Scientia Agricultura Sinica ›› 2017, Vol. 50 ›› Issue (6): 1109-1125.doi: 10.3864/j.issn.0578-1752.2017.06.012

• HORTICULTURE • Previous Articles     Next Articles

Enantiomeric Analysis of Volatile Terpenoids in Different Teas

SHAO ChenYang1,2, LÜ HaiPeng1, ZHU Yin1, ZHANG Yue1, LIN Zhi1   

  1. 1Tea Research Institute, Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Hangzhou 310008; 2Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081
  • Received:2016-07-22 Online:2017-03-16 Published:2017-03-16

Abstract: 【Objective】 Volatile terpenoids are important components of tea aroma, and most of them contain chiral carbon structure which lead to the existence of corresponding enantiomers with different aroma characteristics. Identifying the terpenoid enantiomers among different teas can result in a better understanding of the mechanisms underlying tea aroma formation for tea quality improvement. 【Method】 An analytical approach for enantiomeric analysis of volatile terpenoids in tea was firstly established by headspace solid phase microextraction combined with chiral gas chromatography-mass spectrometry. The chiral capillary column of Supelco β-DEX110 was used for terpenoid enantiomer analyses with corresponding authentic standards. And the compositions of enantiomers of terpenoids in representative green teas, black teas, oolong teas, white teas and dark teas were then investigated. 【Result】 Nine pairs of terpenoids enantiomers were successfully separated. The data of experiment indicated that linalool and linalool oxide B enantiomers were detected in all tea samples with high contents: S-linalool was considered as the major configuration of linalool in most kinds of teas, except for Yingde and Yunnan black teas and Indonesia white tea, which contained R-(-)-linalool as the major configuration of linalool; linalool oxide B presented the same stereo configuration in green tea, black tea, white tea and dark tea, whereas in some oolong teas (Lingtou Dancong and Wenshan Baozhong) a higher proportion of opposite configuration existed. Linalool oxide A was detected in green and dark teas with the same major stereo configuration, while it presented reverse major configuration in some black teas (Keemun and Darjeeling black teas) and oolong teas (Shuixianwudong Dancong and Tieguanyin). The single and consistent configurations of linalool oxides C and D were observed in most tea samples. The other important terpenoids distributed in various situations among different tea samples: α-pinene was only detected in the Lapsang Souchong tea, and the major configuration was S. different configurations and various enantiomeric excess values of α-terpineol were observed in different teas. R-(-)-4-terpineol was the major configurations of 4-terpineol in all tea samples, and S-(+)-4-terpineol could only be detected in the Liu Pao tea (dark tea), and a single R-configuration of α-ionone could be detected in most teas (except green teas). The quantitative results indicated that the highest contents in tea aroma of most tea samples were contributed by linalool, and the ranking order of mean contents of linalool was white tea>black tea>oolong tea>green tea>dark tea. the contents of linalool oxide B frequently second to those of linalool, and the ranking order of mean contents was black tea>white tea>oolong tea>dark tea>green tea. the contents of other terpenoids were generally lower than 100 ng·g-1, and the content distributions were widely different among various tea samples. 【Conclusion】 This study investigated the content variations of the nine pairs of important terpenoid enantiomers in different kinds of tea for the first time. The present research result could contribute to get a deeper understanding of the chemical substances of tea aroma, and provide a new thought for the quality control of tea aroma, the discrimination of tea cultivars and origins and quality certification of tea.

Key words: tea, volatile terpenoids, enantiomers, gas chromatography-mass spectrometry, enantiomeric excess

[1]    张正竹, 施兆鹏, 宛晓春. 萜类物质与茶叶香气(综述). 安徽农业大学学报, 2000, 27(1): 51-54.
ZHANG Z Z, SHI Z P, WAN X C. Terpenes and tea aroma (Summary). Journal of AnHui Agricultural University, 2000, 27(1): 51-54. (in Chinese)
[2]    宛晓春. 茶叶生物化学. 北京: 中国农业出版社, 2003.
WAN X C. Tea Biochemistry. Beijing: China Agriculture Press, 2003. (in Chinese)
[3]    Ohloff G, Klein E. Die absolute konfiguration des linalools durch verknüpfung mit dem pinansystem. Tetrahedron, 1962, 18(1): 37-42.
[4]    Padrayuttawat A, Yoshizawa T, Tamura H, Tokunaga T. Optical isomers and odor thresholds of volatile constituents in Citrus sudachi. Food Science and Technology International, 1997, 3(4): 402-408.
[5]    KURODA K, INOUE N, ITO Y, KUBOTA K, SUGIMOTO A, KAKUDA T, FUSHIKI T. Sedative effects of the jasmine tea odor and (R)-(−)-linalool, one of its majorodor components, on autonomic nerve activity and mood states. European Journal of Applied Physiology, 2005, 95: 107-114.
[6]    QUATTRINI F, BIRESSI, G, JUZA M, MAZZOTTI M, FUGANTIC C, MORBIDELLIA M. Enantiomer separation of α-ionone using gas chromatography with cyclodextrin derivatives as chiral stationary phases. Journal of Chromatography A, 1999, 865: 201-210.
[7]    王秀红, 贾崇荣, 万宏, 欧庆瑜. 多维气相色谱用于手性对映体的分离. 分析化学, 1993, 21(5): 495-499.
WANG X H, JIA C R, WAN H, Ou Q Y. Multidimensional gas chromatography for chiral separation of enantiomers. Analytical chemistry, 1993, 21(5): 495-499. (in Chinese)
[8]    SCHIPILLITI L, DUGO P, BONACCORSI I, MONDELLO L. Headspace-solid phasemicroextraction coupled to gas chromatography- combustion-isotope ratio mass spectrometer and to enantioselective gas chromatography for strawberry flavoured food quality control. Journal of Chromatography A, 2011, 1218: 7481-7486.
[9]    BONNLÄNDER B, CAPPUCCIO R, LIVERANI F S, WINTERHALTER P. Analysis of enantiomeric linalool ratio in green and roasted coffee. Flavour and Fragrance Journal, 2006, 21(4): 637-641.
[10]   LUANA F, MOSANDL A, GUBESCH M, WÜSTM M. Enantioselective analysis of monoterpenes in different grape varieties during berry ripening using stir bar sorptive extraction- and solid phase extraction- enantioselective-multidimensional gas chromatography-mass spectrometry. Journal of Chromatography A, 2006, 1112: 369-374.
[11]   ŠPÁNIK I, PA?ITNÁ A, ŠIŠKA B, SZOLCSÁNYI P. The determination of botanical origin of honeys based on enantiomer distribution of chiral volatile organic compounds. Food Chemistry, 2014, 158: 497-503.
[12]   WINTER M, SUNDT E. Recherches sur les arǒmes. 5e communication. Analyse de I'arǒme des framboises. I. Les constituants carbonylés volatils. Helvetica Chimica Acta, 1962, 45(6): 2195-2211.
[13] BICCHI C, D’AMATO A, RUBIOLO P. Cyclodextrin derivatives as chiral selectors for direct gas chromatographic separation of enantiomers in the essential oil, aroma and flavour fields. Journal of Chromatography A, 1999, 843: 99-121.
[14]   MOSANDL A. Authenticity assessment: a permanent challenge in food flavor and essential oil analysis. Journal of Chromatographic Science, 2004, 42: 440-449.
[15]   CAGLIERO C, BICCHI C, CORDERO C, RUBIOLO P, SGORBINI B, LIBERTO E. Fast headspace-enantioselective GC-mass spectrometric- multivariate statistical method for routine authentication of flavoured fruit foods. Food Chemistry, 2012, 132: 1071-1079.
[16]   CASABIANCA H, GRAFF J B, FAUGIER V, FLEIG F, GRENIER  C. Enantiomeric distribution studies of linalool and linalyl Acetate: a powerful tool for authenticity control of essential oils. Journal of High Resolution Chromatography, 1998, 21(2): 107-112.
[17] WANG D, ANDO K, MORITA K, KUBOTA K, KOBAYASHI A. Optical isomers of linalool and linalool oxides in tea aroma. Bioscience Biotechnology and Biochemistry, 1994, 58(11): 2050-2053.
[18]   杨停, 朱荫, 吕海鹏, 马成英, 张悦, 施江, 刘爽, 林智. 茶叶香气成分中芳樟醇旋光异构体的分析. 茶叶科学, 2015, 35(2): 137-144.
YANG T, ZHU Y, LV H P, MA C Y, SHI J, LIU S, LIN Z. Analysis of optical isomers of linalool in tea aromatic components. Tea Science, 2015, 35(2): 137-144. (in Chinese)
[19]   YANG T, ZHU Y, SHAO C. Y, ZHANG Y, SHI J, LV H P, LIN Z. Enantiomeric analysis of linalool in teas using headspace solid- phasemicroextraction with chiral gas chromatography. Industrial crops and products, 2016, 83: 17-23.
[20]   朱荫, 杨停, 施江, 余方林, 戴伟东, 谭俊峰, 郭丽, 张悦, 彭群华, 吕海鹏, 林智. 西湖龙井茶香气成分的全二维气相色谱-飞行时间质谱分析. 中国农业科学, 2015, 48(20): 4120-4146.
ZHU Y, YANG T, SHI J, YU F L, DAI W D, TAN J F, GUO L, ZHANG Y, PENG Q H, LV H P, LIN Z. Analysis of aroma components in Xihu Longjing tea by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Scientia Agricultura Sinica, 2015, 48(20): 4120-4146. (in Chinese)
[21]   尤田耙. 手性化合物的现代研究方法. 合肥: 中国科技大学出版社, 1993: 4.
YOU T B. Modern Methods of Chiral Compounds. Hefei: University of Science and Technology of China Press, 1993: 4. (in Chinese)
[22]   龙立梅, 宋沙沙, 李柰, 樊琛, 李小波, 曹学丽. 3种名优绿茶特征香气成分的比较及种类判别分析. 食品科学, 2015, 36(2): 114-119.
LONG L M, SONG S S, LI N, FAN C, LI X B, CAO X L. Comparisons of characteristic aroma components and cultivar discriminant analysis of three varieties of famous green tea. Food Science, 2015, 36(2): 114-119. (in Chinese)
[23]   方维亚, 陈萍. 不同地区红茶特异性香气成分比较研究. 茶叶, 2014, 40(3): 138-145.
FANG W Y, CHEN P. A comparative study of specific areas of black tea aroma components. Tea, 2014, 40(3): 138-145. (in Chinese)
[24]   何华锋, 朱宏凯, 董春旺, 叶阳, 桂安辉, 高明珠. 黑茶香气化学进展. 茶叶科学, 2015, 35(2): 121-129.
HE H F, ZHU H K, DONG C W, YE Y, GUI A H, GAO M Z. Progress of black tea aroma chemical. Tea Science, 2015, 35(2): 121-129. (in Chinese)
[25]   BRICOUT J, VIANI R, MÜGGLER-CHAVAN F, MARION J P, REYMOND D, EGLI R H. Sur la composition de l'arôme de thé noir II. Helvetica Chimica Acta, 1967, 50: 1517-1522.
[26]   俞少娟, 李鑫磊, 王婷婷, 金心怡. 白茶香气及萎凋工艺对其形成影响的研究进展. 茶叶通讯, 2015, 42(4): 14-18.
YU S J, LI X L, WANG T T, JIN X Y. Advances white tea aroma and withering influence their formation process. Tea Communication, 2015, 42(4): 14-18. (in Chinese)
[27]   SCHMARR H, ENGEL K. Analysis and stereodifferentiation of linalool in Theobroma cacao and cocoa products using enantioselective multidimensional gas chromatography. European Food Research & Technology, 2012, 235(5): 827-834.
[28]   DEMYTTENAERE J C R, VANOVERSCHELDE J, KIMPE N D. Biotransformation of (R)-(+)- and (S)-(-)-citronellol by Aspergillus sp. and Penicillium sp., and the use of solid-phase microextraction for screening. Journal of Chromatography A, 2004, 1027(1/2): 137-146.
[29]   HO C T, ZHENG X, LI S M. Tea aroma formation. Food Science and Human Wellness, 2015, 4(1): 9-27.
[30]   王华夫, 竹尾忠一, 伊奈和夫, 李名君. 祁门红茶的香气特征. 茶叶科学, 1993, 13(1): 61-68.
WANG H F, ZHU W Z Y, YI N H F, LI M J. The aroma characteristics of Keemun Black Tea. Tea Science, 1993, 13(1): 61-68. (in Chinese)
[31]   YANG Z, BALDERMANN S, WATANABE N. Recent studies of the volatile compounds in tea. Food Research International, 2013, 53(2): 585-599.
[32]   谷运璀, 钱莉群, 李步详, 宦月琴. 芳樟醇氧化物的合成. 香料香精化妆品, 2013(S1): 28-31.
GU Y C, QIAN L Q, LI B X, HUAN Y Q. Synthesis of linalool oxide. Flavour Fragrance Cosmetics, 2013(S1): 28-31. (in Chinese)
[1] LOU YiBao,KANG HongLiang,WANG WenLong,SHA XiaoYan,FENG LanQian,NIE HuiYing,SHI QianHua. Vertical Distribution of Vegetation Roots and Its Influence on Soil Erosion Resistance of Gully Heads on the Gullied Loess Plateau [J]. Scientia Agricultura Sinica, 2023, 56(1): 90-103.
[2] LIN XinYing,WANG PengJie,YANG RuXing,ZHENG YuCheng,CHEN XiaoMin,ZHANG Lei,SHAO ShuXian,YE NaiXing. The Albino Mechanism of a New High Theanine Tea Cultivar Fuhuang 1 [J]. Scientia Agricultura Sinica, 2022, 55(9): 1831-1845.
[3] PENG JiaKun, DAI WeiDong, YAN YongQuan, ZHANG Yue, CHEN Dan, DONG MingHua, LÜ MeiLing, LIN Zhi. Study on the Chemical Constituents of Yongchun Foshou Oolong Tea Based on Metabolomics [J]. Scientia Agricultura Sinica, 2022, 55(4): 769-784.
[4] HU Xin, ZHANG ZhiLiang, ZHANG Fei, DENG Bo, FANG WeiMin. Comprehensive Evaluation and Selection of Hybrid Offsprings of Large-Flowered Tea Chrysanthemum [J]. Scientia Agricultura Sinica, 2022, 55(20): 4036-4051.
[5] WU Wei,XU HuiLi,WANG ZhengLiang,YU XiaoPing. Cloning and Function Analysis of a Serine Protease Inhibitor Gene Nlserpin2 in Nilaparvata lugens [J]. Scientia Agricultura Sinica, 2022, 55(12): 2338-2346.
[6] XU FangLei,ZHANG Jie,LI Yang,ZHANG WeiWei,BO QiFei,LI ShiQing,YUE ShanChao. Effects of Fertilization Methods on Ammonia Volatilization of Spring Maize in Dry Farming on the Loess Plateau [J]. Scientia Agricultura Sinica, 2022, 55(12): 2360-2371.
[7] ZHANG ZeMin,LÜ ChangHe. Photo-Temperature Potential Yield of Spring Wheat at Different Accumulated Temperature Ranges and Its Response to Climate Change in Qinghai-Tibet Plateau [J]. Scientia Agricultura Sinica, 2022, 55(11): 2135-2149.
[8] DU JinTing,ZHANG Yan,LI Yan,WANG JiaJia,LIAO Na,ZHONG LiHuang,LUO BiQun,LIN Jiang. Optimization and Mechanism of Ultrasonic-Assisted Two-Phase Extraction of Tea Saponin [J]. Scientia Agricultura Sinica, 2022, 55(1): 167-183.
[9] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[10] ZHANG DanDan,XU TengTeng,GAO Di,QI Xin,NING Wei,RU ZhenYuan,ZHANG XiangDong,GUO TengLong,SHENTU LuYan,YU Tong,MA YangYang,LI YunSheng,ZHANG YunHai,CAO ZuBing. Transcription Factor TEAD4 Regulates Early Embryonic Development in Pigs [J]. Scientia Agricultura Sinica, 2021, 54(20): 4456-4465.
[11] LIU Qiang,LIU JiWei,TIAN Tian,YAN Wei,LIU Bing,ZHAO SiQi,HU QiuHui,DING Chao. Dynamic Analysis for the Characteristics of Flavor Fingerprints for Brown Rice in Short-Term Storage Under High Temperature Stress [J]. Scientia Agricultura Sinica, 2021, 54(2): 379-391.
[12] HAO HaiPing,BAI HongTong,XIA Fei,HAO YuanPeng,LI Hui,CUI HongXia,XIE XiaoMing,SHI Lei. Effects of Tea-Litsea Cubeba Intrercropping on Soil Microbial Community Structure in Tea Plantation [J]. Scientia Agricultura Sinica, 2021, 54(18): 3959-3969.
[13] SHI Jiang,WANG JiaTong,PENG QunHua,LÜ Haipeng,BALDERMANN Susanne,LIN Zhi. Changes in Lipid-Soluble Pigments in Fresh Tea Leaves Treated by Methyl Jasmonate and During Postharvest Oolong Tea Manufacturing [J]. Scientia Agricultura Sinica, 2021, 54(18): 3984-3997.
[14] LIU Xing,CAO HongXia,LIAO Yang,ZHOU ChenGuang,LI HuangTao. Effects of Drip Irrigation Methods on Photosynthetic Characteristics, Yield and Irrigation Water Use of Apple [J]. Scientia Agricultura Sinica, 2021, 54(15): 3264-3278.
[15] CHEN Zhi,ZHANG Yi,LU QinYue,GUO JiaHe,LIANG Yan,ZHANG MingYiXing,YANG ZhangPing. Effect and Mechanism of Tea Tree Oil on LPS Induced Mastitis in Dairy Cows [J]. Scientia Agricultura Sinica, 2021, 54(14): 3124-3133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!