Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (19): 3694-3708.doi: 10.3864/j.issn.0578-1752.2016.19.003

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Comprehensive evaluation and genetic diversity analysis of phenotypic traits of core collection in upland cotton

DAI Pan-hong1,2, SUN Jun-ling2, HE Shou-pu2, WANG Li-ru2, JIA Yin-hua2, PAN Zhao-e2, PANG Bao-yin2, DU Xiong-ming2, WANG Mi1   

  1. 1Agricultural College, Yangtze University, Jingzhou 434025, Hubei
    2 Cotton ResearchInstitute, Chinese Academy of Agricultural Sciences/State Key Laboratory of Cotton Biology, Anyang 455000, Henan
  • Received:2016-03-29 Online:2016-10-01 Published:2016-10-01

Abstract: 【Objective】 The objective of this study is to analyze the genetic diversity and the law of genetic variation of phenotypic traits and explore the comprehensive evaluation techniques for core collection in upland cotton.【Method】The genetic diversity of 419 core collections in upland cotton was analyzed with 17 phenotypic traits. Genetic diversity of phenotypic traits was calculated using Shannon-weaver Information Index. Phenotypic distance was analyzed using Nei’s 1973, and then NTSYS-pc 2.20q software was used for cluster analysis of core collections. With SAS9.2, the best linear unbiased estimate (BLUE) value was gotten from phenotypic trait data, and then the optimum value of phenotypic traits was calculated according to the best linear unbiased estimator. Meanwhile, the principal component, regression and correlation analysis were also used to study the comprehensive evaluation index and method of core collection. 【Result】 Based on the analysis of phenotypic traits of core collection, it was found that the variation of boll number, boll weight, lint percentage, seed index and other traits were greater with coefficient of variation over 10% , while the variation of fiber breaking strength, micronaire level and the upper half of the average length was smaller which their coefficient of variation was below 10%. Variance analysis found that there were significant differences in the phenotypic traits between various locations, between years, and between locations and years. The phenotypic traits of different geographical origin germplasms were quite different. The growing stage elongation, upper half mean length, lint percentage and other traits from the geographical origin of the Yangtze River areas were higher than those of other geographic origins, and the comprehensive properties including the fiber strength, boll weight, uniformity index, plant height, and spinning uniformity index from the Northwest areas were the best. The yield and fiber quality traits from the US germplasms were superior to the sum of the other countries. Genetic diversity indices of phenotypic traits were 0.351-3.796, with an average of 1.715. The result of analysis on the genetic diversity of different geographical origins indicated that the genetic diversity and genetic richness in the Yellow River areas was the highest, but that in south China was the lowest. Cluster analysis showed that the upland cotton lines were overall dispersed with no obvious groups, but the partial accessions with similar characteristics can be clustered into 13 groups. After comprehensive evaluating these core collections, seven principal components were found when the cumulative contribution rate was more than 85%. The comprehensive value (F) of phenotypic traits of core collections averaged 1.740. The highest F value (2.302) was from Australia’s N74-250, and the lowest F value (0.624) was from Liaoyang green cotton. Correlation analysis between 17 phenotypic traits and their F values illuminated that 14 phenotypic traits including boll weight, lint percentage, fiber strength, upper half mean length, etc. were very significantly correlated with the F values, except micronaire, seed index and yellow givers. Finally, the regression equation was constructed for comprehensively evaluating the core collection with 8 phenotypic traits as the independent variables including boll opening stage, boll weight, elongation, flowering, micronaire, plant height, number of fruit branches, and spinning consistent index. 【Conclusion】 The core collection of upland cotton from China has a rich genetic diversity. The difference in genetic variation of the germplasms with different geographical origins is great. The accessions from different ecological zones have unique characteristics.

Key words: upland cotton, core collection, clustering analysis, genetic diversity, comprehensive evaluation

[1]    Zhao K Y, Tung C W, Eizenga G C, Wright M H, Ali L M, Price A H, Norton G J, Islam M R, Reynolds A, Mezey J, McClung A M, Bustamante C D, McCouch S R. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nature Communication, 2011, 2: 1-10.
[2]    Glaszmann J C, Kilian B, Upadhyaya H D, Varshne R K. Accessing genetic diversity for crop improvement. Current Opinion in Plant Biology, 2010, 13: 1-7.
[3]    Hajjar R, Jarvis D I, Gemmill-Herren B. The utility of crop genetic diversity in maintaining ecosystem services. Agriculture Ecosystems & Environment, 2008, 123: 261-270.
[4]    杜雄明, 孙君灵, 周忠丽, 贾银华, 潘兆娥, 何守朴, 庞宝印, 王立如. 棉花资源收集、保存、评价与利用现状及未来. 植物遗传资源学报, 2012, 13(2): 163-168.
Du X M, Sun J L, Zhou Z L, Jia Y H, Pan Z E, He S P, Pang B Y, Wang L R. Current situation and the future in collection, preservation, evaluation and utilization of cotton germplasm in China. Journal of Plant Genetic Resources, 2012, 13(2): 163-168. (in Chinese)
[5]    杜雄明, 周忠丽, 贾银华, 刘国强. 中国棉花种质资源的收集与保存. 棉花学报, 2007, 19(5): 346-353.
Du X M, Zhou Z L, Jia Y H, Liu G Q. Collection and conservation of cotton germplasm in China. Cotton Science, 2007, 19(5): 346-353. (in Chinese)
[6]    Frankel O H, Brown A H D. Current plant genetic resources: a critical appraisal//Chopra V L, Joshi B C, Sharma R P, Bansal H C. Genetics: New Frontiers, Vo1. IV. New Delhi: Oxford and IBH Publishing, 1984: 3-11.
[7]    Brown A H D. The case for core collections//Brown A H D, Frankel O H, Marshall D R, Williams J T. The Use of Plant Genetic Resources. Cambridge, England: Cambridge University Press, 1989: 136-156.
[8]    Hao C Y, Zhang X Y, Wang L F, Dong Y S, Shang X W, Jia J Z. Genetic diversity and core collection evaluations in common wheat germplasm from the northwestern spring wheat region in China. Molecular Breeding, 2006, 17: 69-77.
[9]    Yan W G, Rutger J N, Bryant R J, Bockelman H E, Fjellstrom R G, Chen M H, Tai T H, McClung A M. Development and evaluation of a core subset of the USDA rice (Oryza sativa L.) germplasm collection. Crop Science, 2007, 47: 869-878.
[10]   Coimbra R R, Miranda G V, Cruz C D, Silva D J H, Vilela R A. Development of a Brazilian maize core collection. Genetic Molecular Biology, 2009, 32: 538-545.
[11]   邱丽娟, 李英慧, 关荣霞, 刘章雄, 王丽侠, 常汝镇. 大豆核心种质和微核心种质的构建、验证与研究进展. 作物学报, 2009, 35(4): 571-579.
Qiu L J, Li Y H, Guan R X, Liu Z X, Wang L X, Chang R Z. Establishment, representative testing and research progress of soybean core collection and mini core collection. Acta Agronomica Sinica, 2009, 35(4): 571-579. (in Chinese)
[12]   陈光, 杜雄明. 我国陆地棉基础种质表型性状的遗传多样性分析. 西北植物学报. 2006, 26(8): 1649-1656.
Chen G, Du X M. Genetic diversity of basal germplasm phenotypes in upland cotton in China. Acta Botanica Boreali-occidentalia Sinica, 2006, 26(8): 1649-1656. (in Chinese)
[13]   卫泽, 孙学振, 柳宾, 张兴居, 王芳, 马军, 刘庆彩, 郭海刚, 宋宪亮. 国内外57份棉花种质资源的遗传多样性研究. 山东农业科学, 2010(6): 13-18.
Wei Z, Sun X Z, Liu B, Zhang X Z, Wang F, Ma J, Liu Q C, Guo H G, Song X L. Genetic diversity of 57 cotton germplasm resources from China and overseas. Shandong Agricultural Sciences, 2010(6): 13-18. (in Chinese)
[14]   周忠丽, 吴仕勇, 孙君灵, 贾银华, 潘兆娥, 何守朴, 杜雄明. 我国现存亚洲棉的表型多样性分析. 植物遗传资源学报, 2011,12(6): 881-889.
Zhou Z L, Wu S Y, Sun J L, Jia Y H, PAN Z E, He S P, Du X M. Phenotypic diversity analysis of G. arboreum L. germplasm resources conserved in China. Journal of Plant Genetic Resources, 2011, 12(6): 881-889. (in Chinese)
[15]   郭旺珍, 彭锁堂. 陆地棉与毛棉杂种性状遗传学和细胞学研究. 棉花学报, 1997, 9(1): 21-24.
Guo W Z, Peng S T. The traits genetics and cytology study of Gossypium hirsutum hybrids with Gossypium tomentosum. Cotton Science, 1997, 9(1): 21-24. (in Chinese)
[16]   Brubaker C L, Wendel J F. Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). American Journal of Botany, 1994, 81(10): 1309-1326.
[17]   Shu B, Fenling K, Yao Z Y, Mei Z G, Yuan Z Q, Gang W X. Genetic diversity analysis of representative elite cotton varieties in three main cotton regions in China by RAPD and its relation with agronomic characteristics. Scientia Agricultura Sinica, 2001, 34(6): 597-603.
[18]   Surgun Y, Çöl B, Bürün B. Genetic diversity and identification of some Turkish cotton genotypes (Gossypium hirsutum L.) by RAPD-PCR analysis. Turkish Journal of Biology, 2012, 36(2): 143-150.
[19]   Noormohammadi Z, Hasheminejad-Ahangaran F Y, Sheidai M, Ghasemzadeh-Baraki S, Alishah O. Genetic diversity analysis in Opal cotton hybrids based on SSR, ISSR, and RAPD markers. Genetics and Molecular Research, 2012, 12(1): 256-269.
[20]   Ebrahimi M A, Tohidfar M, Karimi M, Zawarei F. Determination of genetic uniformity in transgenic cotton plants using DNA markers (RAPD and ISSR) and SDS-PAGE. Journal of Plant Molecular Breeding, 2015, 3(2): 36-43.
[21]   Ashraf J, Malik W, Iqbal M, Khan A, Qayyum A, Noor E, Ahmad M Q. Comparative analysis of genetic diversity among Bt cotton genotypes using EST-SSR, ISSR and morphological markers. Journal of Agricultural Science and Technology, 2016, 18(2): 517-531.
[22]   Abdalla A M, Reddy O. U K, El-Zik K M, Pepper A E. Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theoretical and Applied Genetics, 2001, 102(2/3): 222-229.
[23]   Rana M K, Bhat K V. A comparison of AFLP and RAPD markers for genetic diversity and cultivar identification in cotton. Journal of Plant Biochemistry and Biotechnology, 2004, 13(1): 19-24.
[24]   Murtaza N. Cotton genetic diversity study by AFLP markers. Electronic Journal of Biotechnology, 2006, 9(4): 456-460.
[25]   Cheng G, Du X M. Genetic diversity of source germplasm of upland cotton in China as determined by SSR marker analysis. Acta Genetica Sinica, 2006, 33(8): 733-745.
[26]   Dahab A A, Saeed M, Mohamed B B, Ashraf M A, Puspito A N, Shahid K S B A A, Husnain T. Genetic diversity assessment of cotton (Gossypium hirsutum L.) genotypes from Pakistan using simple sequence repeat markers. Australian Journal of Crop Science, 2013, 7(2): 261
[27]   Ulloa M, Abdurakhmonov I Y, Perez M C, Percy R, Stewart J M. Genetic diversity and population structure of cotton (Gossypium spp.) of the New World assessed by SSR markers. Botany, 2013, 91(4): 251-259.
[28]   Yu J Z, Fang D D, Kohel RJ, Ulloa M, Hinze L L, Percy R G, Zhang J, Chee P, Scheffler Be, Jones D C. Development of a core set of SSR markers for the characterization of Gossypium germplasm. Euphytica, 2012, 187: 203-213.
[29]   Zhao Y, Wang H, Chen W. Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Systematics and Evolution, 2015, 301(1): 327-336.
[30]   Hinze L L, Fang D D, Gore M A. Molecular characterization of the Gossypium diversity reference set of the US national cotton germplasm collection. Theoretical and Applied Genetics, 2015, 128(2): 313-327.
[31]   李武, 倪薇, 林忠旭, 张献龙. 海岛棉遗传多样性的SRAP标记分析. 作物学报, 2008, 34(5): 893-898.
LI W, NI W, LIN Z X, Zhang X L. Genetic diversity analysis of sea-island cotton cultivars using SRAP markers. Acta Agronomica Sinica, 2008, 34(5): 893-898. (in Chinese)
[32]   Van Deynze A, Stoffel K, Lee M, Wilkins T A, Kozik A, Cantrell R G, Stelly D M. Sampling nucleotide diversity in cotton. BMC plant biology, 2009, 9(1): 1-11.
[33]   杜雄明, 周忠丽, 刘国强. .棉花种质资源描述规范和数据标准. 北京: 中国农业出版社, 2005.
Du X M, Zhou Z L, Liu G Q. Descriptor and data standard for cotton (Gossypium Spp). Beijing: China Agriculture Press, 2005. (in Chinese)
[34]   胡标林, 万勇, 李霞 雷建国,罗向东, 严文贵,谢建国. 水稻核心种质表型性状遗传多样性分析及综合评价. 作物学报, 2012, 38(5): 829-839.
Hu B L, Wan Y, Li X, LEI J G, LUO X D, YAN W G, XIE J G. Analysis on genetic diversity of phenotypic traits in rice (Oryza sativa) core collection and its comprehensive assessment. Acta Agronomica Sinica, 2012, 38(5): 829-839. (in Chinese)
[35]   董玉琛, 曹永生, 张学勇, 刘三才, 王兰芬, 游光霞, 庞斌双, 李立会, 贾继增. 中国普通小麦初选核心种质的产生. 植物遗传资源学, 2003, 4(1): 1-8.
Dong Y C, Cao Y S, Zhang X Y, Liu S C, Wang L F, You G X, Pang B S, Li L H, Jia J Z. Establishment of candidate core collections in Chinese common wheat germplasm. Journal of Plant Genetic Resources, 2003, 4(1): 1-8. (in Chinese)
[36]   Jain S K, Qualset C O, Bhatt G M, Wu K K. Geographical patterns of phenotypic in a word collection of durum wheats. Crop Science, 1975, 15: 700-704.
[37]   高伟. 四倍体棉种的遗传多样性分析[D]. 武汉: 华中农业大学, 2010.
Gao W. Analysis on genetic diversity of tetraploid species of Gossypium[D]. Wuhan: Huazhong Agriculture University, 2010. (in Chinese)
[38]   刘方, 王春英, 王玉红, 高伟, 周忠丽, 蔡小彦, 王星星, 王坤波. 103份亚洲棉表型多样性分析, 植物遗传资源学报, 2014, 15(3): 491-497.
Liu F, Wang C Y, Wang Y H, Gao W, Zhou Z L, Cai X Y, Wang X X, Wang K B. Analysis on phenotypic diversity of 103 asiatic cottons. Journal of Plant Genetic Resources, 2014, 15(3): 491-497. (in Chinese)
[39]   钱能. 陆地棉遗传多样性与育种目标性状基因(QTL)的关联分析[D]. 南京: 南京农业大学, 2009.
Qian N. Genetic diversity and association analysis of gene (QTL) of breeding target traits of upland cotton[D]. Nanjing: Nanjing Agricultural University, 2009. (in Chinese)
[40]   Tyagi P, Gore M A, Bowman D T, CAMPBELL B T, UDALL J A, KURAPARTHY V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theoretical and applied genetics, 2014, 127(2): 283-295.
[41]   Campbell D R. Using phenotypic manipulations to study multivariate selection of floral trait associations. Annals of Botany, 2009, 103: 1557-1566.
[42]   Soleri D, Cleveland D A. Farmer selection and conservation of crop varieties//Goodman R M. Encyclopedia of Plant and Crop Science. Marcel Dekker, New York: Marcel Dekker Incorporated, 2004: 433-438.
[43]   Fang D D, Hinze L L, Percy R G, Li P, Deng D, Thyssen G. A microsatellite-based genome-wide analysis of genetic diversity and linkage disequilibrium in Upland cotton (Gossypium hirsutum L.) cultivars from major cotton-growing countries. Euphytica, 2013, 191(3): 391-401.
[44]   Alves M F, Barroso P A V, Ciampi A Y, HOFFMANN L V, AZEVEDO V C R, CAVALCANTE U. Diversity and genetic structure among subpopulations of Gossypium mustelinum (Malvaceae). Genetics and Molecular Research, 2013, 12(1): 597-609.
[45]   Badigannavar A, Myers G O. Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Journal of Genetics, 2015, 94(1): 87-94.
[46]   Zhao Y L, Wang H M, Chen W, Li Y H, Gong H Y, Sang X  H, Huo F C, Zeng F. Genetic diversity and population structure of elite cotton (Gossypium hirsutum L.) germplasm revealed by SSR markers. Plant Systematics and Evolution, 2015, 301(1): 327-336.
[47]   赵战胜, 喻树迅, 范术丽, 庞朝友, 梅拥军. 北疆早熟陆地棉品种的遗传多样性分析. 棉花学报, 2012, 24(6): 473-480.
Zhao Z S, Yu S X, Fan S L, Pang C Y, Mei Y J. Analysis of genetic diversity of early maturing upland cotton varieties in Northern Xinjiang. Cotton Science, 2012, 24(6): 473-480. (in Chinese)
[48]   Cao Q J, Lu B R, Xia H, RJ, Sala F, Spada A, Grassi F. Genetic Diversity and origin of weedy rice (Oryza sativa f. spontanea) populations found in north-eastern China revealed by simple sequence repeat (SSR) markers. Annals of Botany, 2006, 98: 1241-1252.
[1] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[2] JIANG Peng, ZHANG Peng, YAO JinBao, WU Lei, HE Yi, LI Chang, MA HongXiang, ZHANG Xu. Phenotypic Characteristics and Related Gene Analysis of Ningmai Series Wheat Varieties [J]. Scientia Agricultura Sinica, 2022, 55(2): 233-247.
[3] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[4] XiaoChuan LI,ChaoHai WANG,Ping ZHOU,Wei MA,Rui WU,ZhiHao SONG,Yan MEI. Deciphering of the Genetic Diversity After Field Late Blight Resistance Evaluation of Potato Breeds [J]. Scientia Agricultura Sinica, 2022, 55(18): 3484-3500.
[5] YingLing WAN,MengTing ZHU,AiQing LIU,YiJia JIN,Yan LIU. Phenotypic Diversity Analysis of Chinese Ornamental Herbaceous Peonies and Its Germplasm Resource Evaluation [J]. Scientia Agricultura Sinica, 2022, 55(18): 3629-3639.
[6] HU GuangMing,ZHANG Qiong,HAN Fei,LI DaWei,LI ZuoZhou,WANG Zhi,ZHAO TingTing,TIAN Hua,LIU XiaoLi,ZHONG CaiHong. Screening and Application of Universal SSR Molecular Marker Primers in Actinidia [J]. Scientia Agricultura Sinica, 2022, 55(17): 3411-3425.
[7] CHEN Xu,HAO YaQiong,NIE XingHua,YANG HaiYing,LIU Song,WANG XueFeng,CAO QingQin,QIN Ling,XING Yu. Association Analysis of Main Characteristics of Bur and Nut with SSR Markers in Chinese Chestnut [J]. Scientia Agricultura Sinica, 2022, 55(13): 2613-2628.
[8] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[9] XU Xiao,REN GenZeng,ZHAO XinRui,CHANG JinHua,CUI JiangHui. Accurate Identification and Comprehensive Evaluation of Panicle Phenotypic Traits of Landraces and Cultivars of Sorghum bicolor (L.) Moench in China [J]. Scientia Agricultura Sinica, 2022, 55(11): 2092-2108.
[10] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[11] TANG XiuJun,FAN YanFeng,JIA XiaoXu,GE QingLian,LU JunXian,TANG MengJun,HAN Wei,GAO YuShi. Genetic Diversity and Origin Characteristics of Chicken Species Based on Mitochondrial DNA D-loop Region [J]. Scientia Agricultura Sinica, 2021, 54(24): 5302-5315.
[12] WANG Na,ZHAO ZiBo,GAO Qiong,HE ShouPu,MA ChenHui,PENG Zhen,DU XiongMing. Cloning and Functional Analysis of Salt Stress Response Gene GhPEAMT1 in Upland Cotton [J]. Scientia Agricultura Sinica, 2021, 54(2): 248-260.
[13] LI XinYuan, LOU JinXiu, LIU QingYuan, HU Jian, ZHANG YingJun. Genetic Diversity Analysis of Rhizobia Associated with Medicago sativa Cultivated in Northeast and North China [J]. Scientia Agricultura Sinica, 2021, 54(16): 3393-3405.
[14] LI JiaWei,SU JiangShuo,ZHANG Fei,FANG WeiMin,GUAN ZhiYong,CHEN SuMei,CHEN FaDi. Construction of Core Collection of Traditional Chrysanthemum morifolium Based on Phenotypic Traits [J]. Scientia Agricultura Sinica, 2021, 54(16): 3514-3526.
[15] WANG FuQiang,ZHANG Jian,WEN ChangLong,FAN XiuCai,ZHANG Ying,SUN Lei,LIU ChongHuai,JIANG JianFu. Identification of Grape Cultivars Based on KASP Markers [J]. Scientia Agricultura Sinica, 2021, 54(13): 2830-2842.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!