Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (12): 2280-2289.doi: 10.3864/j.issn.0578-1752.2016.12.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY·AGRICULTURE INFORMATION TECHNOLOGY • Previous Articles     Next Articles

Root Morphological Characteristics of Cotton Genotypes with Different Phosphorus Efficiency Under Phosphorus Stress

LUO Jia, HOU Yin-ying, CHENG Jun-hui, WANG Ning-ning, CHEN Bo-lang   

  1. Faulty of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052
  • Received:2015-12-29 Online:2016-06-16 Published:2016-06-16

Abstract: 【Objective】Efficient genotype cotton plays important roles in promoting low phosphorus (P) stress from the perspective of the root morphology. The purpose of this study is to provide a scientific basis for identifying the main factors that affecting phosphorus absorption of cotton and improving efficiency of nutrient utilization of genetic improvement through root plasticity. 【Method】A pot experiment was carried out to test the effects of P supply levels (low P stress 0, Suitable P 150 kg·hm-2) with two P genotype (efficient XH18, CCRI-42, XLZ19; inefficient XLZ13, XLZ17)cottons on root morphology and the relationships between root morphology and P uptake. 【Result】 Cotton biomass and P uptake were significantly reduced by low P stress. Efficient genotype cotton biomass and P uptake were 1.21-2.08 and 1.35-1.91 times as much as those of inefficient genotype cotton, respectively. Phosphorus significantly increased Olsen-P content in soil. Olsen-P of P efficient genotype cotton was significantly decreased more than those of two P inefficient cottons compared with phosphorus suitable conditions under low P stress. Olsen-P in the 0-25cm layer of P efficient genotype cotton was less than P inefficient cotton, compared with XLZ13 and XLZ17 decreased by 21.1% and 30.1% in the low P stress environment. The total root length, total root surface area, total root volume and average root diameter of cotton were significantly reduced under low P stress. The total root length, total root surface area, total root volume of P efficient genotype cotton were 1.54-1.97, 1.52-1.92 and 1.47-1.84 times as much as that of those of P inefficient cotton. P efficient genotype cotton’s specific root length, specific root surface area and specific root volume were significantly higher than those of two P inefficient cottons under low P stress, were 1.10-1.25, 1.07-1.22 and 1.01-1.16 times as much as that those of P inefficient genotype cottons. The average root diameter of P efficient genotype cotton was significantly less than P inefficient cotton, which was 34.2%-70.2% of P inefficient genotype cotton in the low P stress environment. Principal component analysis showed that the total root length, total root surface area, total root volume, root dry mass, middle root length and coarse root length could be used to distinguish two P genotype cottons. General linear model variance decomposition results showed that the total root length, total root surface area, total root volume, root dry mass, middle root length and coarse root length made great contributions to P uptake of cotton. 【Conclusion】P efficient genotype cotton adapted to low P stress through greatly increasing the proportion of fine roots, reducing overall fineness root, prompting an increase of specific root length, and increasing construction efficiency of root.

Key words: cotton, phosphorus efficiency, root morphology, phosphorus uptake, biomass

[1]    鲁如坤, 时正元, 钱承梁. 土壤积累态磷研究: Ⅰ 几种典型土壤中积累态磷的形态特征及其有效性. 土壤, 1997(2): 57-60.
Lu R K, Shi Z Y, Qian C L. Research on soil phosphorus accumulation:Ⅰ Morphological characteristics and effectiveness of cumulative phosphorus in several types of soil. Soil, 1997(2): 57-60. (in Chinese)
[2]    孙桂芳, 金继运, 石元亮. 土壤磷素形态及其生物有效性研究进展. 中国土壤与肥料, 2011(2): 1-9.
Sun G F, Jin J Y, Shi Y L. Research advance on soil phosphorous forms and their availability to crops in soil. Soil and Fertilizer Sciences in China,2011(2): 1-9. (in Chinese)
[3]    陈波浪, 盛建东, 蒋平安, 刘永刚. 磷肥种类和用量对土壤磷素有效性和棉花产量的影响. 棉花学报, 2010, 22(1): 49-56.
Chen B L, Sheng J D, Jiang P A, Liu Y G. Effect of applying different forms and rates of phosphoric fertilizer on phosphorus efficiency and cotton yield. Cotton Science, 2010, 22(1): 49-56. (in Chinese)
[4]    Cao P, Ren Y Z, Zhang K P, Teng W, Zhao X Q, Dong Z Y, Liu X, Qin H J, Li Z S, Wang D W, Tong Y P.Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Molecular Breeding, 2014, 33(4): 975-985.
[5]    林磊, 周志春. 水分和磷素对木荷不同种源苗木生长和磷效率的影响. 应用生态学报, 2009, 20(11): 2617-2623.
Lin L, Zhou Z C. Effects of soil moisture condition and phosphorus supply on the seedlings growth and phosphorus efficiency of Schima superba provenances. Chinese Journal of Applied Ecology,2009, 20(11): 2617-2623. (in Chinese)
[6]    陈磊, 王盛锋, 刘荣乐, 汪洪. 不同磷供应水平下小麦根系形态及根际过程的变化特征. 植物营养与肥料学报, 2012, 18(2): 324-331.
Chen L, Wang S F, Liu R L, Wang H. Changes of root morphology and rhizosphere processes of wheat under different phosphate supply. Plant Nutrition and Fertilizer Science, 2012, 18(2): 324-331. (in Chinese)
[7]    Plesnicar M, Kastori R, Petrovic N, Pankovic D. Photosynthesis and chlorophyll fluorescence in sunflower (Helianthus annuus L.) leaves as affected by phosphorus nutrition. Journal of Experimental Botany, 1994, 45(7): 919-924.
[8]    Lima J D, Da Matta F M, Mosquim P R. Growth attributes, xylem sap composition, and photosynthesis in common bean as affected by nitrogen and phosphorus deficiency. Journal of Plant Nutrition, 2000, 23(7): 937-947.
[9]    Jacob J, Lawlor D W. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. Journal of Experimental Botany, 1991, 42(241): 1003-1011.
[10]   Tang H L, Shen J B, Zhang F S, Rengel z. Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). Science China(Life Sciences),2013, 56(4): 313-323.
[11]   李德华, 向春雷, 姜益泉, 郭再华, 贺立源. 低磷胁迫下不同水稻品种根系生理特性的研究. 华中农业大学学报, 2006, 25(6): 626-629.
Li D H, Xiang C L, Jiang Y Q, Guo Z H, He L Y. Physiological characteristic of roots of different rice variety under the stress of low phosphorus. Journal of Huazhong Agricultural University,2006, 25(6): 626-629. (in Chinese)
[12]   张振海, 陈琰, 韩胜芳, 张孟臣, 王冬梅. 低磷胁迫对大豆根系生长特性及分泌H+和有机酸的影响. 中国油料作物学报, 2011, 32(2): 135-140.
Zhang Z H, Chen Y, Han S F, Zhang M C, Wang D M. Effect of P deficiency stress on soybean root system and its secretion of H+ and organic acid. Chinese Journal of Oil Crop Sciences, 2011, 32(2): 135-140. (in Chinese)
[13]   陈海英, 余海英, 陈光登, 李廷轩. 低磷胁迫下磷高效基因型大麦的根系形态特征. 应用生态学报, 2015, 26(10): 3020-3026.
Chen H Y, Yu H Y, Chen G D, Li Y X. Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress. Chinese Journal of Applied Ecology,2015, 26(10): 3020-3026. (in Chinese)
[14]   Lynch J P, Ho M D, Phosphorus L. Rhizoeconomics: Carbon costs of phosphorus acquisition. Plant & Soil,2005, 269(1/2): 45-56.
[15]   Zhu J, Lynch J P, Zhu J. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Functional Plant Biology, 2004, 31(10): 949-958.
[16]   White P J, George T S, Dupuy L X, Karley A J, Valentine T. Root traits for infertile soils. Frontiers in Plant Science, 2013, 4(193): 1-7.
[17]   陈波浪, 盛建东, 蒋平安, 李卫华, 王靓. 不同基因型棉花磷效率特征及其根系形态的差异. 棉花学报, 2014, 26(6): 506-512.   
Chen B L, Sheng J D, Jiang P A, Li W H, Wang L. Differences of phosphorus efficiency characteristics and root morphology between two cotton genotypes. Cotton Science,2014, 26(6): 506-512. (in Chinese)
[18]   Wang X, Tang C, Guppy C N, Sale P W G. Phosphorus acquisition characteristics of cotton ( Gossypium hirsutum L.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant & Soil, 2008, 312(1/2): 117-128.
[19]   李卫华. 棉花磷素高效利用品种筛选及机理的初步研究[D]. 乌鲁木齐: 新疆农业大学, 2010.
Li W H. Research on phosphorus efficient genotypes of cotton varieties screening and its mechanism[D]. Urumqi: Xinjiang Agricultural University, 2010. (in Chinese)
[20]   戴婷婷, 盛建东, 陈波浪. 磷肥不同用量对棉花干物质及氮磷钾吸收分配的影响. 棉花学报, 2010, 22(5): 466-470.
Dai T T, Sheng J D, Chen B L. Effect of different phosphorus fertilizer rate on dry matter accumulation and the absorption and distribution of nitrogen, phosphorous, potassium of cotton. Cotton Science, 2010, 22(5): 466-470. (in Chinese)
[21]   陈波浪, 盛建东, 蒋平安, 刘永刚. 棉田土壤上几种磷肥用量估算法的比较研究. 植物营养与肥料学报, 2010, 16(2): 465-469.
Chen B L, Sheng J D, Jiang P A, Liu Y G. Comparative study on phosphate fertilizer application estimation method in cotton field soil. Plant Nutrition and Fertilizer Science, 2010, 16(2): 465-469. (in Chinese)
[22]   郝艳淑, 姜存仓, 王晓丽, 夏颖, 陈防. 不同棉花基因型钾效率特征及其根系形态的差异. 作物学报, 2011, 37(11): 2094-2098.
Hao Y S, Jiang C C, Wang X L, Xia Y, Chen F. Differences of potassium efficiency characteristics and root morphology between two cotton genotypes. Acta Agronomica Sinica, 2011, 37(11): 2094-2098. (in Chinese)
[23]   鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000: 30-109.
Bao S T. Agrochemical Soil Analysis.Beijing: China Agriculture Press, 2000: 30-109. (in Chinese)
[24]   Ma W H, He J S, Yang Y H, Wang X P, Liang C Z, Anwar M, Zhang H, Fang J Y, Schmid B. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology & Biogeography, 2010, 19(2): 233-243.
[25]   马祥庆, 梁霞. 植物高效利用磷机制的研究进展. 应用生态学报, 2004, 15(4): 712-716.
Ma X Q, Liang X. Research advances in mechanism of high phosphorus use efficiency of plants. Chinese Journal of Applied Ecology,2004, 15(4): 712-716. (in Chinese)
[26]   刘灵, 廖红, 王秀荣, 严小龙. 不同根构型大豆对低磷的适应性变化及其与磷效率的关系. 中国农业科学, 2008, 41(4): 1089-1099.
Liu L, Liao H, Wang X R, Yan X L. Adaptive changes of soybean genotypes with different root architectures to low phosphorus availability as related to phosphorus efficiency. Scientia Agricultura Sinica,2008, 41(4): 1089-1099. (in Chinese)
[27]   林雅茹, 唐宏亮, 申建波. 野生大豆根系形态对局部磷供应的响应及其对磷吸收的贡献. 植物营养与肥料学报, 2013, 19(1): 158-165.
Lin Y R, Tang H L, Shen J B. Effect of localized phosphorus supply on root morphological traits and their contribution to phosphorus uptake in wild soybean. Plant Nutrition and Fertilizer Science,2013, 19(1): 158-165. (in Chinese)
[28]   Makita N, Hirano Y, Dannoura M, Kominami Y, Mizoguchi T, Ishii H, Kanazawa Y. Fine root morphological traits determine variation in root respiration of Quercus serrata. Tree Physiology, 2009, 29(4): 579-585.
[29]   Ryser P. The mysterious root length. Plant & Soil, 2006, 286(1/2): 1-6.
[30]   Novoplansky A. Picking battles wisely: Plant behaviour under competition. Plant Cell Environ, 2009, 32(6): 726-741.
[31]   Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients. New Phytology,2004, 162(1): 9-24.
[32]   Jackson R B, Manwaring J H, Caldwell M M. Rapid physiological adjustment of roots to localized soil enrichment. Nature, 1990, 344(6261): 58-60.
[33]   武兆云, 郭娜, 赵晋铭, 李丽红, 盖钧镒, 邢邯. 大豆苗期耐低磷主成分及隶属函数分析. 大豆科学, 2012, 31(1): 42-46.
Wu Z Y, Guo N, Zhao J M, Li L H, Gai J Y, Xing H. Principal components and membership function analysis of low phosphate tolerance at seedling stage in soybean. Soybean Science,2012, 31(1): 42-46. (in Chinese)
[34]   Yano K, Kume T. Root morphological plasticity for heterogeneous phosphorus supply in Zea mays L.. Plant Production Science, 2005, 8(4): 427-432.
[35]   Zhang Y K, Chen F J, Chen X C, Long L Z, Gao K, Yuan L X, Zhang F S, Mi G H. Genetic improvement of root growth contributes to efficient phosphorus acquisition in maize (Zea mays L.). Journal of Agricultural Science, 2013, 12(6): 1098-1111.
[36]   袁硕, 彭正萍, 沙晓晴, 王艳群. 玉米杂交种对缺磷反应的生理机制及基因型差异. 中国农业科学, 2010, 43(1): 51-58.
Yuan S, Peng Z P, Sha X Q, Wang Y Q. Physiological mechanism of maize hybrids in response to P deficiency and differences among cultivars. Scientia Agricultura Sinica,2010, 43(1): 51-58. (in Chinese)
[1] XIAO DeShun, XU ChunMei, WANG DanYing, ZHANG XiuFu, CHEN Song, CHU Guang, LIU YuanHui. Effects of Rhizosphere Oxygen Environment on Phosphorus Uptake of Rice Seedlings and Its Physiological Mechanisms in Hydroponic Condition [J]. Scientia Agricultura Sinica, 2023, 56(2): 236-248.
[2] WANG CaiXiang,YUAN WenMin,LIU JuanJuan,XIE XiaoYu,MA Qi,JU JiSheng,CHEN Da,WANG Ning,FENG KeYun,SU JunJi. Comprehensive Evaluation and Breeding Evolution of Early Maturing Upland Cotton Varieties in the Northwest Inland of China [J]. Scientia Agricultura Sinica, 2023, 56(1): 1-16.
[3] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[4] CHAO ChengSheng,WANG YuQian,SHEN XinJie,DAI Jing,GU ChiMing,LI YinShui,XIE LiHua,HU XiaoJia,QIN Lu,LIAO Xing. Characteristics of Efficient Nitrogen Uptake and Transport of Rapeseed at Seedling Stage [J]. Scientia Agricultura Sinica, 2022, 55(6): 1172-1188.
[5] FANG MengYing,LU Lin,WANG QingYan,DONG XueRui,YAN Peng,DONG ZhiQiang. Effects of Ethylene-Chlormequat-Potassium on Root Morphological Construction and Yield of Summer Maize with Different Nitrogen Application Rates [J]. Scientia Agricultura Sinica, 2022, 55(24): 4808-4822.
[6] YIN YanYu,XING YuTong,WU TianFan,WANG LiYan,ZHAO ZiXu,HU TianRan,CHEN Yuan,CHEN Yuan,CHEN DeHua,ZHANG Xiang. Cry1Ac Protein Content Responses to Alternating High Temperature Regime and Drought and Its Physiological Mechanism in Bt Cotton [J]. Scientia Agricultura Sinica, 2022, 55(23): 4614-4625.
[7] XIE XiaoYu, WANG KaiHong, QIN XiaoXiao, WANG CaiXiang, SHI ChunHui, NING XinZhu, YANG YongLin, QIN JiangHong, LI ChaoZhou, MA Qi, SU JunJi. Restricted Two-Stage Multi-Locus Genome-Wide Association Analysis and Candidate Gene Prediction of Boll Opening Rate in Upland Cotton [J]. Scientia Agricultura Sinica, 2022, 55(2): 248-264.
[8] ZHONG JiaLin,XU ZiYan,ZHANG YiYun,LI Jie,LIU XiaoYu,LI LianQing,PAN GenXing. Effects of Feedstock, Pyrolyzing Temperature and Biochar Components on the Growth of Chinese Cabbage [J]. Scientia Agricultura Sinica, 2022, 55(14): 2775-2785.
[9] WANG Juan, MA XiaoMei, ZHOU XiaoFeng, WANG Xin, TIAN Qin, LI ChengQi, DONG ChengGuang. Genome-Wide Association Study of Yield Component Traits in Upland Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2022, 55(12): 2265-2277.
[10] WANG Ning,FENG KeYun,NAN HongYu,ZHANG TongHui. Effects of Combined Application of Organic Fertilizer and Chemical Fertilizer on Root Characteristics and Yield of Cotton Under Different Water Conditions [J]. Scientia Agricultura Sinica, 2022, 55(11): 2187-2201.
[11] QIN HongDe, FENG ChangHui, ZHANG YouChang, BIE Shu, ZHANG JiaoHai, XIA SongBo, WANG XiaoGang, WANG QiongShan, LAN JiaYang, CHEN QuanQiu, JIAO ChunHai. F1 Performance Prediction of Upland Cotton Based on Partial NCII Design [J]. Scientia Agricultura Sinica, 2021, 54(8): 1590-1598.
[12] HU JiJie,ZHONG Chu,HU ZhiHua,ZHANG JunHua,CAO XiaoChuang,LIU ShouKan,JIN QianYu,ZHU LianFeng. Effects of Dissolved Oxygen Concentration on Root Growth at Tillering Stage and Nitrogen Utilization Characteristics of Rice [J]. Scientia Agricultura Sinica, 2021, 54(7): 1525-1536.
[13] TongYu HOU,TingLi HAO,HaiJiang WANG,Ze ZHANG,Xin LÜ. Advances in Cotton Growth and Development Modelling and Its Applications in China [J]. Scientia Agricultura Sinica, 2021, 54(6): 1112-1126.
[14] LOU ShanWei,DONG HeZhong,TIAN XiaoLi,TIAN LiWen. The " Short, Dense and Early" Cultivation of Cotton in Xinjiang: History, Current Situation and Prospect [J]. Scientia Agricultura Sinica, 2021, 54(4): 720-732.
[15] XU JiuKai,YUAN Liang,WEN YanChen,ZHANG ShuiQin,LIN ZhiAn,LI YanTing,LI HaiYan,ZHAO BingQiang. Phosphorus Fertilizer Replacement Value of Livestock Manure in Winter Wheat [J]. Scientia Agricultura Sinica, 2021, 54(22): 4826-4839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!