Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (11): 2018-2026.doi: 10.3864/j.issn.0578-1752.2017.11.007

;

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Progresses in Research on Grain Broken Rate by Combine Harvesting Maize

WANG KeRu, LI ShaoKun   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Physiology and Ecology, Ministry of Agriculture, Beijing 100081
  • Received:2017-02-07 Online:2017-06-01 Published:2017-06-01

Abstract: Grain mechanical harvest is the developing direction of maize harvesting technology. It is the key technology to realize entire mechanization of maize production and change the mode of production. At present, the high kernel broken rate of maize harvesting not only lowers the grade of corn but also reduce corn sales price. Moreover, it leads to the decline of maize yield and increases the cost of grain artificial drying, and increases the difficulty of safe storage of maize. Therefore, high broken rate is the major problem that we are facing to popularize grain mechanical harvesting techniques. Kernel broken rates of different genotypes of maize differ significantly. As the resistance to kernel broken is a heritable trait, the anti-breaking maize varieties can be bred. Because of the significant influence that harvest machines and operational parameters have on kernel broken rates, it is also an effective measure to ensure low broken rate by choosing rotary (axial-flow) combines and adjusting its parameters according to the plants growth condition, maturity and moisture content of maize kernel. In addition, ecological environment also has significant influences on broken rates of grain. The factors of sunshine times, atmospheric temperature, relative humidity, and so on in the process of grain filling, natural drying, and harvesting period will affect the characters associated with grain broken such as grain hardness, test weight and kernel moisture content. Hence, according to ecological conditions in different regions, it is necessary to choose maize varieties which can match the local light and temperature conditions in the suitable growth period of maize, and to determine the suitable planting area for those maize varieties. Cultivation managing measures such as planting density, management of irrigation and fertilizers, harvesting time have obvious influences on kernel broken rates. Reasonable planting density, optimized nitrogen fertilizers management and moderate irrigation make for the reduction of broken kernels, and the most effective measure to reduce the kernel broken rate is harvesting at optimum harvest period.

Key words: maize, machine harvesting maize, grain, grain broken rate, effect factors, grain moisture content

[1]    李少昆, 王克如, 谢瑞芝, 侯鹏, 明博, 杨小霞, 韩冬生, 王玉华. 实施密植高产机械化生产实现玉米高产高效协同. 作物杂志, 2016(4): 1-6.
LI S K, WANG K R, XIE R Z, HOU P, MING B, YANG X X, HAN D S, WANG Y H. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production. Crops, 2016(4): 1-6. ( in Chinese)
[2]    李少昆, 王克如, 谢瑞芝, 李璐璐, 明博, 侯鹏, 初振东, 张万旭, 刘朝巍. 玉米子粒机械收获破碎率研究. 作物杂志, 2017(2): 76-80.
LI S K, WANG K R, XIE R Z, LI L L, MING B, HOU P, CHU Z D, ZHANG W X, LIU C W. Grain breakage rate of maize by mechanical harvesting in China. Crops, 2017(2): 76-80. (in Chinese)
[3]    SteelE J L, Saul R A, hukill w v. Dterioration of shelled corn as measured by carbon dioxide production. American Society of Agricultural Engineers,1967, 12(5): 685-689.
[4]    DUTTA P K. Effects of grain moisture, drying methods, and variety on breakage susceptibility of shelled corns as measured by the Wisconsin Breakage Tester[D]. Ames: Iowa State University, 1986.
[5]    Weller C L, Paulsen M R, Steinberg M P. Stress cracking and breakage susceptibility as affected by moisture content at harvest for four yellow dent corn hybrids. Transactions of the ASAE, 1990, 33(3): 863-869.
[6]    Yang L, Cui T, Qu Z, Li K H, Yin X W, Han D D, Yan B X, Zhao D Y, Zhang D X. Development and application of mechanized maize harvesters. International Journal of Agricultural & Biological Engineering, 2016, 9(3): 15-28.
[7]    Waelti H. Physical properties and morphological characteristics of maize and their influence on threshing injury of kernels[D]. Ames: Iowa State University, 1967.
[8]    Waelti H, Buchele W F. Factors affecting corn kernel damage combine cylinders. Transactions of the ASAE, 1969: 55-59.
[9]    Hill L D, Hurburgh C R, Paulsen M R. Illinois-Iowa Moisture Meter Recalibrations for Corn. Urbana: University of Illinois, 1981.
[10]   Paulsen M R, Nave W R. Corn damage from conventional and rotary combines. Bmc gastroenterology, 1980, 23(5): 1110-1116.
[11]   SehgAl S M, Brown W L. Cob morphology and its relations to combine harvesting in maize. Iowa Stage Journal of Science, 1965, 39(3): 251-268.
[12]   李川, 乔江方, 谷利敏, 夏来坤, 朱卫红, 黄璐, 刘京宝. 影响玉米籽粒直接机械化收获质量的生物学性状分析. 华北农学报, 2015, 30(6): 164-169.
Li C, QiaO J F, Gu L M, Xia L K, Zhu W H, Huang L, Liu J B. Analysis of maize biological kernel mechanically traits which affect corn harvesting qualities. Acta Agriculture Boreali-Sinica, 2015, 30(6): 164-169. (in Chinese)
[13]   易克传, 朱德文, 张新伟, 姚智华, 刘正. 含水率对玉米籽粒机械化直接收获的影响. 中国农机化学报, 2016, 37(11): 87-89.
Yi K C, Zhu D W, Zhang X W, Yao Z H, Liu Z. Effect of moisture content on corn grain harvesting mechanization. Journal of Chinese Agricultural Mechanization, 2016, 37(11): 87-89. (in Chinese)
[14]   Mensah J K, Herum F L, Blaisdell J L, Stevens K K. Effect of drying condition on impact shear resistance of selected corn varieties. Transactions of the ASAE, 1981, 24(6): 1568-1572.
[15]   MOENTONO M D, DARRAH L L, ZUBER M S, KRAUSE G F. Effects of selection for stalk strength on response to plant density and level of nitrogen application in maize. Hawaii International conference on System Sciences, 1984, 1(2): 3265.
[16]   PAULSEN M R, HILL L D, WHITE D G, SPAGUE G F. Breakage susceptibility of corn-belt genotypes. Transactions of the ASAE,1983, 26(6):1830-1836,1841.
[17]   Johnson D Q, Russell W A. Genetic variability and relationships of physical grain-quality traits in the BSSS population of maize. Crop science, 1982, 22(4): 805-809.
[18]   Duarte A P, Mason S C, Jackson D S, Kiehl J De C. Grain quality of Brazilian maize genotypes as influenced by nitrogen level. Crop Science, 2005,45(5): 1958-1964.  
[19]   Vyn T J, Moes J. Breakage susceptibility of corn kernels in relation to crop management under long growing season conditions. Agronomy Journal, 1988, 80(6): 915-920.
[20]   Kniep K R, Mason S C. Kernel breakage and density of normal and Opaque-2 maize grain as influenced by irrigation and nitrogen. Crop Science, 1988, 29(1): 158-163.
[21]   Plett S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Canada Journal Plant Science, 1994, 74(3): 543-544.
[22]   Vyn T J, Tollenaar M. Changes in chemical and physical quality parameters of maize grain during three decades of yield improvement. Field Crop Research, 1998, 59(2): 135-140.
[23]   Tsai C Y, Huber D M, Glover D V, Warren H L. Relationships of N deposition on grain yield and N response of maize hybrids. Crop Science,1984, 24(2): 277-281.
[24]   BAUER P J, Carter P R. Effect of seeding date plant density, moisture availability and soil nitrogen fertility on maize kernel breakage susceptibility. Crop Science, 1986, 26(6): 1220-1226.
[25]   DORSEYREDDING C, HURBURCH C, JOHNSON L A, FOX S R. Adjustment of maize quality data for moisture content. Cereal Chemistry, 1990, 67(3): 292-295.
[26]   Gunasekaran S, Muthukumarappan K. Breakage susceptibility of corn of different stress crack categories. Transactions of the ASAE, 1993, 36(5): 1445-1446.
[27]   Sriastava A K, Herum F L, Stevens K K. Impact parameters related to physical damage to corn kernel. Transactions of the ASAE, 1976, 19(6): 1147-1151.
[28]   杨玉芬, 张永丽, 张本华, 佟玲, 高连兴. 典型玉米种子籽粒的静压破损试验. 农机化研究, 2008(7): 149-151.
Yang Y F, Zhang Y L, Zhang B H, Tong L, Gao L X. Experimental study on static pressing typical corn seed kernel. Journal of Agricultural Mechanization Research, 2008(7): 149-151. ( in Chinese)
[29]   BINGEN T R. Trends in the process technology of grain crop harvesting. Agritechnica, 2007, 62: 388-389.
[30]   何晓鹏, 刘春和, 师建芳, 王广万. 挤搓式玉米脱粒机的研制. 农业工程学报, 2003, 19(2): 105-109.
He X P, Liu C H, Shi J F, Wang G W. Research and design on corn sheller by extruding and rubbing method. Transactions of the Chinese Society of Agricultural Engineering, 2003, 19(2): 105-109. (in Chinese)
[31]   李心平, 高春燕, 刘赢, 马福丽, 郭志军, 高连兴. 玉米果穗喂入形式与籽粒破碎率的关系研究. 农机化研究, 2013(12): 137-140.
Li X P, Gao C Y, Liu Y, Ma F L, Guo Z J, Gao L X. Study on relationship of feeding form of corn ear and breaking damage rate of corn kernels. Journal of Agricultural Mechanization Research, 2013(12): 137-140. ( in Chinese)
[32]   李清龙. 打击式玉米脱粒机脱粒过程试验研究及仿真分析[D]. 长春: 吉林大学, 2014.
Li Q L. Research on the experiment and simulation analysis of the threshing process of the collision style corn thresher[D]. Changchun: Jilin University, 2014. ( in Chinese)
[33]   MAHMOUD A R. Distribution of damage in maize combine cylinder and relationship between physic-rheological properties of shelled grain and damage [D].Ames: Iowa State University, 1972.
[34]   BRANDINI A.corn kernel forces during impact shelling[D]. Ames: Iowa State University, 1969. 
[35]   BRASS R W. development of a low damage corn shelling cylinder [D]. Ames: Iowa State University, 1970 .
[36]   CHOWDHURY M H. effect of the operating parameters of the rubber roller sheller [D]. Ames: Iowa State University, 1973.
[37]   Arnold R E. Experiments with rasp bar threshing drums. Journal of Agricultural Engineering Research, 1964, 9(2): 99-131.
[38]   吴多峰, 许峰, 袁长胜. 板齿式与钉齿式玉米脱粒机的性能比较. 农机化研究, 2006(10): 78-80.
Wu D F, Xu F, Yuan C S. Performances comparison between plank-tooth corn shellers and nail-tooth corn shellers. Journal of Agricultural Mechanization Research, 2006(10): 78-80. (in Chinese)
[39]   余罗谦. 玉米脱粒机板齿螺旋角与脱粒特性的影响研究. 农机化研究, 2013(3): 62-64.
Yu L Q. Research on the effect of the relationship between corn thresher’s spiral angle and threshing characteristic. Journal of Agricultural Mechanization Research, 2013(3): 62-64. ( in Chinese)
[40]   李心平, 马义东, 金鑫, 高连兴. 玉米种子仿生脱粒机设计与试验. 农业机械学报, 2015, 46(7): 97-101.
Li X P, Ma Y D, Jin X, Gao L X. Design and test of corn seed bionic thresher. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 97-101. ( in Chinese)
[41]   Fox R E. Development of a compression type corn threshing cylinder[D]. Ames: Iowa State University, 1969.
[42]   Ayres G, Babcock C. Field losses and corn kernel damage from Iowa combines//American Society of Agricultural Engineers Grain Damage symposium. Agricultural Engineering Department, Ohio State University, Columbus, Ohio,1972.
[43]   Koehler B. Pericarp injuries in seed corn. Illinois Agricultural Experiment Station Bulletin, 1957,617: 70-72.
[44]   Brass R W. Development of a low damage corn shelling cylinder[D]. Ames: Iowa State University, 1970.
[45]   李心平, 李玉柱, 高吭, 邱兆美, 马福丽, 高连兴. 种子玉米籽粒仿生脱粒机理分析. 农业机械学报, 2011, 42(2): 99-103.
Li X P, Li Y Z, Gao K, Qiu Z M, Ma F L, Gao L X. Bionic threshing process analysis of seed corn kernel. Transactions of the Chinese Society of Agricultural Machinery, 2011, 42(2): 99-103. ( in Chinese)
[46]   Chowdhury M H, Buchele W F. The nature of corn kernel damage inflicted in the shelling crescent of grain combines. Transactions of the ASABE, 1978, 21(4): 610-614.
[47]   CHOWDHURY M H. Development of a colorimetric technique for measuring mechanical damaged of grain[D]. Ames: Iowa State University, 1978.
[48]   Johnson W H, Jain M L, Hamdy M Y, Graham F P. Characteristics and analysis of corn ear failure. Transactions of the ASABE, 1969, 12(6): 845-848.
[49]   Sriastava A K, Herum F L, Stevens K K. Impact parameters related to physical damage to corn kernel. Transactions of the ASABE, 1976, 19(6): 1147-1151.
[50]   MOHAMED A F, ABDEI MAKSOUD. Mechanical properties of corn kernels. Misr Journal Agricultural Engineering, 2009, 26(4): 1901-1922.
[51]   Benson G O. Corn replant decisions: A review. Journal of Production, 1990, 3(2): 180-184..
[52]   GUNASEKARAN S, Paulsen M R. Breakage susceptibility of corn as a function of drying rates. Transactions of the ASABE, 1985, 28(6): 2071-2076.
[53]   MADDONNI GA, OTEFUI M E. Intra-specific competition in maize: contribution of extreme plant hierarchies to grain yield, grain yield components and kernel composition. Field Crops Research, 2006, 97(2): 155-166.
[54]   Hall G E, Johnson W H. Corn kernel crackage induced by mechanical shelling. Transactions of the ASABE, 1970, 13(1): 51-55.
[1] WEI YaNan, BO QiFei, TANG An, GAO JiaRui, MA Tian, WEI XiongXiong, ZHANG FangFang, ZHOU XiangLi, YUE ShanChao, LI ShiQing. Effects of Long-Term Film Mulching and Application of Organic Fertilizer on Yield and Quality of Spring Maize on the Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(9): 1708-1717.
[2] WEN YuanYuan, LI Yan, LI JianGuo, WANG MeiMei, YU ChangHui, SHEN YiZhao, GAO YanXia, LI QiuFeng, CAO YuFeng. Effects of Holstein Bulls Fed Mixed Silage of Potato Chips Processing by Product with Rice Straw on Fattening Performance and Blood Biochemical Indexes [J]. Scientia Agricultura Sinica, 2023, 56(9): 1800-1812.
[3] LU MengLi, ZHANG YaTing, REN Hong, WANG TuJin, HAN YiMing, LI WenYang, LI CongFeng. Effects of Increasing Density on the Granule Size Distribution and Viscosity Parameters of Endosperm Starch in Spring Maize Kernel [J]. Scientia Agricultura Sinica, 2023, 56(9): 1646-1657.
[4] LI Jun, SHAN LuYing, XIAO Fang, LI YunJing, GAO HongFei, ZHAI ShanShan, WU Gang, ZHANG XiuJie, WU YuHua. Development of A Set of Matrix Reference Materials in Different Mass Fractions of Genetically Modified Maize MON87427 [J]. Scientia Agricultura Sinica, 2023, 56(8): 1444-1455.
[5] LIU MengJie, LIANG Fei, LI QuanSheng, TIAN YuXin, WANG GuoDong, JIA HongTao. Effects of Drip Irrigation Under Film and Trickle Furrow Irrigation on Maize Growth and Yield [J]. Scientia Agricultura Sinica, 2023, 56(8): 1515-1530.
[6] MA ShengLan, KUANG FuHong, LIN HongYu, CUI JunFang, TANG JiaLiang, ZHU Bo, PU QuanBo. Effects of Straw Incorporation Quantity on Soil Physical Characteristics of Winter Wheat-Summer Maize Rotation System in the Central Hilly Area of Sichuan Basin [J]. Scientia Agricultura Sinica, 2023, 56(7): 1344-1358.
[7] WEN YiBo, CHEN ShuTing, XU ZhengJin, SUN Jian, XU Quan. Combination of DEP1, Gn1a, and qSW5 Regulates the Panicle Architecture in Rice [J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227.
[8] ZHU HongHui, LI YingZi, GAO YuanZhuo, LIN Hong, WANG ChengYang, YAN ZiYi, PENG HanPing, LI TianYe, XIONG Mao, LI YunFeng. Map-Based Cloning of the SHORT AND WIDEN GRAIN 1 Gene in Rice (Oryza sativa L.) [J]. Scientia Agricultura Sinica, 2023, 56(7): 1260-1274.
[9] ZHANG Ji, ZHOU ShangLing, HE Fa, LIU LiSha, ZHANG YuJuan, HE JinYu, DU XiaoQiu. Expression Pattern of the Rice α-Amylase Genes Related with the Process of Floret Opening [J]. Scientia Agricultura Sinica, 2023, 56(7): 1275-1282.
[10] LI YiPu, TONG LiXiu, LIN YaNan, SU ZhiJun, BAO HaiZhu, WANG FuGui, LIU Jian, QU JiaWei, HU ShuPing, SUN JiYing, WANG ZhiGang, YU XiaoFang, XU MingLiang, GAO JuLin. Investigation of Low Nitrogen Tolerance of ZmCCT10 in Maize [J]. Scientia Agricultura Sinica, 2023, 56(6): 1035-1044.
[11] QU Qing, LIU Ning, ZOU JinPeng, ZHANG YaXuan, JIA Hui, SUN ManLi, CAO ZhiYan, DONG JinGao. Screening of Differential Genes and Analysis of Metabolic Pathways in the Interaction Between Fusarium verticillioides and Maize Kernels [J]. Scientia Agricultura Sinica, 2023, 56(6): 1086-1101.
[12] ZHOU WenQi, ZHANG HeTong, HE HaiJun, GONG DianMing, YANG YanZhong, LIU ZhongXiang, LI YongSheng, WANG XiaoJuan, LIAN XiaoRong, ZHOU YuQian, QIU FaZhan. Candidate Gene Localization of ZmDLE1 Gene Regulating Plant Height and Ear Height in Maize [J]. Scientia Agricultura Sinica, 2023, 56(5): 821-837.
[13] MA Nan, AN TingTing, ZHANG JiuMing, WANG JingKuan. Effects of Maize Shoot and Root Residues Added on Microbial Residue Carbon and Nitrogen in Different Fertility Levels of Black Soil [J]. Scientia Agricultura Sinica, 2023, 56(4): 686-696.
[14] LIU Dan, AN YuLi, TAO XiaoXiao, WANG XiaoZhong, LÜ DianQiu, GUO YanJun, CHEN XinPing, ZHANG WuShuai. Effects of Different Nitrogen Gradients on Yield and Nitrogen Uptake of Hybrid Seed Maize in Northwest China [J]. Scientia Agricultura Sinica, 2023, 56(3): 441-452.
[15] GUO XinHu, MA Jing, LI ZhongFeng, CHU JinPeng, XU HaiCheng, JIA DianYong, DAI XingLong, HE MingRong. Effects of Cultivation Modes on Soil Physicochemical Properties and Nitrogen Balance in Wheat Fields Under Long-Term Positioning Conditions [J]. Scientia Agricultura Sinica, 2023, 56(12): 2262-2273.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!