Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (5): 933-941.doi: 10.3864/j.issn.0578-1752.2016.05.013

;

• HORTICULTURE • Previous Articles     Next Articles

Effects of Garlic Straw Application on Controlling Tomato Root-Knot Nematode Disease and Rhizospheric Microecology

GONG Biao1, ZHANG Li-li2, SUI Shen-li3, WANG Xiu-feng1, WEI Min1, SHI Qing-hua1, YANG Feng-juan1, LI Yan1   

  1. 1College of Horticulture Science and Engineering, Shandong Agricultural University/Huang-Huai-Hai Region Scientific Observation and Experimental Station of Environment-Controlled Agricultural Engineering, Ministry of Agriculture/State Key Laboratory of Crop Biology/Cooperative Innovation Centre of Shandong Province with High Quality and Efficient Production of Fruit and Vegetable, Tai’an 271018, Shandong
    2Shandong Seeds Company Limited, Ji’nan 250100
    3Shouguang Vegetable High-Tech Demonstration Garden, Shouguang 262704, Shandong
  • Received:2015-04-20 Online:2016-03-01 Published:2016-03-01

Abstract: 【Objective】 The effects of garlic straw application on controlling tomato root-knot nematode disease and rhizospheric microecology have been studied with the purpose of showing comprehensive effects among plants, root-knot nematode disease and rhizospheric microecology. This study will provide the theoretical and technical basis for the exploitation of garlic straw. 【Method】 This study was performed with five treatments including 0 (CK), 1% (T1), 2% (T2), 4% (T3) and 8% (T4) garlic straw application (w/w) in pots (both the diameter and depth are 20 cm) with 5 kg garden soil. Then, we planted one tomato seedling in each pot and cultivated them in a greenhouse (28-32℃/15-23℃). Seven days later, five holes were dug around the tomato seedlings and inoculated about 5000 root-knot nematode J2 per seedling. There are 30 pots in each treatment. Tomato root and rhizospheric soil by dithering at the 10, 30, and 50th days after treatment were collected and then we determined the biomass of each tomato plant; disease index including numbers of root-knot nematode, numbers and ratios of female, numbers of egg masses, eggs index, reproduction index, galling index and relative control efficiency; activities of soil enzymes including urease, phosphatise, sucrose, cellulose, catalase and polyhenoloxidase; microbial population of bacteria, fungi and antinomyces, numbers of different nematode trophic groups including phytophagous nematodes, bacterial-feeding nematode, fungal-feeding nematodes and omnivorous-predator nematodes. 【Result】 With the increasing consumption of garlic straw, the biomass of tomato plant firstly increased and then decreased, among which, T1 treatment was little higher than CK and T2 treatment was lower than CK. However, the relative control efficiency was increased with the increasing consumption of garlic straw, reaching 13.6%, 50.0%, 72.7% and 81.8% separately. The ratio of females was decreased by applying garlic straw, which decreased the numbers of egg masses, egg index and reproduction index. The activities of urease and phosphatise were decreased in garlic straw treatments. However, the activities of cellulose, invertase, catalase and polyphenoloxidase in rhizospheric soil were increased. In addition, application of garlic straw significantly increased the numbers of bacterium, fungi and actinomycetes. The numbers of bacterium firstly increased and then decreased, and the maximum value could be observed in T2 treatments. However, numbers of fungi and actinomycetes were increased with the increasing consumption of garlic straw. Application of garlic straw significantly decreased the numbers of phytophagous nematode, but increased the numbers of bacterial-feeding and omnivorous-predator nematode. The increase of the fungal-feeding nematode was not significant. 【Conclusion】 Comprehensive consideration of the growth of tomato plants, the protection of root-knot nematode disease and rhizospheric microecology, this study indicated that T2 garlic straw application was better than other treatments.

Key words: tomato, root-knot nematode, garlic straw, rhizospheric microecology

[1]    刘军, 景峰, 李同花, 黄金花, 谈建鑫, 曹晶晶, 刘建国. 秸秆还田对长期连作棉田土壤腐殖质组分含量的影响. 中国农业科学, 2015, 48(2): 293-302.
Liu J, Jing F, Li T H, Huang J H, Tan J X, Cao J J, Liu J G. Effects of returning stalks into field on soil humus composition of continuous cropping cotton field. Scientia Agricultura Sinica, 2015, 48(2): 293-302. (in Chinese)
[2]    Javed N, Gowen S R, El-Hassan S A, Inam-ul-Haq M, Shahina F, Pembroke B. Efficacy of neem (Azadirachta indica) formulations on biology of root-knot nematodes (Meloidogyne javanica) on tomato. Crop Protection, 2008, 27(1): 36-43.
[3]    Natarajan N, Cork A, Boomathi N, Pandi R, Velavan S, Dhakshnamoorthy G. Cold aqueous extracts of African marigold, Tagetes erecta for control tomato root knot nematode, Meloidogyne incognita. Crop Protection, 2006, 25(11): 1210-1213.
[4]    Caboni P, Saba M, Tocco G, Casu L, Murgia A, Maxia A, Menkissoglu-Spiroudi U, Ntalli N. Nematicidal activity of mint aqueous extracts against the root-knot nematode Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 2013, 61(41): 9784-9788.
[5]    Chavan S N, Shakil N A, Sharma H K, Sirohi A, Mhatre P H, Singh K. Bioefficacy of Crotalaria juncea L. extracts against rice root knot nematode, Meloidogyne graminicola. Annals of Plant Protection Sciences, 2013, 21(2): 408-411.
[6]    Naz I, Palomares-Rius J E, Khan S M, Ali S, Ahmad M, Ali A, Khan A. Control of Southern root knot nematode Meloidogyne incognita (Kofoid and White) Chitwood on tomato using green manure of Fumaria parviflora Lam (Fumariaceae). Crop Protection, 2015, 67: 121-129.
[7]    李世东, 李明社, 缪作清, 郭荣君. 生物熏蒸用于治理蔬菜根结线虫病的研究. 植物保护, 2007, 33(4): 68-71.
Li S D, Li M S, Miao Z Q, Guo R J. Soil biofumigation for management of vegetable root-knot nematode disease. Plant Protection, 2007, 33(4): 68-71. (in Chinese)
[8]    Monfort W S, Csinos A S, Desaeger J, Seebold K, Webster T M, Diaz-Perez J C. Evaluating Brassica species as an alternative control measure for root-knot nematode (M. incognita) in Georgia vegetable plasticulture. Crop Protection, 2007, 26(9): 1359-1368.
[9]    曹志平, 周乐昕, 韩雪梅. 引入小麦秸秆抑制番茄根结线虫病. 生态学报, 2010, 30(3): 765-773.
Cao Z P, Zhou L X, Han X M. Controlling tomato root-knot nematode disease by incorporating winter wheat straw to soil. Acta Ecologica Sinica, 2010, 30(3): 765-773. (in Chinese)
[10]   Buena A P, García-Álvarez A, Díez-Rojo M A, Ros C, Fernández P, Lacasa A, Bello A. Use of pepper crop residues for the control of root- knot nematodes. Bioresource Technology, 2007, 98(15): 2846-2851.
[11]   Tibugari H, Mombeshora D, Mandumbu R, Karavina C, Parwada C. A comparison of the effectiveness of the aqueous extracts of garlic, castor beans and marigold in the biocontrol of root-knot nematode in tomato. Journal of Agricultural Technology, 2012, 8(2): 479-492.
[12]   Anastasiadis I, Kimbaris A C, Kormpi M, Polissiou M G, Karanastasi E. The effect of a garlic essential oil component and entomopathogenic nematodes on the suppression of Meloidogyne javanica on tomato. Hellenic Plant Protection, 2011, 4: 21-24.
[13]   郝丽霞, 程智慧, 孟焕文, 孙金利, 韩玲. 设施番茄套作大蒜的生物和生态效应. 生态学报, 2010, 30(19): 5316-5326.
Hao L X, Cheng Z H, Meng H W, Sun J L, Han L. Biological and ecological effect of interplanting tomato/garlic in the facility. Acta Ecologica Sinica, 2010, 30(19): 5316-5326. (in Chinese)
[14]   Gong B, Bloszies S, Li X, Wei M, Yang F, Shi Q, Wang X. Efficacy of garlic straw application against root-knot nematodes on tomato. Scientia Horticulturae, 2013, 161: 49-57.
[15]   刘素慧, 刘世琦, 张自坤, 尉辉, 齐建建, 段吉锋. 大蒜连作对其根际土壤微生物和酶活性的影响. 中国农业科学, 2010, 43(5): 1000-1006.
Liu S H, Liu S Q, Zhang Z K, Wei H, Qi J J, Duan J F. Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities. Scientia Agricultura Sinica, 2010, 43(5): 1000-1006. (in Chinese)
[16]   Bridge J, Page S L J. Estimation of root-knot nematode infestation levels on roots using a rating chart. International Journal of Pest Management, 1980, 26(3): 296-298.
[17]   贾双双, 高荣广, 徐坤. 番茄砧木对南方根结线虫抗性鉴定. 中国农业科学, 2009, 42(12): 4301-4307.
Jia S S, Gao R G, Xu K. Screening and evaluation of tomato rootstocks for resistance to Meloidogyne incognita. Scientia Agricultura Sinica, 2009, 42(12): 4301-4307. (in Chinese)
[18]   朱新玉, 朱波. 不同施肥方式对紫色土农田土壤动物主要类群的影响. 中国农业科学, 2015, 48(5): 911-920.
Zhu X Y, Zhu B. Effect of different fertilization regimes on the main groups of soil fauna in cropland of purple soil. Scientia Agricultura Sinica, 2015, 48(5): 911-920. (in Chinese)
[19]   陈汝, 王海宁, 姜远茂, 魏绍冲, 陈倩, 葛顺峰. 不同苹果砧木的根际土壤微生物数量及酶活性. 中国农业科学, 2012, 45(10): 2099-2106.
Chen R, Wang H N, Jiang Y M, Wei S C, Chen Q, Ge S F. Rhizosphere soil microbial quantity and enzyme activity of different apple rootstocks. Scientia Agricultura Sinica, 2012, 45(10): 2099-2106. (in Chinese)
[20]   刘维. 植物病原线虫学. 北京: 中国农业出版社, 2000.
Liu W Z. Plant Pathogenic Nematology. Beijing: China Agriculture Press, 2000. (in Chinese)
[21]   尹文英. 中国土壤动物检索图鉴. 北京: 科学出版社, 1998.
Yin W Y. Pictorial Keys to Soil Animals of China. Beijing: Science Press, 1998. (in Chinese)
[22]   Alabouvette C, Olivain C, Steinberg C. Biological control of plant diseases: The European situation. European Journal of Plant Pathology, 2006, 114(3): 329-341.
[23]   张淑红, 周宝利, 张磊, 付亚文. 土壤添加蛇床子(Cnidium monnieri)和苦参(Sophora flavescens)对茄子黄萎病及根际微生物的化感影响. 生态学报, 2008, 28(10): 5194-5199.
Zhang S H, Zhou B L, Zhang L, Fu Y W. Allelopathic effects of soil amendment with Cnidium monnieri and Sophora flavescens on verticillium wilt and rhizospheric microbial populations of eggplant. Acta Ecologica Sinica, 2008, 28(10): 5194-5199. (in Chinese)
[24]   魏玲, 程智慧, 张亮. 不同品种大蒜秸秆水浸液对番茄的化感效应. 西北农林科技大学学报: 自然科学版, 2008, 36(10): 139-145.
Wei L, Cheng Z H, Zhang L. Allelopathy of straw aqueous extracts of different garlic varieties on tomato (Lycopersicon esculentum). Journal of Northwest A & F University: Natural Sciences Editon, 2008, 36(10): 139-145. (in Chinese)
[25]   李锐, 刘瑜, 褚贵新. 不同种植方式对绿洲农田土壤酶活性与微生物多样性的影响. 应用生态学报, 2015, 26(2): 490-496.
Li R, Liu Y, Chu G X. Effects of different cropping patterns on soil enzyme activities and soil microbial community diversity in oasis farmland. Chinese Journal of Applied Ecology, 2015, 26(2): 490-496. (in Chinese)
[26]   罗燕, 樊卫国. 不同施磷水平下4种柑橘砧木的根际土壤有机酸, 微生物及酶活性. 中国农业科学, 2014, 47(5): 955-967.
Luo Y, Fan W G. Organic acid content, microbial quantity and enzyme activity in rhizosphere soil of four citrus rootstocks under different phosphorus levels. Scientia Agricultura Sinica, 2014, 47(5): 955-967. (in Chinese)
[27]   吴玉森, 张艳敏, 冀晓昊, 张芮, 刘大亮, 张宗营, 李文燕, 陈学森. 自然生草对黄河三角洲梨园土壤养分, 酶活性及果实品质的影响. 中国农业科学, 2013, 46(1): 99-108.
Wu Y S, Zhang Y M, Ji X H, Zhang R, Liu D L, Zhang Z Y, Li W Y, Chen X S. Effects of natural grass on soil nutrient, enzyme activity and fruit quality of pear orchard in Yellow River delta. Scientia Agricultura Sinica, 2013, 46(1): 99-108. (in Chinese)
[28]   谷岩, 邱强, 王振民, 陈喜凤, 吴春胜. 连作大豆根际微生物群落结构及土壤酶活性. 中国农业科学, 2012, 45(19): 3955-3964.
Gu Y, Qiu Q, Wang Z M, Chen X F, Wu C S. Effects of soybean continuous cropping on microbial and soil enzymes in soybean rhizosphere. Scientia Agricultura Sinica, 2012, 45(19): 3955-3964. (in Chinese)
[29]   Irvine L, Kleczkowski A, Lane A M J, Pitchford J W, Caffrey D, Chamberlain P M. An integrated data resource for modelling the soil ecosystem. Applied Soil Ecology, 2006, 33(2): 208-219.
[1] SHAO ShuJun,HU ZhangJian,SHI Kai. The Role and Mechanism of Linoleyl Ethanolamide in Plant Resistance Against Botrytis cinerea in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(9): 1781-1789.
[2] WANG MengRui, LIU ShuMei, HOU LiXia, WANG ShiHui, LÜ HongJun, SU XiaoMei. Development of Artificial Inoculation Methodology for Evaluation of Resistance to Fusarium Crown and Root Rot and Screening of Resistance Sources in Tomato [J]. Scientia Agricultura Sinica, 2022, 55(4): 707-718.
[3] HU XueHua,LIU NingNing,TAO HuiMin,PENG KeJia,XIA Xiaojian,HU WenHai. Effects of Chilling on Chlorophyll Fluorescence Imaging Characteristics of Leaves with Different Leaf Ages in Tomato Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(24): 4969-4980.
[4] LIU Hao,PANG Jie,LI HuanHuan,QIANG XiaoMan,ZHANG YingYing,SONG JiaWen. Effects of Foliar-Spraying Selenium Coupled with Soil Moisture on the Yield and Quality of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(22): 4433-4444.
[5] CUI QingQing, MENG XianMin, DUAN YunDan, ZHUANG TuanJie, DONG ChunJuan, GAO LiHong, SHANG QingMao. Inhibiting Eeffect of Root-Cutting and Top-Pinching on Graft Healing of Tomato [J]. Scientia Agricultura Sinica, 2022, 55(2): 365-377.
[6] LI YiMei,WANG Jiao,WANG Ping,SHI Kai. Function of Sugar Transport Protein SlSTP2 in Tomato Defense Against Bacterial Leaf Spot [J]. Scientia Agricultura Sinica, 2022, 55(16): 3144-3154.
[7] FANG HanMo,HU ZhangJian,MA QiaoMei,DING ShuTing,WANG Ping,WANG AnRan,SHI Kai. Function of SlβCA3 in Plant Defense Against Pseudomonas syringae pv. tomato DC3000 [J]. Scientia Agricultura Sinica, 2022, 55(14): 2740-2751.
[8] LI JianXin,WANG WenPing,HU ZhangJian,SHI Kai. Effects of Simulated Acid Rain Conditions on Plant Photosynthesis and Disease Susceptibility in Tomato and Its Alleviation of Brassinosteroid [J]. Scientia Agricultura Sinica, 2021, 54(8): 1728-1738.
[9] XianMin MENG,YanHai JI,WangWang SUN,ZhanHui WU,ZhaoSheng CHU,MingChi LIU. Response of Chloroplast Ultrastructure and Photosynthetic Physiology of Two Tomato Varieties to Low Light Stress [J]. Scientia Agricultura Sinica, 2021, 54(5): 1017-1028.
[10] WANG Ping,ZHENG ChenFei,WANG Jiao,HU ZhangJian,SHAO ShuJun,SHI Kai. The Role and Mechanism of Tomato SlNAC29 Transcription Factor in Regulating Plant Senescence [J]. Scientia Agricultura Sinica, 2021, 54(24): 5266-5276.
[11] ZHANG JiFeng,WANG ZhenHua,ZHANG JinZhu,DOU YunQing,HOU YuSheng. The Influences of Different Nitrogen and Salt Levels Interactions on Fluorescence Characteristics, Yield and Quality of Processed Tomato Under Drip Irrigation [J]. Scientia Agricultura Sinica, 2020, 53(5): 990-1003.
[12] LI YueYue,ZHOU WenPeng,LU SiQian,CHEN DeRong,DAI JianHong,GUO QiaoYou,LIU Yong,LI Fan,TAN GuanLin. Occurrence and Biological Characteristics of Tomato mottle mosaic virus on Solanaceae Crops in China [J]. Scientia Agricultura Sinica, 2020, 53(3): 539-550.
[13] DU Xia,WU Kuo,LIU Xia,ZHANG LiZhen,SU XiaoXia,ZHANG HongRui,ZHANG ZhongKai,HU XianQi,DONG JiaHong,YANG YanLi,GAO YuLin. The Occurrence Trends of Dominant Species of Potato Viruses and Thrips in Yunnan Province [J]. Scientia Agricultura Sinica, 2020, 53(3): 551-562.
[14] ZOU LinFeng,TU LiQin,SHEN JianGuo,DU ZhenGuo,CAI Wei,JI YingHua,GAO FangLuan. The Evolutionary Dynamics and Adaptive Evolution of Tomato Chlorosis Virus [J]. Scientia Agricultura Sinica, 2020, 53(23): 4791-4801.
[15] ZHANG LiLi,SHI QingHua,GONG Biao. Application of Fulvic Acid and Phosphorus Fertilizer on Tomato Growth, Development, and Phosphorus Utilization in Neutral and Alkaline Soil [J]. Scientia Agricultura Sinica, 2020, 53(17): 3567-3575.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!