Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (22): 4310-4322.doi: 10.3864/j.issn.0578-1752.2016.22.005

;

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Progress in Studies on Genes Related to Fiber Quality Improvement of Cotton

YANG Jun, MA Zhi-ying, WANG Xing-fen   

  1. College of Agronomy, Hebei Agricultural University/North China Key Laboratory for Crop Germplasm Resources of Education Ministry/Key Laboratory for Crop Germplasm Resources of Hebei, Baoding 071001, Hebei
  • Received:2016-08-12 Online:2016-11-16 Published:2016-11-16

Abstract: Cotton is an excellent and the most widely used natural fiber. With the improvement of living standards of people, the demand for more and better natural cotton fabrics is increasing continuously. Therefore, improving fiber yield and quality has become an important objective of cotton genetic breeding. To achieve this goal, cloning and functionally identifying cotton fiber development-related genes is the main foundation. Cotton fiber development consists of four distinct but overlapping stages, including fiber initiation, elongation (primary cell wall synthesis), secondary cell wall biosynthesis, and drying and maturation. The number of fibre cells per ovule is established at the initiation stage, and the length and strength of fibres are determined mainly at the stages of elongation and secondary cell wall synthesis. Cotton fiber development is a complicated and ordered process regulated by a large number of genes. To date, it has been reported that some genes play important roles in cotton fibre development, including various transcription factors, genes controlling the metabolism of plant hormones, cell wall and cytoskeleton-associated proteins, gene involving in the release or consumption of ROS, and lipid- and sugar- metabolism genes, etc. In order to provide reference for the future study of cotton fiber development and quality improvement, advances in the cloning and functional analysis of genes related to cotton fiber development were systematically summarized in this paper.

Key words: cotton, fiber, gene, quality improvement

[1]    Wilkins T A, Rajasekaran K, Anderson D M. Cotton biotechnology. Critical Reviews in Plant Sciences, 2000, 19(6): 511-550.
[2]    John M E, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(13): 5769-5773.
[3]    Basra A S, Malik C P. Development of the cotton fiber. International Review of Cytology, 1984, 89: 65-113.
[4]    Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiology, 2001, 127(4): 1361-1366.
[5]    潘玉欣, 马峙英, 方宣钧. 棉花纤维发育的遗传机制及分子标记. 河北农业大学学报, 2005, 28(3): 6-11.
Pan Y X, Ma Z Y, Fang X J. The genetic mechanism of cotton f ibre developmentand its molecular tagging. Journal of Agricultural University of Hebei, 2005, 28(3): 6-11. (in Chinese)
[6]    Shi Y H, Zhu S W, Mao X Z, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. The Plant Cell, 2006, 18(3): 651-664.
[7]    Wang S, Wang J W, Yu N, Li C H, Luo B, Gou J Y, Wang L J, Chen X Y. Control of plant trichome development by a cotton fiber MYB gene. The Plant Cell, 2004, 16(9): 2323-2334.
[8]    Oppenheimer D G, Herman P L, Sivakumaran S, Esch J, Marks M D. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell, 1991, 67(3): 483-493.
[9]    Wada T, Tachibana T, Shimura Y, Okada K. Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science, 1997, 277(5329): 1113-1116.
[10]   Rerie W G, Feldmann K A, Marks M D. The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes and Development, 1994, 8(12): 1388-1399.
[11]   Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Molecular and General Genetics, 1999, 261(4/5): 660-671.
[12]   Li C H, Zhu Y Q, Meng Y L, Wang J W, Xu K X, Zhang T Z, Chen X Y. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Science, 2002, 163(6): 1113-1120.
[13]   Suo J F, Liang X O, Pu L, Zhang Y S, Xue Y B. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochimica et Biophysica Acta-Gene Structure and Expression, 2003, 1630(1): 25-34.
[14]   Pu L, Li Q, Fan X P, Yang W C, Xue Y B. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics, 2008, 180(2): 811-820.
[15]   Li X B, Cai L, Cheng N H, Liu J W. Molecular characterization of the cotton GhTUB1 gene that is preferentially expressed in fiber. Plant Physiology, 2002, 130(2): 666-674.
[16]   Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation. The Plant Cell, 2005, 17(3): 859-875.
[17]   Machado A, Wu Y R, Yang Y M, Llewellyn D J, Dennis E S. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. The Plant Journal, 2009, 59(1): 52-62.
[18]   Walford S A, Wu Y R, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. The Plant Journal, 2011, 65(5): 785-797.
[19]   WAN Q, GUAN X Y, YANG N N, WU H T, PAN M Q, LIU B L, FANG L, YANG S P, HU Y, YE W X, ZHANG H, MA P Y, CHEN J D, WANG Q, MEI G F, CAI C P, YANG D L, WANG J W, GUO W Z, ZHANG W H, CHEN X Y, ZHANG T Z. Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. New phytologist, 2016, 210(4): 1298-1310.
[20]   Hsu C Y, Jenkins J N, Saha S, Ma D P. Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein. Plant Science, 2005, 168(1): 167-181.
[21]   Hsu C Y, An C, Saha S, Ma D P, Jenkins J N, Scheffler B, Stelly D M. Molecular and SNP characterization of two genome specific transcription factor genes GhMyb8 and GhMyb10 in cotton species. Euphytica, 2008, 159(1/2): 259-273.
[22]   Zhao M Z, Morohashi K, Hatlestad G, Grotewold E, Lloyd A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development, 2008, 135(11): 1991-1999.
[23]   Zhang F, Zuo K J, Zhang J Q, Liu X A, Zhang L D, Sun X F, Tang K X. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. Journal of Experimental Botany, 2010, 61(13): 3599-3613.
[24]   Walford S A, Wu Y R, Llewellyn D J, Dennis E S. Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. The Plant Journal, 2012, 71(3): 464-478.
[25]   Shan C M, Shangguan X X, Zhao B, Zhang X F, Chao L M, Yang C Q, Wang L J, Zhu H Y, Zeng Y D, Guo W Z, Zhou B L, Hu G J, Guan X Y, Chen Z J, Wendel J F, Zhang T Z, Chen X Y. Control of cotton fibre elongation by a homeodomain transcription factor GhHOX3. Nature Communication, 2014, 5: 5519.
[26]   Guan X Y, Li Q J, Shan C M, Wang S, Mao Y B, Wang L J, Chen X Y. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiologia Plantarum, 2008, 134(1): 174-182.
[27]   Xu B, Gou J Y, Li F G, Shangguan X X, Zhao B, Yang C Q, Wang L J, Yuan S, Liu C J, Chen X Y. A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Molecular Plant, 2013, 6(3): 945-958.
[28]   Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto K T, Takahashi T. Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis. Plant Physiology, 2006, 141(4): 1363-1375.
[29]   Harmer S E, Orford S J, Timmis J N. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Molecular Genetics and Genomics, 2002, 268(1): 1-9.
[30]   de Lucas M, Daviere J M, Rodriguez Falcon M, Pontin M, Iglesias Pedraz J M, Lorrain S, Fankhauser C, Blazquez M A, Titarenko E, Prat S. A molecular framework for light and gibberellin control of cell elongation. Nature, 2008, 451(7177): 480-484.
[31]   Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 2005, 347(2): 183-198.
[32]   郑尚永, 郭余龙, 肖月华, 罗明, 侯磊, 罗小英, 裴炎. 棉花MADS框蛋白基因(GhMADS1)的克隆. 遗传学报, 2004, 31(10): 1136-1141.
Zheng S Y, Guo Y L, Xiao Y H, Luo M, Hou L, Luo X Y, Pei Y. Cloning of a MADS box protein gene (GhMADS1) from cotton (Gossypium hirsutum L.). Acta Genetica Sinica, 2004, 31(10): 1136-1141. (in Chinese)
[33]   Lightfoot D, Malone K, Timmis J, Orford S. Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells. Molecular Genetics and Genomics, 2008, 279(1): 75-85.
[34]   Shao S Q, Li B Y, Zhang Z T, Zhou Y, Jiang J, Li X B. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. Journal of Genetics and Genomics, 2010, 37(12): 805-816.
[35]   Li Y, Ning H, Zhang Z T, Wu Y, Jiang J, Su S Y, Tian F Y, Li X B. A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation. Acta Biochimica et Biophysica Sinica, 2011, 43(8): 607-617.
[36]   Zhou Y, Li B Y, Li M, Li X J, Zhang Z T, Li Y, Li X B. A MADS-box gene is specifically expressed in fibers of cotton (Gossypium hirsutum) and influences plant growth of transgenic Arabidopsis in a GA-dependent manner. Plant Physiology and Biochemistry, 2014, 75: 70-79.
[37]   Gong S Y, Huang G Q, Sun X, Qin L X, Li Y, Zhou L, Li X B. Cotton KNL1, encoding a class II KNOX transcription factor, is involved in regulation of fibre development. Journal of Experimental Botany, 2014, 65(15): 4133-4147.
[38]   Li E, Wang S, Liu Y, Chen J G, Douglas C J. OVATE FAMILY PROTEIN4 (OFP4) interaction with KNAT7 regulates secondary cell wall formation in Arabidopsis thaliana. The Plant Journal, 2011, 67(2): 328-341.
[39]   Bhargava A, Ahad A, Wang S, Mansfield S, Haughn G, Douglas C, Ellis B. The interacting MYB75 and KNAT7 transcription factors modulate secondary cell wall deposition both in stems and seed coat in Arabidopsis. Planta, 2013, 237(5): 1199-1211.
[40]   Hao J, Tu L L, Hu H Y, Tan J F, Deng F L, Tang W X, Nie Y C, Zhang X L. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. Journal of Experimental Botany, 2012, 63(17): 6267-6281.
[41]   Wang M Y, Zhao P M, Cheng H Q, Han L B, Wu X M, Gao P, Wang H Y, Yang C L, Zhong N Q, Zuo J R, Xia G X. The cotton transcription factor TCP14 functions in auxin-mediated epidermal cell differentiation and elongation. Plant Physiology, 2013, 162(3): 1669-1680.
[42]   Santner A, Estelle M. Recent advances and emerging trends in plant hormone signalling. Nature, 2009, 459(7250): 1071-1078.
[43]   Wang H, Mei W Q, Qin Y M, Zhu Y X. 1-Aminocyclopropane- 1-carboxylic acid synthase 2 is phosphorylated by calcium-dependent protein kinase 1 during cotton fiber elongation. Acta Biochimica et Biophysica Sinica, 2011, 43(8): 654-661.
[44]   Sun Y, Veerabomma S, Abdel-Mageed H A, Fokar M, Asami T, Yoshida S, Allen R D. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant and Cell Physiology, 2005, 46(8): 1384-1391.
[45]   Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation. The Plant Journal, 2007, 51(3): 419-430.
[46]   Sun Y, Fokar M, Asami T, Yoshida S, Allen R D. Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Molecular Biology, 2004, 54(2): 221-232.
[47]   Sun Y, Veerabomma S, Fokar M, Abidi N, Hequet E, Payton P, Allen R D. Brassinosteroid signaling affects secondary cell wall deposition in cotton fibers. Industrial Crops and Products, 2015, 65: 334-342.
[48]   Yang Z R, Zhang C J, Yang X J, Liu K, Wu Z X, Zhang X Y, Zheng W, Xun Q Q, Liu C L, Lu L L, Yang Z E, Qian Y Y, Xu Z Z, Li C F, Li J, Li F G. PAG1, a cotton brassinosteroid catabolism gene, modulates fiber elongation. New phytologist, 2014, 203(2): 437-448.
[49]   Beasley C A, Ting I P. Effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. American Journal of Botany, 1974, 61(2): 188-194.
[50]   Yu X L, Cui B M, Ruan M B, Wen W, Wang S C, Di R, Peng M. Cloning and characterization of GbGI, a DELLA-like gene from cotton (Gossypium barbadense). Plant Growth Regulation, 2015, 75(1): 235-244.
[51]   Xiao Y H, Li D M, Yin M H, Li X B, Zhang M, Wang Y J, Dong J, Zhao J, Luo M, Luo X Y. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis. Journal of Plant Physiology, 2010, 167(10): 829-837.
[52]   Richards D E, King K E, Ait-ali T, Harberd N P. How gibberellin regulates plant growth and development: a molecular genetic analysis of gibberellin signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52(1): 67-88.
[53]   Wen W, Cui B M, Yu X L, Chen Q, Zheng Y Y, Xia Y J, Peng M. Functional analysis of cotton DELLA-Like genes that are differentially regulated during fiber development. Plant Molecular Biology Reporter, 2012, 30(4): 1014-1024.
[54]   Liao W B, Ruan M B, Cui B M, Xu N F, Lu J J, Peng M. Isolation and characterization of a GAI/RGA-like gene from Gossypium hirsutum. Plant Growth Regulation, 2009, 58(1): 35-45.
[55]   Aleman L, Kitamura J, Abdel-mageed H, Lee J, Sun Y, Nakajima M, Ueguchi-Tanaka M, Matsuoka M, Allen R. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Molecular Biology, 2008, 68(1/2): 1-16.
[56]   Chen J G, Du X M, Zhou X, Zhao H Y. Levels of cytokinins in the ovules of cotton mutants with altered fiber development. Journal of Plant Growth Regulation, 1997, 16(3): 181-185.
[57]   Zeng Q W, Qin S, Song S Q, Zhang M, Xiao Y H, Luo M, Hou L, Pei Y. Molecular cloning and characterization of a cytokinin dehydrogenase gene from upland cotton (Gossypium hirsutum L.). Plant Molecular Biology Reporter, 2012, 30(1): 1-9.
[58]   Zhao J, Bai W Q, Zeng Q W, Song S Q, Zhang M, Li X B, Hou L, Xiao Y H, Luo M, Li D M, Luo X Y, Pei Y. Moderately enhancing cytokinin level by down-regulation of GhCKX expression in cotton concurrently increases fiber and seed yield. Molecular Breeding, 2015, 35: 60.
[59]   Gialvalis S, Seagull R W. Plant hormones alter fiber initiation in unfertilized, cultured ovules of Gossypium hirsutum. The Journal of Cotton Science, 2001(5): 252-258.
[60]   Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nature Biotechnology, 2011, 29(5): 453-458.
[61]   Samuel Yang S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D, Jeffrey Chen Z. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. The Plant Journal, 2006, 47(5): 761-775.
[62]   Addicott F T. Abscisic Acid: correlations with abscission and with development in the cotton fruit. Plant Physiology, 1972, 49(4): 644-648.
[63]   Gokani S J, Kumar R, Thaker V S. Potential role of abscisic acid in cotton fiber and ovule development. Journal of Plant Growth Regulation, 1998, 17(1): 1-5.
[64]   Jamet E, Canut H, Boudart G, Pont-Lezica R F. Cell wall proteins: a new insight through proteomics. Trends in Plant Science, 2006, 11(1): 33-39.
[65]   Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochimica Biophysica Sinica, 2004, 36(1): 51-56.
[66]   许文亮, 黄耿青, 王秀兰, 汪虹, 李学宝. 一类新的编码PRPs基因的分离及其在棉花纤维等组织细胞中的表达. 生物化学与生物物理进展, 2007, 34(5): 509-517.
Xu W L, Huang G Q, Wang X L, Wang H, Li X B. Molecular characterization and expression analysis offive novel genes encoding proline-rich proteinsin cotton (Gossypium hirsutum). Progress in Biochemistry and Biophysics, 2007, 34(5): 509-517. (in Chinese)
[67]   Xu W L, Zhang D J, Wu Y F, Qin L X, Huang G Q, Li J, Li L, Li X B. Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Molecular Biology, 2013, 82(4/5): 353-365.
[68]   Huang G Q, Xu W L, Gong S Y, Li B, Wang X L, Xu D, Li X B. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress. Physiologia Plantarum, 2008, 134(2): 348-359.
[69]   Liu H W, Shi R F, Wang X F, Pan Y X, Li Z K, Yang X L, Zhang G Y, Ma Z Y. Characterization and expression analysis of a fiber differentially expressed Fasciclin-like arabinogalactan protein gene in sea island cotton fibers. PloS One, 2013, 8(7): e70185.
[70]   Huang G Q, Gong S Y, Xu W L, Li W, Li P, Zhang C J, Li D  D, Zheng Y, Li F G, Li X B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiology, 2013, 161(3): 1278-1290.
[71]   Kost B, Chua N H. The plant cytoskeleton: vacuoles and cell walls make the difference. Cell, 2002, 108(1): 9-12.
[72]   SEAGULL R W. A quantitative electron microscopic study of changes in microtubule arrays and wall microfibril orientation during in vitro cotton fiber development. Journal of Cell Science, 1992, 101(3): 561-577.
[73]   Seagull R W. The effects of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma, 1990, 159(1): 44-59.
[74]   Dixon D C, Seagull R W, Triplett B A. Changes in the accumulation of α- and β-tubulin isotypes during cotton fiber development. Plant Physiology, 1994, 105(4): 1347-1353.
[75]   Whittaker D J, Triplett B A. Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibers. Plant Physiology, 1999, 121(1): 181-188.
[76]   He X C, Qin Y M, Xu Y, Hu C Y, Zhu Y X. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules. Journal of Experimental Botany, 2008, 59(10): 2687-2695.
[77] Li L, Li Y, Wang N N, Li Y, Lu R, Li X B. Cotton LIM domain-containing protein GhPLIM1 is specifically expressed in anthers and participates in modulating F-actin. Plant Biology, 2015, 17(2): 528-534.
[78]   Li Y, Jiang J, Li L, Wang X L, Wang N N, Li D D, Li X B. A cotton LIM domain-containing protein (GhWLIM5) is involved in bundling actin filaments. Plant Physiology and Biochemistry, 2013, 66(0): 34-40.
[79]   Lü F, Wang H H, Wang X Y, Han L B, Ma Y P, Wang S, Feng Z D, Niu X W, Cai C P, Kong Z S, Zhang T Z, Guo W Z. GhCFE1A, a dynamic linker between the ER network and actin cytoskeleton, plays an important role in cotton fibre cell initiation and elongation. Journal of Experimental Botany, 2015, 66(7): 1877-1889.
[80]   Wang J, Wang H Y, Zhao P M, Han L B, Jiao G L, Zheng Y Y, Huang S J, Xia G X. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers. Plant and Cell Physiology, 2010, 51(8): 1276-1290.
[81]   Wang H Y, Wang J, Gao P, Jiao G L, Zhao P M, Li Y, Wang G L, Xia G X. Down-regulation of GhADF1 gene expression affects cotton fibre properties. Plant Biotechnology Journal, 2009, 7(1): 13-23.
[82]   Chi J N, Han Y C, Wang X F, Wu L Z, Zhang G Y, Ma Z Y. Overexpression of the Gossypium barbadense actin-depolymerizing factor 1 gene mediates biological changes in transgenic tobacco. Plant Molecular Biology Reporter, 2013, 31(4): 833-839.
[83]   Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. The Plant Cell, 2013, 25(11): 4421-4438.
[84]   Li L, Huang J F, Qin L X, Huang Y Y, Zeng W, Rao Y, Li J, Li X B, Xu W L. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development. Physiologia Plantarum, 2014, 152(2): 367-379.
[85]   Pan Y X, Wang X F, Liu H W, Zhang G Y, Ma Z Y. Molecular cloning of three UDP-glucuronate decarboxylase genes that are preferentially expressed in Gossypium fibers from elongation to secondary cell wall synthesis. Journal of Plant Biology, 2010, 53(5): 367-373.
[86]   Pan Y X, Ma J, Zhang G Y, Han G Y, Wang X F, Ma Z Y. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton. Chinese Science Bulletin, 2007, 52(17): 2358-2364.
[87]   Michailidis G, Argiriou A, Darzentas N, Tsaftaris A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation. Journal of Plant Physiology, 2009, 166(4): 403-416.
[88]   Lee J, Burns T H, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen R D. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation. Planta, 2010, 232(5): 1191-1205.
[89]   Shao M Y, Wang X D, Ni M, Bibi N, Yuan S N, Malik W, Zhang H P, Liu Y X, Hua S J. Regulation of cotton fiber elongation by xyloglucan endotransglycosylase/hydrolase genes. Genetics and Molecular Research, 2011, 10(4): 3771-3782.
[90]   Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. The Plant Cell, 2003, 15(4): 952-964.
[91]   Jiang Y J, Guo W Z, Zhu H Y, Ruan Y L, Zhang T Z. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnology Journal, 2011, 10(3): 301-312.
[92]   Chi J N, Han G Y, Wang F X, Zhang G Y, XiangSun Y, Ma Z Y. Isolation and molecular characterization of a novel homogalacturonan galacturonosyl- transferase gene (GbGAUT1) from Gossypium barbadense. African Journal of Biotechnology, 2009, 8(19): 4755-4764.
[93]   Wang H H, Guo Y, Lv F, Zhu H Y, Wu S J, Jiang Y J, Li F F, Zhou B L, Guo W Z, Zhang T Z. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton. Plant Molecular Biology, 2010, 72(4/5): 397-406.
[94]   Liu H W, Shi R F, Wang X F, Pan Y X, Zang G Y, Ma Z Y. Cloning of a phosphatidylinositol 4-kinase gene based on fiber strength transcriptome QTL mapping in the cotton species Gossypium barbadense. Genetics and Molecular Research, 2012, 11(3): 3367-3378.
[95]   Qin Y M, Hu C Y, Pang Y, Kastaniotis A J, Hiltunen J K, Zhu Y X. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. The Plant Cell, 2007, 19(11): 3692-3704.
[96]   Wang X C, Li Q, Jin X, Xiao G H, Liu G J, Liu N J, Qin Y M. Quantitative proteomics and transcriptomics reveal key metabolic processes associated with cotton fiber initiation. Journal of Proteomics, 2015, 114: 16-27.
[97]   Song W Q, Qin Y M, Saito M, Shirai T, Pujol F M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif. Journal of Experimental Botany, 2009, 60(6): 1839-1848.
[98]   Ji S J, Lu Y C, Feng J X, Wei G, Li J, Shi Y H, Fu Q, Liu D, Luo J C, Zhu Y X. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array. Nucleic Acids Research, 2003, 31(10): 2534-2543.
[99]   Qin Y M, Pujol F M, Hu C Y, Feng J X, Kastaniotis A J, Hiltunen J K, Zhu Y X. Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation. Journal of Experimental Botany, 2007, 58(3): 473-481.
[100] Qin Y M, Pujol F M A, Shi Y H, Feng J X, Liu Y M, Kastaniotis A J, Hiltunen J K, Zhu Y X. Cloning and functional characterization of two cDNAs encoding NADPH- dependent 3-ketoacyl-CoA reductased from developing cotton fibers. Cell Research, 2005, 15(6): 465-473.
[101] Shapiguzov A, Vainonen J P, Wrzaczek M, Kangasjarvi J. ROS-talk-how the apoplast, the chloroplast, and the nucleus get the message through. Frontiers in Plant Science, 2012, 3: 292.
[102] Potikha T, Johnson D, Delmer D A, Collins C. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiology, 1999, 119(3): 849-858.
[103] Mei W Q, Qin Y M, Song W Q, Li J, Zhu Y X. Cotton GhPOX1 encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation. Journal of Genetics and Genomics, 2009, 36(3): 141-150.
[104] Li H B, Qin Y M, Pang Y, Song W Q, Mei W Q, Zhu Y X. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development. New phytologist, 2007, 175(3): 462-471.
[105] Guo K, Du X Q, Tu L L, Tang W X, Wang P C, Wang M J, Liu Z, Zhang X L. Fibre elongation requires normal redox homeostasis modulated by cytosolic ascorbate peroxidase in cotton (Gossypium hirsutum). Journal of Experimental Botany, 2016, 67(11): 3289-3301.
[106] Zhang F, Jin X X, Wang L K, Li S F, Wu S, Cheng C Z, Zhang T Z, Guo W Z. A cotton annexin affects fiber elongation and secondary cell wall biosynthesis associated with Ca2+ influx, ROS homeostasis, and actin filament reorganization. Plant Physiology, 2016, 171(3): 1750-1770.
[107] Naoumkina M, Thyssen G N, Fang D D. RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li-1) and-2 (Li-2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation. BMC Plant Biology, 2015, 15: 14.
[108] Park W, Scheffler B E, Bauer P J, Campbell B T. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology, 2010, 10: 142.
[109] Liu D Q, Tu L L, Wang L, Li Y J, Zhu L F, Zhang X L. Characterization and expression of plasma and tonoplast membrane aquaporins in elongating cotton fibers. Plant Cell Reports, 2008, 27(8): 1385-1394.
[110] Li D D, Ruan X M, Zhang J, Wu Y J, Wang X L, Li X B. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New phytologist, 2013, 199(3): 695-707.
[111] Shi H, Wang X, Li D, Tang W, Wang H, Xu W, Li X. Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation. Journal of Genetics and Genomics, 2007, 34(2): 151-159.
[112] Zhang Z T, Zhou Y, Li Y, Shao S Q, Li B Y, Shi H Y, Li X B. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation. Journal of Experimental Botany, 2010, 61(12): 3331-3344.
[113] Zhou Y, Zhang Z T, Li M, Wei X Z, Li X J, Li B Y, Li X B. Cotton (Gossypium hirsutum) 14-3-3 proteins participate in regulation of fibre initiation and elongation by modulating brassinosteroid signalling. Plant Biotechnology Journal, 2015, 13(2): 269-280.
[114] Wang K B, Wang Z W, Li F G, Ye W W, Wang J Y, Song G L, Yue Z, Cong L, Shang H H, Zhu S L, Zou C S, Li Q, Yuan Y L, Lu C R, Wei H L, Gou C Y, Zheng Z Q, Yin Y, Zhang X Y, Liu K, Wang B, Song C, Shi N, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 2012, 44(10): 1098-1103.
[115] Li F G, Fan G Y, Wang K B, Sun F M, Yuan Y L, Song G L, Li Q, Ma Z Y, Lu C R, Zou C S, Chen W B, Liang X M, Shang H H, Liu W Q, Shi C C, Xiao G H, Gou C Y, Ye W W, Xu X, Zhang X Y, Wei H L, Li Z F, Zhang G Y, Wang J Y, Liu K, Kohel R J, Percy R G, Yu J Z, Zhu Y X, Wang J, Yu S X. Genome sequence of the cultivated cotton Gossypium arboreum. Nature Genetics, 2014, 46: 567-572.
[116] Li F G, Fan G Y, Lu C R, Xiao G H, Zou C S, Kohel R J, Ma Z Y, Shang H H, Ma X F, Wu J Y, Liang X M, Huang G, Percy R G, Liu K, Yang W H, Chen W B, Du X M, Shi C C, Yuan Y L, Ye W W, Liu X, Zhang X Y, Liu W Q, Wei H L, Wei S J, Huang G D, Zhang X L, Zhu S J, Zhang H, Sun F M, Wang X F, Liang J, Wang J H, He Q, Huang L H, Wang J, Cui J J, Song G L, Wang K B, Xu X, Yu J Z, Zhu Y X, Yu S X. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nature Biotechnology, 2015, 33(5): 524-530.
[117] Zhang T Z, Hu Y, Jiang W K, Fang L, Guan X Y, Chen J D, Zhang J B, Saski C A, Scheffler B E, Stelly D M, Hulse-Kemp A M, Wan Q, Liu B L, Liu C X, Wang S, Pan M Q, Wang Y K, Wang D W, Ye W X, Chang L J, Zhang W P, Song Q X, Kirkbride R C, Chen X Y, Dennis E, Llewellyn D J, Peterson D G, Thaxton P, Jones D C, Wang Q, Xu X Y, Zhang H, Wu H T, Zhou L, Mei G F, Chen S Q, Tian Y, Xiang D, Li X H, Ding J, Zuo Q Y, Tao L N, Liu Y C, Li J, Lin Y, Hui Y Y, Cao Z S, Cai C P, Zhu X F, Jiang Z, Zhou B L, Guo W Z, Li R Q, Chen Z J. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature Biotechnology, 2015, 33(5): 531-537.
[118] Liu X, Zhao B, Zheng H J, Hu Y, Lu G, Yang C Q, Chen J D, Chen J J, Chen D Y, Zhang L. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Scientific Reports, 2015, 5: 14139.
[119] Yuan D J, Tang Z H, Wang M J, Gao W H, Tu L L, Xin J, Chen L L, He Y H, Lin Z, Zhu L F. The genome sequence of Sea-Island cotton (Gossypium barbadense) provides insights into the allopolyploidization and development of superior spinnable fibres. Scientific Reports, 2015, 5: 17662.
[120] Qu J, Ye J, Geng Y F, Sun Y W, Gao S Q, Zhang B P, Chen  W, Chua N H. Dissecting functions of KATANIN and WRINKLED1 in cotton fiber development by virus-induced gene silencing. Plant Physiology, 2012, 160(2): 738-748.
[1] LIU RUI, ZHAO YuHan, FU ZhongJu, GU XinYi, WANG YanXia, JIN XueHui, YANG Ying, WU WeiHuai, ZHANG YaLing. Distribution and Variation of PWL Gene Family in Rice Magnaporthe oryzae from Heilongjiang Province and Hainan Province [J]. Scientia Agricultura Sinica, 2023, 56(2): 264-274.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[4] HU Sheng,LI YangYang,TANG ZhangLin,LI JiaNa,QU CunMin,LIU LieZhao. Genome-Wide Association Analysis of the Changes in Oil Content and Protein Content Under Drought Stress in Brassica napus L. [J]. Scientia Agricultura Sinica, 2023, 56(1): 17-30.
[5] GU LiDan,LIU Yang,LI FangXiang,CHENG WeiNing. Cloning of Small Heat Shock Protein Gene Hsp21.9 in Sitodiplosis mosellana and Its Expression Characteristics During Diapause and Under Temperature Stresses [J]. Scientia Agricultura Sinica, 2023, 56(1): 79-89.
[6] LI ZhouShuai,DONG Yuan,LI Ting,FENG ZhiQian,DUAN YingXin,YANG MingXian,XU ShuTu,ZHANG XingHua,XUE JiQuan. Genome-Wide Association Analysis of Yield and Combining Ability Based on Maize Hybrid Population [J]. Scientia Agricultura Sinica, 2022, 55(9): 1695-1709.
[7] DONG YongXin,WEI QiWei,HONG Hao,HUANG Ying,ZHAO YanXiao,FENG MingFeng,DOU DaoLong,XU Yi,TAO XiaoRong. Establishment of ALSV-Induced Gene Silencing in Chinese Soybean Cultivars [J]. Scientia Agricultura Sinica, 2022, 55(9): 1710-1722.
[8] ZHAO HaiXia,XIAO Xin,DONG QiXin,WU HuaLa,LI ChengLei,WU Qi. Optimization of Callus Genetic Transformation System and Its Application in FtCHS1 Overexpression in Tartary Buckwheat [J]. Scientia Agricultura Sinica, 2022, 55(9): 1723-1734.
[9] SANG ShiFei,CAO MengYu,WANG YaNan,WANG JunYi,SUN XiaoHan,ZHANG WenLing,JI ShengDong. Research Progress of Nitrogen Efficiency Related Genes in Rice [J]. Scientia Agricultura Sinica, 2022, 55(8): 1479-1491.
[10] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[11] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[12] WANG WenJuan,SU Jing,CHEN Shen,YANG JianYuan,CHEN KaiLing,FENG AiQing,WANG CongYing,FENG JinQi,CHEN Bing,ZHU XiaoYuan. Pathogenicity and Avirulence Genes Variation of Magnaporthe oryzae from a Rice Variety Meixiangzhan 2 in Guangdong Province [J]. Scientia Agricultura Sinica, 2022, 55(7): 1346-1358.
[13] LIU Jiao,LIU Chang,CHEN Jin,WANG MianZhi,XIONG WenGuang,ZENG ZhenLing. Distribution Characteristics of Prophage in Multidrug Resistant Escherichia coli as well as Its Induction and Isolation [J]. Scientia Agricultura Sinica, 2022, 55(7): 1469-1478.
[14] SONG SongQuan,LIU Jun,TANG CuiFang,CHENG HongYan,WANG WeiQing,ZHANG Qi,ZHANG WenHu,GAO JiaDong. Research Progress on the Physiology and Its Molecular Mechanism of Seed Desiccation Tolerance [J]. Scientia Agricultura Sinica, 2022, 55(6): 1047-1063.
[15] ZHI Lei,ZHE Li,SUN NanNan,YANG Yang,Dauren Serikbay,JIA HanZhong,HU YinGang,CHEN Liang. Genome-Wide Association Analysis of Lead Tolerance in Wheat at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1064-1081.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!