Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (6): 1167-1178.doi: 10.3864/j.issn.0578-1752.2017.06.017

• RESEARCH NOTES • Previous Articles    

Transcriptome Difference Analysis of Saccharum spontaneum Roots in Response to Drought Stress

LIU HongBo, LIU XinLong, SU HuoSheng, LU Xin, XU ChaoHua, MAO Jun, LIN XiuQin, LI ChunJia, LI XuJuan, ZI QiuYan   

  1. Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan 661699, Yunnan
  • Received:2016-11-24 Online:2017-03-16 Published:2017-03-16

Abstract: 【Objective】The objective of this study is to understand the inner molecular mechanisms of Saccharum spontaneumclone named Yunnan 82-114 in response to water stress, and mine these genes closely related to drought tolerance, improve the utilization efficiency of Saccharum spontaneum in sugarcane drought-resistant breeding program. 【Method】llumina HiSeqTM 4000, a high-through transcriptome sequencing technology, was applied to obtain the transcriptome differential expression data of Yunnan82-114 roots under drought stress treatment for 24h, 48h, and 72h. These assembled unigenes above were compared with database of Swiss-Prot, Nr, KOG, Pfam, and KEGG, respectively, then the abundance of gene expression among different samples were screened according to transcriptome data by using RPKM method, and the differentially expressed genes among the treated samples were estimated by referring to the standard of FDR≤0.05 & |log2 fold change|≥1. Function and pathway of those different expression genes were also investigated using Gene Ontology(GO)database and KEGG pathway database.【Result】Total 134 724, 130 368, 133 564, and 131 321 expressing genes were got, respectively, from the untreated control and three treated samples(24 h, 48 h and 72 h). Compared the control with the treated samples, about 3 061 (1 302), 2 304 (2 841) and 3 236 (2525) genes whose expression was significantly up-regulated (or down-regulated) were detected, respectively. When the FDR value was set to be 0 as a selection criterion, some genes performing extreme significantly different expression between control and treated samples were acquired, they mainly involved in transcriptional activation, water transport, DNA binding, ATP binding, membrane/ transmembrane transport, and defense response. GO enrichment analysis showed that some differences in the biological approach categories existed among the treated samples, for the samples treated for 24 h and 48h, the most enriched category was DNA-dependent transcription and transcription factor, then to the samples treated for 72 h, the enriched category was the translation-related genes. At the aspects of cellular components and molecular functions, the enriched category was inner membrane, nucleus, and ATP binding related genes in the three treated samples. KEGG enrichment analysis illustrated that 2 248 differentially expressed genes involved in 107 pathways in 24 h-treated sample, 2 114 in 130 in 48h-treated sample, and 2 392 in 144 in 72 h-treated sample. Finally, some genes related to abiotic stress and resistance were screened via KEGG significance enrichment analysis, which include glycosylsphingolipid biosynthesis, MAP kinase signal transduction, and ABC translocator.【Conclusion】Expression pattern and function information of differentially expressed genes between three water-stressed samples and a control were analyzed. Some genes like extracellular signal-regulated kinase, phospholipase D, hexosaminidase, and ATP-binding cassette B-1 were found to involve in response to water stress for Yunnan82-114. About 70 significant up-regulated expression genes at transcription level were obtained, but there were 11 genes exhibiting down-regulated expression, this implied that these genes induced or suppressed fiercely by drought stress have obvious relationships with drought tolerance of Yunnan82-114.

Key words: Saccharum spontaneum, drought, transcriptomes, differentially expressed genes

[1]    郭本兆. 中国植物志. 北京: 科学出版社, 1987, 10(2): 40.
Guo B Z. Flora of China. Beijing: Science press, 1987, 10(2): 40. (in Chinese)
[2]    陈义强, 邓祖湖, 郭春芳, 陈如凯, 张木清. 甘蔗常用亲本及其衍生品种的抗旱性评价. 中国农业科学, 2007, 40(6): 1108-1117.
Chen Y Q, Deng Z H, Guo C F, Chen R K, Zhang M Q. Drought resistant evaluations of commonly used parents and their derived varieties. Scientia Agricultura Sinica, 2007, 40(6): 1108-1117. (in Chinese)
[3]    Bremer G. Problems in breeding and cytology of sugar cane. Euphytica, 1961, 12(1): 178-188.
[4]    Glaszmann J C, Fautret A, Noyer J L, Feldmann P, Lanaud C. Biochemical genetic markers in sugarcane. Theoretical and Applied Genetics, 1989, 78(4): 537-543.
[5]    D’Hont A, Lu Y H, Feldmann P, Glaszmann J C. Cytoplasmic diversity in sugarcane revealed by heterologous probes. Sugar Cane, 1993, 1: 12-15.
[6]    邓军, 李孝翠, 张跃彬. 云南甘蔗生产现状与发展对策. 甘蔗糖业, 2011(4): 77-80.
Deng J, Li X C, Zhang Y B. The current situation and development countermeasures of sugarcane production in Yunnan. Sugarcane and Canesugar, 2011(4): 77-80. (in Chinese)
[7]    刘洪博, 应雄美, 毛钧, 陆鑫, 苏火生, 马丽, 林秀琴, 蔡青. 11份割手密遗传多样性的SSR分析. 植物遗传资源学报, 2013, 14(3): 542-546.
Liu H B, Ying X M, Mao J, Lu X, Su H S, Ma L, Lin X Q, Cai Q. Genetic diversity analysis for 11 clones of Saccharum spontaneum L.. Journal of Plant Genetic Resource, 2013, 14(3): 542-546. (in Chinese)
[8]    苏火生, 刘新龙, 毛钧, 应雄美, 陆鑫, 马丽, 范源洪, 蔡青. 割手密初级核心种质取样策略研究. 湖南农业大学学报(自然科学版), 2011, 37(3): 253-259.
Su H S, Liu X L, Mao J, Ying X M, Lu X, Ma L, Fan Y H, Cai Q. Sampling strategy of pre-core collection for Saccharum spontaneum. Journal of Hunan Agricultural University(Natural Science Edition), 2011, 37(3): 253-259. (in Chinese)
[9]    齐永文, 樊丽娜, 罗青文, 王勤南, 陈勇生, 黄忠兴, 刘睿, 刘少 谋, 邓海华, 李奇伟. 甘蔗细茎野生种核心种质构建. 作物学报, 2013, 39(4): 649-656.
Qi Y W, Fan L N, Luo Q W, Wang Q N, Chen Y S, Huang Z X, Liu R, Liu S M, Deng H H, Li Q W. Establishment of Saccharum spontaneum L. core collections. Acta Agronomica Sinica, 2013, 39(4): 649-656. (in Chinese)
[10]   陈能武, 杨荣仲, 吴才文, 黄久凯, 王贵华. 四川割手密(S. spontaneum)资源的杂交利用潜力研究. 甘蔗, 1996, 3(4): 1-7.
CHEN N W, YANG R Z, WU C W, HUANG J K, WANG G H. Studies on breeding potential of S. spontaneum of Sichuan province. Sugar cane, 1996, 3(4): 1-7. (in Chinese)
[11]   许文花, 杨清辉. 甘蔗割手密无性系抗旱性鉴定. 亚热带农业研 究, 2005, 1(2): 22-26.
Xu W H, Yang Q H. Drought resistance of S. spontaneum L. clones. Subtropical Agriculture Research, 2005, 1(2): 22-26. (in Chinese)
[12]   AMINATUN M, TARYONO, ENDANG S, PAUL H, SISMINDAR I. Tolerance of accessions of glagah (saccharum spontaneum) to drought stress and their accumulation of proline. American Journal of Agricultural & Biological Science, 2013, 8(1): 1-11.
[13]   Neufeld H S, Grantz D A, Meinzer F C, Goldstein G, Crisosto G M, Crisosto C. Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiology, 1992, 100(2): 1020-1028.
[14]   姚艳丽, 徐磊, 胡小文, 邢淑莲, 刘洋. 割手密DREB2类转录因子的克隆与比较分析. 分子植物育种, 2016, 14(9): 2261-2267.
Yao Y L, Xu L, Hu X W, Xing S L, Liu Y. The analysis of cloning and comparing of DREB2 group transcription factor genes from Saccharum spontaneum L.. Molecular Plant Breeding, 2016, 14(9): 2261-2267. (in Chinese)
[15]   Park J W, Benatti T R, Marconi T, Yu Q, Solisgracia N, Mora V, Silva J A. Cold responsive gene expression profiling of sugarcane and Saccharum spontaneum with functional analysis of a cold inducible Saccharum Homolog of NOD26-like intrinsic protein to salt and water stress. Plos One, 2015, 10(5): 51-56.
[16]   桃联安, 杨李和, 经艳芬, 段慧芬, 董立华, 安汝东, 周清明, 朱建荣. 云南割手密血缘F2代抗旱性隶属函数法综合评价. 西南农业学报, 2011, 24(5): 1676-1680.
Tao L A, Yang L H, Jing Y F, Duan H F, Dong L H, An R D, Zhou Q M, Zhu J R. Comprehensive evaluation of drought resistance for descendant F2 of saccharum spotaneum in yunnan by subjection function. Southwest China Journal of Agricultural Sciences, 2011, 24(5): 1676-1680. (in Chinese)
[17]   ERLICH Y, MITRA P P, Delabastide M, Hannon G J. Alta- Cyclic: a self-optimizing base caller for next-generation sequencing. Nature Methods, 2008, 5(8): 679-682.
[18]   Grabherr M G, Haas B J, Yassour M, Levin J Z, Thompson D A, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q D, Chen Z H, Mauceli E, Hacohen N, Gnirke A, Rhind N, Palma F, Birren B W, Nusbaum C, Lindblad- toh K, Friedman N, Regev A. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 2011, 29(7): 644-652.
[19]   Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for Transcriptomics. Nature Reviews Genetics, 2009, 10: 57-63.
[20]   Mortazavi A, Williams B A, Mccue K, Schaeffer L, Worl B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods, 2008, 5(7): 621-628.
[21]   Audic S, Claverie J M. The significance of digital gene expression profiles. Genome Research, 1997, 7(10): 986-995.
[22]   Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research, 2008, 36(suppl_1): 480-484.
[23]   程志远, 李穆, 石莹,何平, 何丽莲, 李富生. 利用高通量测序分析甘蔗的抗旱响应机制. 分子植物育种, 2015(9): 2018-2028.
ChenG Z Y, Li M, Shi Y, He P, He L L, Li F S. Research of drought-response mechanism in sugarcane by high throughput sequencing-based digital gene expression profiling. Molecular Plant Breeding, 2015(9): 2018-2028. (in Chinese)
[24]   张腾国, 刘玉冰, 夏小慧. 植物MAP激酶级联途径研究进展. 西北植物学报, 2008, 28(8): 1704-1714.
Zhang T G, Liu Y B, Xia X H. Research advances about MAPK pathways in plants. Acta Botanica Boreali- Occidentalia Sinica, 2008, 28(8): 1704-1714. (in Chinese)
[25]   Xiong L, Yang Y. Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid-inducible mitogen- activated protein kinase. The Plant Cell, 2003, 15(3): 745-759.
[26]   Agrawal G K, Agrawal S J, Iwahashi H, Rakwal R. Novel rice MAP kinases OsMSRMK3 and OsWJUMK1 involved in encountering diverse environmental stresses and developmental regulation. Biochemical & Biophysical Research Communications, 2003, 300(3): 775-783.
[27]   Sang Y M, Zheng S Q, Li W Q, Huang B R, Wang X M. Regulation of plant water loss by manipulating the expression of phospholipase D. The Plant Journal, 2001, 28 (2): 135-144.
[28]   FRANK W, MUNNIK T, KERKMANN K, SALAMINI F, BARTELS D. Water deficit triggers phospholipase D activity in the resurrectionplant Craterostigma plantagineum. The Plant Cell, 2000, 12(1): 111-124.
[29]   Mukhtar N, Iqbal K, Anis I, Malik A. Sphingolipids from Conyza canadensis. Phytochemistry, 2002, 61(8):1005-1008.
[30]   DAUM G. Lipid metabolism and membrane biogenesis. Springer, 2004, 6: 21-45.
[31]   Ng C K, Carr K, Mcainsh M R, Powell B, Hetherington A M. Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature, 2001, 410(6828): 596-599.
[32]   Napier J A, Michaelson L V, Dunn T M. A new class of lipid desaturase central to sphingolipid biosynthesis and signalling. Trends in Plant Science, 2002, 7(11): 475-478.
[33]   Strasser R, Bondili J S, Schoberer J, Svoboda B, Liebminger E, Glössl J, Altmann F, Steinkellner H, Mach L. Enzymatic properties and subcellular localization of Arabidopsis beta-N-acetyl- hexosaminidases. Plant Physiology, 2007, 145(1): 5-16.
[34]   Lembke C G, Nishiyama M Y, Sato P M, Andrade R F D, Souza G M. Identification of sense and antisense transcripts regulated by drought in sugarcane. Plant Molecular Biology, 2012, 79(4/5): 461-477.
[35]   Mohammadi M, Kav N N V, Deyholos M K. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes. Plant Cell & Environment, 2007, 30(5): 630-645.
[36]   麻文俊. 楸树优良无性系2-8苗期生理变化与基因表达对干旱胁迫的响应[D]. 北京: 中国林业科学研究院, 2013.
Ma W J. Physiological changes and gene expression response of Catalpa bungei superior clone 2-8 seedlings to drought stress[D]. Beijing: Chinese academy of forestry, 2013. (in Chinese)
[37]   Melan M A, Dong X, Endara M E, Davis K R, Ausubel F M, Peterman T K. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiology, 1993, 101(2): 441-450.
[38]   Gigon A, Matos A R, Laffray D, Zuily-Fodil Y, Pham-Thi A T. Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (ecotype Columbia). Annals of botany, 2004, 94(3): 345-351.
[39]   刘南南, 江玲, 张文伟, 刘玲珑, 翟虎渠, 万建民. 水稻种胚LOX3基因在逆境胁迫中的作用. 中国水稻科学, 2008, 22(1):8-14.
Liu N N, Jiang L, Zhang W W, Liu L L, Zhai H Q, Wan J M. Role of embryo LOX3 gene under adversity stress in rice (Oryza sativa). Chinese Journal of Rice Science, 2008, 22(1): 8-14. (in Chinese)
[40]   Ponte-Sucre A. Availability and applications of ATP-binding cassette (ABC) transporter blockers. Applied Microbiology & Biotechnology, 2007, 76(2): 279-286.
[41]   Dudler R, Hertig C. Structure of an mdr-like gene from Arabidopsis thaliana evolutionary implications. Journal of Biological Chemistry, 1992, 267(9): 5882-5888.
[1] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[2] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] LI Ning,LIU Kun,LIU TongTong,SHI YuGang,WANG ShuGuang,YANG JinWen,SUN DaiZhen. Identification of Wheat Circular RNAs Responsive to Drought Stress [J]. Scientia Agricultura Sinica, 2022, 55(23): 4583-4599.
[5] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[6] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[7] LI Gang,BAI Yang,JIA ZiYing,MA ZhengYang,ZHANG XiangChi,LI ChunYan,LI Cheng. Phosphorus Altered the Response of Ionomics and Metabolomics to Drought Stress in Wheat Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(2): 280-294.
[8] XiaoFan LI,JingYi SHAO,WeiZhen YU,Peng LIU,Bin ZHAO,JiWang ZHANG,BaiZhao REN. Combined Effects of High Temperature and Drought on Yield and Photosynthetic Characteristics of Summer Maize [J]. Scientia Agricultura Sinica, 2022, 55(18): 3516-3529.
[9] RU Chen,HU XiaoTao,LÜ MengWei,CHEN DianYu,WANG WenE,SONG TianYuan. Effects of Nitrogen on Nitrogen Accumulation and Distribution, Nitrogen Metabolizing Enzymes, Protein Content, and Water and Nitrogen Use Efficiency in Winter Wheat Under Heat and Drought Stress After Anthesis [J]. Scientia Agricultura Sinica, 2022, 55(17): 3303-3320.
[10] MENG Yu,WEN PengFei,DING ZhiQiang,TIAN WenZhong,ZHANG XuePin,HE Li,DUAN JianZhao,LIU WanDai,FENG Wei. Identification and Evaluation of Drought Resistance of Wheat Varieties Based on Thermal Infrared Image [J]. Scientia Agricultura Sinica, 2022, 55(13): 2538-2551.
[11] ZHU FangFang,DONG YaHui,REN ZhenZhen,WANG ZhiYong,SU HuiHui,KU LiXia,CHEN YanHui. Over-expression of ZmIBH1-1 to Improve Drought Resistance in Maize Seedlings [J]. Scientia Agricultura Sinica, 2021, 54(21): 4500-4513.
[12] XUE RenFeng,FENG Ming,HUANG YuNing,Matthew BLAIR,Walter MESSIER,GE WeiDe. Effects of PvEG261 Gene on the Fusarium Wilt and Drought- Resistance in Common Bean [J]. Scientia Agricultura Sinica, 2021, 54(20): 4274-4285.
[13] YAN ZhenHua,LIU DongYao,JIA XuCun,YANG Qin,CHEN YiBo,DONG PengFei,WANG Qun. Maize Tassel Development, Physiological Traits and Yield Under Heat and Drought Stress During Flowering Stage [J]. Scientia Agricultura Sinica, 2021, 54(17): 3592-3608.
[14] SHAO JingYi,LI XiaoFan,YU WeiZhen,LIU Peng,ZHAO Bin,ZHANG JiWang,REN BaiZhao. Combined Effects of High Temperature and Drought on Yield and Stem Microstructure of Summer Maize [J]. Scientia Agricultura Sinica, 2021, 54(17): 3623-3631.
[15] LIU Kai,HE ShanShan,ZHANG CaiXia,ZHANG LiYi,BIAN ShuXun,YUAN GaoPeng,LI WuXing,KANG LiQun,CONG PeiHua,HAN XiaoLei. Identification and Analysis of Differentially Expressed Genes in Adventitious Shoot Regeneration in Leaves of Apple [J]. Scientia Agricultura Sinica, 2021, 54(16): 3488-3501.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!