultimately leading to lower yields of soybean. Meanwhile, HT stress can also cause some damage to quality traits of seed, and then has an adverse effect on its economic value of soybean. Moreover, normal physiological metabolism is widely affected by HT stress at the level of transcription, translation and metabolism. At present, many transcription factors, proteins and metabolites response to HT stress in soybean have been identified by the method of high-throughput sequencing, however, there is still a wide gap compared with research on rice and Arabidopsis. Currently, the comprehensive stress response indexes based on pollen viability and several physiological parameters have been used to screen HT resistance soybean varieties, but, the method of system identification is still imperfect in soybean production, and thus leading to the slow progress in selection of HT resistant soybean. Up to date, challenges are still existed in preventive measures, the establishment of a comprehensive evaluation system, screening for excellent soybean germplasm related to resistance to HT, and identification of key functional genes resistance to HT stress in soybean. The adverse effects of extreme ecological environment on soybean production will be further aggravated with the uncertainty of global climate change. In the future, the main focuses should be put on the establishment of a comprehensive evaluation technology system, improvement of the identification level of soybean germplasm resources, elucidation of molecular genetic mechanism and excavation of key genes resistance to HT in soybean. Selecting new soybean varieties with resistance to HT stress by both of the conventional breeding and molecular breeding technologies, thus will provide a theoretical basis and technical support for achieving the unification of HT resistance as well as high yield and quality in soybean.

Key words: soybean, high temperature stress, heat tolerance, physiological and biochemical characteristics, molecular mechanism

[1]    PATEL D, FRANKLIN K A. Temperature-regulation of plant architecture. Plant Signaling Behavior, 2009, 4(7): 577-579.
[2]    NAHAR K, HASANUZZAMAN M, FUJITA M. 12-Heat stress responses and thermotolerance in soybean. Abiotic & Biotic Stresses in Soybean Production 20161: 261-284. ,
[3]    PENG S B, HUANG J L, SHEEHY J E, LAZA R C, VISPERAS R M, ZHONG X H, CENTENO G S, KHUSH G S, CASSMAN K G. Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences, USA, 2004, 101(27): 9971-9975.
[4]    DJANAGUIRAMAN M, PRASAD P V V, BOYLE D L, SCHAPAUGH W T. High-temperature stress and soybean leaves: leaf anatomy and photosynthesis. Crop Science, 2011, 51(5): 2125-2131.
[5]    徐如强, 孙其信, 张树榛. 小麦光合作用与耐热性的关系初探. 中国种业, 1997, 46(1): 28-29.
XU R Q, SUN Q X, ZHANG S Z. Preliminary study on the relationship between photosynthesis and heat tolerance in wheat. China Seed Industry, 1997, 46(1): 28-29. (in Chinese)
[6]    马德华, 庞金安, 霍振荣, 李淑菊. 黄瓜对不同温度逆境的抗性研究. 中国农业科学, 1999, 32(5): 28-35.
MA D H, PANG J A, HUO Z R, LI S J. Study on the resistance of cucumber to temperature stress. Scientia Agricultura Sinica, 1999, 32(5): 28-35. (in Chinese)
[7]    吴韩英, 寿森炎, 朱祝军. 高温胁迫对甜椒光合作用和叶绿素荧光的影响. 园艺学报, 2001, 28(6): 517-521.
WU H Y, SHOU S Y, ZHU Z J. Effects of high temperature stress on photosynthesis and chlorophyll fluorescence in sweet pepper (Capsicum fructescens L.). Acta Horticulturae Sinica, 2001, 28(6): 517-521. (in Chinese)
[8]    潘宝贵, 王述彬, 刘金兵, 曹碚生, 袁希汉. 高温胁迫对不同辣椒品种苗期光合作用的影响. 江苏农业学报, 2006, 22(2): 137-140.
PAN B G, WANG S B, LIU J B, CAO B S, YUAN X H. Effect of heat stress on photosynthesis of pepper cultivars at seedling stage. Jiangsu Journal of Agricultura Science, 2006, 22(2): 137-140. (in Chinese)
[9]    PRASAD P V V, BOOTE K J, ALLEN L H, THOMAS J M G. Effects of elevated temperature and carbon dioxide on seed-set and yield of kidney bean (Phaseolus vulgaris L.). Global Change Biology, 2002, 8(8): 710-721.
[10]   PRASAD P V V, BOOTE K J, ALLEN L H, SHEEHY J E, THOMAS J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Research, 2006, 95(2-3): 398-411.
[11]   PRASAD P V V, PISIPATI S R, MUTAVA R N, TUINSTRA M R. Sensitivity of grain sorghum to high temperature stress during reproductive development. Crop Science, 2008, 48(48): 1911-1917.
[12]   DJANAGUIRAMAN M, PRASAD P V V. Ethylene production under high temperature stress causes premature leaf senescence in soybean. Functional Plant Biology, 2010, 37(11): 1071-1084.
[13]   DJANAGUIRAMAN M, PRASAD P V V, AL-KHATIB K. Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress. Environmental and Experimental Botany, 2011, 71(2): 215-223.
[14]   DJANAGUIRAMAN M, PRASAD P V V, BOYLE D L, SCHAPAUGH W T. Soybean pollen anatomy, viability and pod set under high temperature stress. Journal of Agronomy and Crop Science, 2012, 199(3): 171-177.
[15]   DJANAGUIRAMAN M, PRASAD P V V, SCHAPAUGH W T. High day- or nighttime temperature alters leaf assimilation, reproductive success, and phosphatidic acid of pollen grain in soybean [Glycine max (L.) Merr.]. Crop Science, 2013, 53(4): 1594-1604.
[16]   李合生. 现代植物生理学(第2版). 北京: 高等教育出版社. 2007: 348-352.
Li H S. Modern Plant Physiology (2th Edition). Beijing: Higher Education Press. 2007: 348-352. (in Chinese)
[17]   PUTEH A B, THUZAR M, MONDAL M M A, ABDULLAH N A P, RIDZWAN A M. Soybean [Glycine max (L.) Merr.]    seed yield response to high temperature stress during reproductive growth stages. Australian Journal of Crop Science, 2013, 7(10): 1472-1479.
[18]   SALEM M A, KAKANI V G, KOTI S, REDDY K R. Pollen-based screening of soybean genotypes for high temperatures. Crop Science, 2007, 47(1): 219-231.
[19]   THUZAR M, PUTEH A B, ABDULLAH N A P, LASSIM M B M, JUSOFF K. The effects of temperature stress on the quality and yield of soya bean [Glycine max (L.) Merr.]. Journal of Agricultural Science, 2010, 2(1): 172-179.
[20]   LIU X, JIN J, Wang G H, Herbert S J. Soybean yield physiology and development of high-yielding practices in northeast China. Field Crops Research, 2008, 105(3): 157-171.
[21]   REDDY K R, KAKANI V G. Screening Capsicum species of different origins for high temperature tolerance by in vitro pollen germination and pollen tube length. Scientia Horticulturae, 2007, 112(2): 130-135.
[22]   舒英杰, 王爽, 陶源, 宋丽茹, 黄丽燕, 周玉丽, 麻浩. 生理成熟期高温高湿胁迫对春大豆种子活力、主要营养成分及种皮结构的影响. 应用生态学报, 2014, 25(5): 1380-1386.
SHU Y J, WANG S, TAO Y, SONG L R, HUAGN L Y, ZHOU Y L, MA H. Effects of high temperature and humidity stress at the physiological maturity stage on seed vigor, main nutrients and coat structure of spring soybean. Chinese Journal of Applied Ecology, 2014, 25(5): 1380-1386. (in Chinese)
[23]   韩永华, 郑易之, 李甜, 高扬. 高温/渗透双重胁迫对大豆某些生理反应具累加效应的初报. 大豆科学, 2001, 20(1): 41-44.
HAN Y H, ZHENG Y Z, LI T, GAO Y. Effect of high temperature or/and osmotic stress on physiological characteristics in seedling of two soybean cultivars. Soybean Science, 2001, 20(1): 41-44. (in Chinese)
[24]   卢琼琼, 宋新山, 严登华. 高温胁迫对大豆幼苗生理特性的影响. 河南师范大学学报(自然科学版) 2012, 40(1): 112-115.
LU Q Q, SONG X S, YAN D H. Effects of high temperature stress on physiological characteristics in soybean seedings. Journal of Henan Normal University (Natural Science Edition), 2012, 40 (1): 112-115. (in Chinese)
[25]   NAKANO S, TACARINDUA C R P, NAKASHIMA K, HOMMA K, SHIRAIWA T. Evaluation of the effects of increasing temperature on the transpiration rate and canopy conductance of soybean by using the sap flow method. Journal of Agricultural Meteorology, 2015, 71(2): 98-105.
[26]   ZHENG S H, NAKAMOTO H, YOSHIKAWA K, FURUYA T, FUKUYAMA M. Influences of high night temperature on flowering and pod setting in soybean. Plant Production Science, 2002, 5(3): 215-218.
[27]   魏崃, 吴广锡, 唐晓飞, 王伟威, 王兴宇, 刘丽君. 过表达GmHSFA1大豆在干旱条件下对高温的响应. 大豆科学, 2016(2): 257-261.
WEI L, WU G X, TANG X F, WANG W W, WANG X Y, LIU L J. Soybean responses to high temperatures under drought stress in the presence of an over-expressed GmHSFA1 gene. Soybean Science, 2016(2): 257-261. (in Chinese)
[28]   DORNBOS D L Jr, MULLEN R E. Influence of stress during soybean seed fill on seed weight, germination, and seedling growth rate. Journal of Plant Science,1991, 71(2): 373-383.
[29]   GIBSON L R, MULLEN R E. Influence of day and night temperature on soybean seed yields. Crop Science, 1996, 36(1): 98-104.
[30]   LOBELL D B, ASNER G P. Climate and management contributions to recent trends in U.S. agricultural yields. Science, 2003, 299(5609): 1032.
[31]   KUCHARIK C J, SERBIN S P. Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environmental Research Letters, 2008, 3(3): 10.
[32]   陈晓军, 叶春江, 吕慧颖, 徐民新, 李葳, 张利明, 王超, 罗淑萍, 朱保葛. GmHSFA1基因克隆及其过量表达提高转基因大豆的耐热性. 遗传, 2006, 28(11): 1411-1420.
CHEN X J, YE C J, LV H Y, XU M X, LI W, ZHANG L M, WANG C, LUO S P, ZHU B G. Cloning of GmHSFA1 gene and its over-expression leading to enhancement of heat tolerance in transgenic soybean. Hereditas, 2006, 28(11): 1411-1420. (in Chinese)
[33]   LI P S, YU T F, HE G H, CHEN M, ZHOU Y B, CHAI S C, XU Z S, MA Y Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics, 2014, 15(1): 1009.
[34]   ZHAGN L, ZHAO H K, DONG Q L, ZHANG Y Y, WANG Y M, LI H Y, XING G J, LI Q Y, DONG Y S. Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Frontiers Plant Science, 2015, 6: 773.
[35]   聂腾坤, 赵琳, 李文滨, 丁福全, 李敏敏, 杨雪, 张可欣, 孙晶哲, 杜海龙. 大豆GmGBP1基因对转基因烟草幼苗耐热性的影响. 农业生物技术学报, 2016, 24(3): 313-322.
NIE T K, ZHAO L, LI W B, DING F Q, LI M M, YANG X, ZHANG K X, SUN J Z, DU H L. Effect of soybean (Glycine max) GmGBP1 gene on transgenic tobacco (Nicotiana tabacum) seedlings resistance to heat stress. Journal of Agricultural Biotechnology, 2016, 24(3): 313-322. (in Chinese)
[36]   VALDÉS-LÓPEZ O, BATEK J, GOMEZ-HERNANDEZ N, NGUYEN C T, ISIDRA-ARELLANO M C, ZHANG N, JOSHI T, XU D, HIXSON K K, WEITZ K K, ALDRICH J T, PAŠA-TOLI C´ L L, STACEY G. Soybean roots grown under heat stress show global changes in their transcriptional and proteomic profiles. Frontiers Plant Science, 2016, 7(532): 517.
[37]   DAS D, ELDAKAK M, PAUDEL B, KIM D W, HEMMATI H, BASU C, ROHILA J S. Leaf proteome analysis reveals prospective drought and heat stress response mechanisms in soybean. Biomed Research International, 2016, 2016(8): 1-23.
[38]   XU G L, SINGH S, BARNABY J, BUYER J, REDDY V, SICHER  R. Effects of growth temperature and carbon dioxide enrichment on soybean seed components at different stages of development. Plant Physiology and Biochemistry, 2016, 108: 313-322.
[39]   CHEBROLU K K, FRITSCHI F B, YE S Q, KRISHNAN H B, SMITH J R, GILLMAN J D. Impact of heat stress during seed development on soybean seed metabolome. Metabolomics, 2016, 12(2): 1-14.
[40]   夏莹莹, 叶航, 马锦林, 江泽鹏, 何小燕. 4个油茶品种的半致死温度与耐热性研究. 中国农学通报, 2012, 28(4): 58-61.
XIA Y Y, YE H, MA J L, JIANG Z P, HE X Y. The study on semi-lethal high temperature and heat tolerance of four camellia oleifera abel clones. Chinese Agricultural Science Bulletin, 2012, 28(4): 58-61. (in Chinese)
[41]   张燕利, 高捍东, 吴锦华. 4种景天科植物耐热性测定. 西南林学院学报, 2010, 30(6): 52-54.
ZHANG Y L, GAO H D, WU J H. Study on the heat-tolerance of four species in family crassulaceae. Journal of Southwest Forestry University, 2010, 30(6): 52-54. (in Chinese)
[42]   龚萍, 王健. 利用电导率法测定六种芳香植物的耐热性. 湖北农业科学, 2011, 50(10): 2038-2040.
GONG P, WANG J. Measurement of thermal resistance of six aromatic plants with electrical conductivity method. Hubei Agricultural Sciences, 2011, 50(10): 2038-2040. (in Chinese)
[43]   刘德良, 赖万年. 夏季梅花品种耐热性生理生化指标研究. 北方园艺, 2012, 02: 57-61.
LIU D L, LAI W N. Research on physio-biochemistry indexes of heat resistant of prunus mume in summer. Northern Horticulture, 2012, 02: 57-61. (in Chinese)
[44]   OGWENO J O, SONG X S, HU W H, SHI K, ZHOU Y H, YU J Q. Detached leaves of tomato differ in their photosynthetic physiological response to moderate high and low temperature stress. Scientia Horticulturae, 2009, 123(1): 17-22.
[45]   沈证言, 朱海山. 高温对菜豆生育影响及菜豆不同基因型的耐热性差异. 中国农业科学, 1993, 26(3): 50-55.
SHEN Z Y, ZHU H S. The effects of high temperature on growth and development and the differences of heat tolerance in common bean genotypes. Scientia Agricultura Sinica, 1993, 26(3): 50-55. (in Chinese)
[46]   欧祖兰, 曹福亮. 植物耐热性研究进展. 林业科技开发, 2008, 22(1): 1-5.
OU Z L, CAO F L. Research advance on heat stress tolerance in plant. China Forestry Science and Technology, 2008, 22(1): 1-5. (in Chinese)
[47]   耶兴元, 何晖, 张燕, 朱献辉. 脯氨酸对高温胁迫下猕猴桃苗抗热性相关生理指标的影响. 山东农业科学, 2010(5): 44-47.
YE X Y, HE H, ZHANG Y, ZHU X H. Effects of proline on physiological indexes related to heat resistance of kiwifruit seedlings under high temperature stress. Shandong Agricultural Sciences, 2010(5): 44-47. (in Chinese)
[48]   潘林娜. 不同温度下猕猴桃果实的呼吸作用和乙烯产生. 福建省农科院学报, 1995, 10(1): 54-57.
PAN L N. Respiration and ethylene production of kiwifruit at different remperature levels. Journal of Fujian Academy of Agricultural Sciences, 1995, 10(1): 54-57. (in Chinese)
[49]   李少昆, 张旺峰, 马富裕, 王克如, 李蒙春. 北疆高产棉田棉叶呼吸作用及其与光合作用关系的研究. 棉花学报, 1998, 10(5): 249-254.
LI S K, ZHANG W F, MA F Y, WANG K R, LI M C. Respiration of cotton leaves and its relate to phyotosynthesis in north xinjiang. Acta Gossypii Sinica, 1998, 10(5): 249-254. (in Chinese)
[50]   巩东辉, 乔辰. 温度对螺旋藻呼吸作用的影响. 内蒙古科技大学学报, 2010, 29(1): 73-75.
GONG D H, QIAO C. Effects of temperature on the respiratory of spirulina. Journal of inner Mongolia University of Science and Technology, 2010, 29(1): 73-75. (in Chinese)
[51]   潘瑞炽, 董愚得. 植物生理学. 北京: 高等教育出版社, 1995.
PAN R Z, DONG Y D. Plant physiology. Beijing: Higher Education Press, 1995. (in Chinese)
[52]   李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological and biochemical experiments. Beijing: Higher Education Press, 2000. (in Chinese)
[53]   杨华庚, 颜速亮, 陈慧娟, 杨重法, 杨福孙, 刘子凡. 高温胁迫下外源茉莉酸甲酯、钙和水杨酸对蝴蝶兰幼苗耐热性的影响. 中国农学通报, 2011, 27(28): 150-157.
YANG H G, YAN S L, CHEN H J, YANG C F, YANG F S, LIU Z F. Effect of exogenous methyl jasmonate, calcium and salicylic acid on the heat tolerance in phalaenopsis seedlings under high temperature stress. Chinese Agricultural Science Bulletin, 2011, 27(28): 150-157. (in Chinese)
[54]   陈少裕. 膜脂过氧化与植物逆境胁迫. 植物学通报, 1989, 6(4): 211-217.
CHEN S Y. Membrane-lipid peroxidation and plant stress. Chinese Bulletin of Botany, 1989, 6(4): 211-217. (in Chinese)
[55]   KOTI S, REDDY K R, REDDY V R, KAKANI V G, ZHAO D L. Interactive effects of carbon dioxide, temperature, and ultraviolet-B radiation on soybean (Glycine max L.) flower and pollen morphology, pollen production, germination, and tube lengths. Journal of Experimental Botany, 2005, 56(412): 725-736.
[56]   PORCH T G, JAHN M. Effect of high temperature stress on microsporogenesis in heat- sensitive and heat- tolerant of Phaseolus vulgaris. Plant Cell and Environment, 2001, 24(7): 723-731.
[57]   SRINIVASAN A, JOHANSEN C, SAXENA N P. Cold tolerance during early reproductive growth of chickpea (Cicer arietinum L); characterization of stress and genetic variation in pod set. Field Crop Research, 1998, 57(2): 181-193.
[58]   DAVIES S L, TURNER N C, KHM S, LEPORT L, PLUMMER J A. Seed growth of desi and kabuli chickpea (Cicer arietinum L.) in a short-season mediterranean-type environment. Australian Journal of Experimental Agriculture, 1999, 39(2): 181-188.
[59]   HALL A E. Breeding for adaptation to drought and heat in cowpea.European Journal of Agronomy, 2004, 21(4): 447-454.
[60]   THOMS J M G, BOOTE K J, ALLEN L H Jr, GALLO-MEAGHER Jr M, DAVIS J M. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Science, 2003, 43(4): 1548-1557.
[61]   REN C, BILYEU K D, BEUSELINCK P R. Composition, vigor, and proteome fo mature soybean seeds developed under high temperature. Crop Science, 2009, 49(3): 1010-1022.
[62]   夏天舒, 卞景阳, 谭贺, 许显滨, 林阳生, 潘博. 垦丰11大豆品种高温胁迫响应研究. 黑龙江农业科学, 2010, 2010(12): 23-24.
XIA T S, BIAN J Y, TAN H, XU X B, LIN Y S, PAN B. Response of high temperature stress on kenfeng 11. Heilongjiang Agricultural Sciences, 2010, 2010(12): 23-24. (in Chinese)
[63]   XU G L, SINGH S K, REDDY V R, BARNABY J Y, SICHER R C, LI T. Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. Journal of Plant Physiology, 2016, 205: 20-32.
[64]   GIBSON L R, MULLEN R E. Soybean seed quality reductions by high day and night temperature. Crop Science, 1996, 36(5): 1615-1619.
[65]   金之庆, 葛道阔, 陈华, 郑喜莲. 全球气候变化影响我国大豆生产的利弊分析. 大豆科学, 1994, 13(4): 302 -311.
JIN Z Q, GE D K, CHEN H, ZHENG X L. Positive and negative effects of global climate change on soybean production in China. Soybean Science, 1994, 13(4): 302-311. (in Chinese)
[66]   周瑞莲, 王仲礼, 侯月利, Mark W E. 温度对大豆种子发育过程中蛋白质、脂肪和淀粉积累过程的影响. 生态学报, 2008, 28(10): 4635-4644.
ZHOU R L, WANG Z L, HOU Y L, MARK W E. The effect of growth temperature on the accumulation pattern of protein, oil and starch of soybean seed in seed filling. Acta Ecologica Sinica, 2008, 28(10): 4635-4644. (in Chinese)
[67]   WOLF R B, CAVINS J F, KLEIMAN R, BLACK L T. Effect of temperature on soybean seed constituents: oil, protein moisture, fatty acids, amino acids, and sugars. Journal of Oil & Fat Industries, 1982, 59(5): 230-232.
[68]   DLJR D, MULLEN R E. Soybean seed protein and oil contents and fatty acid composition adjustments by drought and temperature. Journal of the American Oil Chemists’ Society, 1992, 69(3): 228-231.
[69]   PIPOLO A E, SINCLAIR T R, CAMARA C M S. Effects of temperature on oil and protein concentration in soybean seeds cultured in vitro. Annals of Applied Biology, 2004, 144(1): 71-76.
[70]   宋晓昆, 胡燕金, 闫龙, 冯燕, 荆慧贤, 赵青松, 杨春燕. 持续高温对大豆品种萌发及幼苗生长的影响. 河北农业科学, 2009, 13(4): 1-3.
SONG X K, HU Y J, YAN L, FENG Y, JING H X, ZHAO Q S, YANG C Y. Effects of continuous high temperature on germination and seedling growth of soybean. Journal of Hebei Agricultural Sciences, 2009, 13(4): 1-3. (in Chinese)
[71]   赵志刚, 江玲, 肖应辉, 张文伟, 翟虎渠, 万建民. 水稻孕穗期耐热性QTLs分析. 作物学报, 2006, 32(5): 640-644.
ZHAO Z G, JIANG L, XIAO Y H, ZHANG W W, ZHAI H Q, WAN J M. Identification of QTLs for heat tolerance at the booting stage in rice (Oryza sativa L.). Acta Agronomica Sinica, 2006, 32(5): 640-644. (in Chinese)
[72]   张涛, 杨莉, 蒋开锋, 黄敏, 孙群, 陈温福, 郑家奎. 水稻抽穗扬花期耐热性的QTL分析. 分子植物育种, 2008, 6(5): 867-873.
ZHANG T , YANG L, JIANG K F, HUANG M, SUN Q, CHEN W F, ZHENG J K. QTL mapping for heat tolerance of the tassel period of rice. Molecular Plant Breeding, 2008, 6(5): 867-873. (in Chinese)
[73]   SAKUMA Y, MARUYAMA K, QIN F, OSAKABE Y, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proceedings of the National Academy of Sciences, USA, 2006, 103(49): 18822.
[74]   SCHRAMM F, LARKINDALE J, KIEHLMANN E, GANGULI A, ENGLICH G, VIERLING E, VON KOSKULLl-DÖRING P. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal, 2008, 53(2): 264-274.
[75]   YOKOTANI N, ICHIKAWA T, KONDOU Y, MATSUI M, HIROCHIKA H, IWABUCHI M, ODA K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta, 2008, 227(5): 957-967.
[76]   LI S J, ZHOU X, CHEN L G, HUANG W D, YU D Q. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Molecules and Cells, 2010, 29(5): 475-483.
[77]   SATO H, TODAKA D, KUDO M, MIZOI J, KIDOKORO S, ZHAO Y, SHINOZAKI K, YAMAGUCHI- SHINOZAKI K. The Arabidopsis transcriptional regulator DPB3-1 enhances heat stress tolerance without growth retardation in rice. Plant Biotechnology Journal, 2016, 14(8): 1756-1767.
[78]   CHEN C, BEGCY K, LIU K, FOLSOM J J, WANG Z, ZHANG C, WALIA H. Heat stress yields a unique MADS box transcription factor in determining seed size and thermal sensitivity. Plant Physiology, 2016, 171(1): 606-622.
[79] LARKINDALE J, HALL J D, KNIGHT M R, VIERLING E. Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 2005, 138(2): 882-897.
[80]   TIMABUD T, YIN X J, PONGDONTRI P, KOMATSU S. Gel-free/label-free proteomic analysis of developing rice grains under heat stress. Journal of Proteomics, 2016, 133:1-19.
[81]   江海东. 高温对大豆花期生长及生理特性的影响. 第26届全国大豆科研生产会会议报告,南京, 2016.
JIANG H D. Effects of high temperature on growth and physiological characteristics during flowering stage in soybean. Report on the 26th National Soybean Research and Production Conference, Nanjing, 2016. (in Chinese)
[82]   王利军, 黄卫东, 于风义. 高温胁迫对14C-水杨酸在葡萄苗中运转分配的影响. 植物生理学报, 2001, 27(2): 129-134.
WANG L J, HUANG W D, YU F Y. Effects of elevated temperature on transportaqtion and distribution of 14C-salicylic acid in grape seedlings. Acta Phytophysiologica Sinica, 2001, 27(2): 129-134. (in Chinese)
[83]   汤日圣, 张大栋, 童红玉. 高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节. 江苏农业学报, 2005, 21(3): 145-149.
TANG R S, ZHAGN D D, TONG H Y. Effects of high temperature on some physiological indexes in rice seedling leaves and regulations by ABA and 6-BA. Jiangsu Journal of Agricultural Sciences, 2005, 21(3): 145-149. (in Chinese)
[84]   毛胜利, 杜永臣, 王孝宣, 朱德蔚, 高建昌, 戴善书. 高温胁迫下番茄体内ABA水平的变化及其对花粉萌发的影响. 园艺学报, 2005, 32(2): 234-238.
MAO S L, DU Y C, WANG X X, ZHU D W, GAO J C, DAI S S. Changes of endogenous abscisic acid and the effect of exogenous ABA on pollen germination under heat stress tomato. Acta Horticulturae Sinica, 2005, 32(2): 234-238. (in Chinese)
[85]   NAHAR K, HASANUZZAMAN M, ALAM Md M, FUJITA M. Exogenous glutathione confers high temperature stress tolerance in mung bean (Vigna radiata L.) by modulating antioxidant defense and methylglyoxal detoxification system. Environmental and Experimental Botany, 2015, 112(112): 44-54.
[86]   顾和平, 袁星星, 陈新, 陈华涛, 崔晓艳, 张红梅. 大豆耐热机制的自然积累. 大豆科技, 2013(1): 5-11.
GU H P, YUAN X X, CHEN X, CHEN H T, CUI X Y, ZHANG H M. Natural acclimatization of heat-tolerance mechanism in soybean. Soybean Science and Technology, 2013(1): 5-11. (in Chinese)
[87]   SRIKANTHBABU V, GANESHKUMAR, KRISHNAPRASAD B T, GOPALAKRISHNA R, SAVITHA M, UDAYAKUMAR M. Identification of pea genotypes with enhanced thermotolerance using temperature induction response technique (TIR). Journal of Plant Physiology, 2002, 159: 535-545.
[88]   郭丽红, 陈善娜, 王德斌, 龚明. 热激和热胁迫过程中玉米幼苗谷胱甘肽还原酶活性和同工酶的变化.云南大学学报(自然科学版), 2006, 28(3): 262-266.
GUO L H, CHEN S N, WANG D B, GONG M. Changes in activity of glutathione reductase and it's isozyme of maize seedlings during heat shock and heat stress. Journal of Yunnan Agricultural University (Natural Science Edition), 2006, 28(3): 262-266. (in Chinese)
[89]   KOTI S, REDDY K R, KAKANI V G, ZHAO D, GAO W. Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development. Environmental & Experimental Botany, 2007, 60(1): 1-10.
[90]   靳路真, 王洋, 张伟, 邱红梅, 陈健, 候云龙, 马晓萍, 王跃强, 谢甫绨. 大豆品种(系)耐热性鉴定及分级评鉴. 中国油料作物学报, 2016, 38(1): 77-87.
JIN L Z, WANG Y, ZHANG W, QIU H M, CHEN J, HOU Y L, MA X P, WANG Y Q, XIE F T. Grading evaluation on heat-tolerance in soybean and identifcation of heat-tolerant cultivars. Chinese Journal of Oil Crop Sciences, 2016, 38(1): 77-87. (in Chinese)
[91]   陈芳, 郑炜君, 李盼松, 于太飞, 刘生祥, 陈明, 李连城, 徐兆师, 马有志. 小麦耐热性鉴定方法及热胁迫应答机理研究进展. 植物遗传资源学报, 2013, 14(6): 1213-1220.
CHEN F, ZHEGN W J, LI P S, YU T F, LIU S X, CHEN M, LI L C, XU Z S, MA Y Z. Progress of evaluating techniques and potential mechanism on heat tolerance in wheat. Journal of Plant Genetic Resources, 2013, 14(6): 1213-1220. (in Chinese)
[92]   李植良, 孙保娟, 罗少波, 黎振兴. 高温胁迫下华南茄子的耐热性表现及其鉴定指标的筛选. 植物遗传资源学报, 2009, 10(2): 244-248.
LI Z L, SUN B J, LUO S B, LI Z X. Morphological response to heat stress and screening of assessment indexes for heat tolerance in eggplant (Solanum melogena L.) in south China. Journal of Plant Genetic Resources, 2009, 10(2): 244-248. (in Chinese)
[93]   KUMAGAI E, SAMESHIMA R. Genotypic differences in soybean yield responses to increasing temperature in a cool climate are related to maturity group. Agricultural and forest meteorology, 2014, 198: 265-272. 
[1] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[2] LI YiLing,PENG XiHong,CHEN Ping,DU Qing,REN JunBo,YANG XueLi,LEI Lu,YONG TaiWen,YANG WenYu. Effects of Reducing Nitrogen Application on Leaf Stay-Green, Photosynthetic Characteristics and System Yield in Maize-Soybean Relay Strip Intercropping [J]. Scientia Agricultura Sinica, 2022, 55(9): 1749-1762.
[3] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[4] MA XiaoYan,YANG Yu,HUANG DongLin,WANG ZhaoHui,GAO YaJun,LI YongGang,LÜ Hui. Annual Nutrients Balance and Economic Return Analysis of Wheat with Fertilizers Reduction and Different Rotations [J]. Scientia Agricultura Sinica, 2022, 55(8): 1589-1603.
[5] JIANG FenFen, SUN Lei, LIU FangDong, WANG WuBin, XING GuangNan, ZHANG JiaoPing, ZHANG FengKai, LI Ning, LI Yan, HE JianBo, GAI JunYi. Geographic Differentiation and Evolution of Photo-Thermal Comprehensive Responses of Growth-Periods in Global Soybeans [J]. Scientia Agricultura Sinica, 2022, 55(3): 451-466.
[6] LIU Jin,HU JiaXiao,MA XiaoDing,CHEN Wu,LE Si,JO Sumin,CUI Di,ZHOU HuiYing,ZHANG LiNa,SHIN Dongjin,LI MaoMao,HAN LongZhi,YU LiQin. Construction of High Density Genetic Map for RIL Population and QTL Analysis of Heat Tolerance at Seedling Stage in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2022, 55(22): 4327-4341.
[7] YAN Qiang,XUE Dong,HU YaQun,ZHOU YanYan,WEI YaWen,YUAN XingXing,CHEN Xin. Identification of the Root-Specific Soybean GmPR1-9 Promoter and Application in Phytophthora Root-Rot Resistance [J]. Scientia Agricultura Sinica, 2022, 55(20): 3885-3896.
[8] ZHANG Chuan,LIU Dong,WANG HongZhang,REN Hao,ZHAO Bin,ZHANG JiWang,REN BaiZhao,LIU CunHui,LIU Peng. Effects of High Temperature Stress in Different Periods on Dry Matter Production and Grain Yield of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(19): 3710-3722.
[9] WANG QiaoJuan,HE Hong,LI Liang,ZHANG Chao,CAI HuanJie. Research on Soybean Irrigation Schedule Based on AquaCrop Model [J]. Scientia Agricultura Sinica, 2022, 55(17): 3365-3379.
[10] YUAN Cheng,ZHANG MingCong,WANG MengXue,HUANG BingLin,XIN MingQiang,YIN XiaoGang,HU GuoHua,ZHANG YuXian. Effects of Intertillage Time and Depth on Photosynthetic Characteristics and Yield Formation of Soybean [J]. Scientia Agricultura Sinica, 2022, 55(15): 2911-2926.
[11] ZHAO DingLing,WANG MengXuan,SUN TianJie,SU WeiHua,ZHAO ZhiHua,XIAO FuMing,ZHAO QingSong,YAN Long,ZHANG Jie,WANG DongMei. Cloning of the Soybean Single Zinc Finger Protein Gene GmSZFP and Its Functional Analysis in SMV-Host Interactions [J]. Scientia Agricultura Sinica, 2022, 55(14): 2685-2695.
[12] REN JunBo,YANG XueLi,CHEN Ping,DU Qing,PENG XiHong,ZHENG BenChuan,YONG TaiWen,YANG WenYu. Effects of Interspecific Distances on Soil Physicochemical Properties and Root Spatial Distribution of Maize-Soybean Relay Strip Intercropping System [J]. Scientia Agricultura Sinica, 2022, 55(10): 1903-1916.
[13] ZHANG MingJing,HAN Xiao,HU Xue,ZANG Qian,XU Ke,JIANG Min,ZHUANG HengYang,HUANG LiFen. Effects of Elevated Temperature on Rice Yield and Assimilate Translocation Under Different Planting Patterns [J]. Scientia Agricultura Sinica, 2021, 54(7): 1537-1552.
[14] HanXi LIU,Hao LÜ,GuangYu GUO,DongXu LIU,Yan SHI,ZhiJun SUN,ZeXin ZHANG,YanJiao ZHANG,YingNan WEN,JieQi WANG,ChunYan LIU,QingShan CHEN,DaWei XIN,JinHui WANG. Effect of rhcN Gene Mutation on Nodulation Ability of Soybean Rhizobium HH103 [J]. Scientia Agricultura Sinica, 2021, 54(6): 1104-1111.
[15] JiaJia LI,HuiLong HONG,MingYue WAN,Li CHU,JingHui ZHAO,MingHua WANG,ZhiPeng XU,Yin ZHANG,ZhiPing HUANG,WenMing ZHANG,XiaoBo WANG,LiJuan QIU. Construction and Application of Detection Model for the Chemical Composition Content of Soybean Stem Based on Near Infrared Spectroscopy [J]. Scientia Agricultura Sinica, 2021, 54(5): 887-900.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!