Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (3): 443-454.doi: 10.3864/j.issn.0578-1752.2016.03.004

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Function and Composition Stability of a Composite Microbial System GF-20 with Efficient Corn Stalk Decomposition Under Low Temperature

Qingge-er, GAO Ju-lin, YU Xiao-fang, HU Shu-ping, WANG Zhi-gang, WANG Zhen, Naoganchaolu BORJIGIN   

  1. College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019
  • Received:2015-06-10 Online:2016-02-01 Published:2016-02-01

Abstract: 【Objective】 In order to improve the culturing methodology of corn stalk decomposing microbes and promote its utilization, the present study evaluated the impact of different culturing conditions on the community composition of a composite microbial system GF-20 and on its decomposing activity of corn stalk.【Method】 Composite microbial system GF-20 was continuously sub-cultured to the 45th generation under 10℃ and to 15th generation under different temperatures and pH conditions to obtain different microbial communities (F, T, P). Then the dynamics of fermenting pH, corn stalk decomposing ratio and cellulose enzyme activities were determined, so as to estimate the corn stalk decomposing activity of the composite microbial system. Furthermore, the community composition stability was analyzed by PCR-DGGE technique combined with a principal component analysis. 【Result】 The results showed that the pH value tended to be neutral over the fermentation time, and the straw degradation rate ranged in 27.59%-32.53%, in which no difference was shown among the successive 40-generation sub-cultured communities except F40 and F5, neither among the sub-cultured communities under temperature of 4-30℃ and under pH of 6.0-9.0. Cellulose enzyme activity of high generation was higher than that of low generation, and the enzyme production of the microbial community could be promoted under temperature of 4-10℃ and pH of 6.0-9.0, cellulase activity ranged in 1.34-1.84 IU·mL-1. Cellulase activity of composite microbes showed good stability under lower temperature and in a wide pH range, enzymatic reaction temperature within 15-30℃ and pH within 4.0-9.0 could keep more than 80% of enzyme activity. Furthermore, DGGE bands of F5-F45, T4-T30 and P6-P9 showed no significant differences indicated that the strains composition maintained good stability. However, under acidic (pH=4, 5) or alkaline (pH=10) subculture conditions, the corn stalk degradation rate and cellulase activity significantly decreased, and community composition also changed remarkably, thereby affected the property and functional stability. According to PCR-DGGE profiles, a total of 18 strains were detected, the key strains of which were Bacillus licheniformis, Azonexus hydrophilusd, Azospira oryzae, Arobacter cloacae, Cellvibrio mixtus subsp. Mixtus, Bacillus tequilensis, Clostridium populeti and Clostridium xylanolyticum, respectively. 【Conclusion】Composite microbial community GF-20 sub-cultured under different conditions (temperature 4-30℃, pH 6.0-9.0) kept efficient corn stalk decomposing activity and stable community composition structure, a good application prospect should be anticipated.

Key words: decomposition of corn stalk, composite microbial community GF-20, low temperature, cellulose enzyme activity, composition stability

[1]    汪维云, 朱金华, 吴守一. 纤维素科学及纤维素酶的研究进展. 江苏理工大学学报, 1998, 19(3): 263-266.
Wang W Y, Zhu J H, Wu S Y. Research progress of cellulose science and cellulase. Journal of Jiangsu University of Science and Technology, 1998, 19(3): 263-266. (in Chinese)
[2]    Demain A L, Newcomb M, Wu J H D. Cellulase, clostridia and ethanol. Microbiology and Molecular Biology Reviews, 2006, 69 (1): 124-154.
[3]    Chang V S, Holtzapple M T. Fundamental factors affecting biomass enzymatic reactivity. Applied Biochemistry and Biotechnology, 2000, 84(86): 5-37.
[4]    Mansfield S D, Mooney C, Saddler J N. Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology Progress, 1999, 15(5): 804-816.
[5]    崔宗均, 李美丹, 朴哲, 黄志勇, Masaharu Ishii, Yasuo Igarashi.. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能. 环境科学, 2002, 23(3): 36-39.
Cui Z J, Li M D, Piao Z, Huang Z Y, Ishii M, Igarashi Y. Selection of a composite microbial system MCl with efficient and stability cellulose degradation bacteria and its function. Environmental Science, 2002, 23(3): 36-39. (in Chinese)
[6]    Haruta S, Cui Z J, Huang Z, Li M, Ishii M, Igarashi Y. Construction of a stable microbial community with high cellulose-degradation ability. Applied Microbiology and Biotechnology, 2002, 59(4/5): 529-534.
[7]    Kato S, Haruta S, Cui Z J, Ishii M, Yokota A, Igarashi Y. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(6): 2043-2047.
[8]    Kato S, Haruta S, Cui Z J, Ishii M, Igarashi Y. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. Microbiology Ecology, 2004, 51(1): 133-142.
[9]    Kato S, Haruta S, Cui Z J, Ishii M, Igarashi Y. Stable coexistence of five bacterial strains as a cellulose degrading community. Applied and Environmental Microbiology, 2005, 71(11): 7099-7106.
[10]   萨如拉, 高聚林, 于晓芳, 胡树平. 玉米秸秆低温降解复合菌系的筛选. 中国农业科学, 2013, 46(19): 4082-4090.
Sarula, Gao J L, Yu X F, Hu S P. Screening of low temperature maize stalk decomposition microorganism. Scientia Agricultura Sinica, 2013, 46(19): 4082-4090. (in Chinese)
[11]   Panswad T, Doungchai A, Anotai J. Temperature effect on microbial community of enhanced biological phosphorus removal system. Water Research, 2003, 37(2): 409-415.
[12]   Avrahami S, Liesack W, Conrad R. Effects of temperature and fertilizer on activity and community structure of soil ammonia oxidizers. Environmental Microbiology, 2003, 5(8): 691-705.
[13]   王伟东, 崔宗均, 杨洪岩, 朴哲, 刘建斌, 吕育才. 高效稳定纤维素分解菌复合系WSC-6的稳定性. 环境科学, 2005, 25(5): 567-571.
Wang W D, Cui Z J, Yang H Y, Piao Z, Liu J B, Lü Y C. Stability of a composite microbial system WSC-6 with efficient cellulose degrading. Environmental Sciences, 2005, 25(5): 567-571. (in Chinese)
[14]   Lü Y C, Li N, Gong D C, Wang X F, Cui Z J. The effect of temperature on the structure and function of a cellulose-degrading microbial community. Applied Biochemistry & Biotechnology, 2012, 168(2): 219-233.
[15]   吕育财, 李宁, 罗彬, 龚大春, 王小芬, 崔宗均. 温度及碳源对纤维素分解菌群分解活性与稳定性的影响. 中国农业大学学报, 2013, 18(6): 35-41.
Lü Y C, Li N, Luo B, Gong D C, Wang X F, Cui Z J. Effect of enriching condition with temperature and carbon on the activity and stability of cellulose degrading community. Journal of China Agricultural University, 2013, 18(6): 35-41. (in Chinese)
[16]   李培培, 韩宝文, 曹燕篆, 李佳佳, 王小芬, 崔宗均. 一组秸秆分解菌群的稳定性及对还田秸秆的促腐效果. 中国农业大学学报, 2011, 16(5): 45-49.
Li P P, Han B W, Cao Y Z, Li J J, Wang X F, Cui Z J. Functional stability and straw-degrading enhancement of a microbial community. Journal of China Agricultural University, 2011, 16(5): 45-49. (in Chinese)
[17]   董敏. 若尔盖湿地不同温度型纤维素分解菌的分离、鉴定和共发酵效果研究[D]. 成都: 四川农业大学, 2005.
Dong M. Isolation, identification of different temperature type cellulolytic micobes from Zoige Wetland and the effect of coferrmentation [D]. Chengdu: Sichuan Agricultural University, 2005. (in Chinese)
[18]   Zhu H, Qu F, Zhu L H. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Research, 1993, 21(22): 5279-5280.
[19]   Muyzer G, De Wall E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695-700.
[20]   Polz M F, Cavanaugh C M. Bias in template to product ratios in multitemplate PCR. Applied and Environmental Microbiology, 1998, 64(10): 3724-3730.
[21]   Vinas M, Sabate J, Guasp J, Lalucat J, Solanas A M. Culture dependent and independent approaches establish the complexity of a PAH degrading microbial consortium. Canadian Journal of Microbiology, 2005, 51(11): 897-909.
[22]   Szeekely A J, Sipos R, Berta B, Vajna B, Hajdu C, Marialigeti K. DGGE and T-RFLP analysis of bacterial succession during mushroom compost production and sequence aided T-RFLP profile of mature compost. Microbial Ecology, 2009, 57(3): 522-533.
[23]   Wang X F, Haruta S, Wang P, Ishii M, Igarashi Y, Cui Z J. Diversity of a stable enrichment culture which is useful for silage inoculant and its succession in alfalfa silage. Microbiology Ecology, 2006, 57(1): 106-115.
[24]   Zhang L L, Hu J, Zhu R Y, Zhou Q W, Chen J M. Degradation of paracetamol by pure bacterial culturesand their microbial consortium. Applied Biochemistry & Biotechnology, 2013, 97(8): 3687-3698.
[25]   Wu Z J, Dong H J, Zou L D, Lu D N, Liu Z. Enriched microbial community in bioaugmentation of petroleum-contaminated soil in the presence of wheat straw. Applied Biochemistry & Biotechnology, 2011, 164(7): 1071-1082.
[26]   Hatsumi S, Hironori I, Shohei A, Naoaki K, Akiko M, Kuniaki H, Teruhiko B, Kenji U. Isolation and characterization of a new Clostridium sp. that performs effective cellulosic waste digestion in a thermophilic methanogenic bioreactor. Applied and Environmental Microbiology, 2006, 72(5): 3702-3709.
[27]   Desvaux M, Guedon E, Petitdemange H. Cellulosecatabolism by Clostridium cellulolyticum growing in batch culture on defined medium. Applied and Environmental Microbiology, 2000, 66(6): 2461-2470.
[28]   Koukiekolo R, Cho H Y, Kosugi A, Inui M, Yukawa H, Doi R H. Degradation of cornfiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Applied and Environmental Microbiology, 2005, 71(7): 3504-3511.
[29]   Ren Z, Ward T E, Logan B E, Regan J M. Characterization of the cellulolytic and hydrogen-producing activities of six mesophilic. Journal of Applied Microbiology, 2007, 103(6): 2258-2266.
[30]   Chamkha M, Garcia J L, Labat M. Metabolism of cinnamic acids by some Clostridiales and emendation of the descriptions of Clostridium aerotolerans, Clostridium celerecrescens and Clostridium xylanolyticum. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(6): 2105-2111.
[31]   Rogers G M, Baecker A A W. Clostridium xylanolyticum sp. nov., an anaerobic xylanolytic bacterium from decayed Pinus patula wood chips. International Journal of Systematic and Evolutionary Microbiology, 1991, 41: 140-143.
[32]   Lynd L R, Weimer P J, Zyl W H, Pretorius I S. Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 2002, 66(3): 506-577.
[33]   Shrinivas D, Savitha G, Raviranjan K, Naik G R. A highly thermostable alkaline cellulase-free xylanase from thermoalkalophilic Bacillus sp. JB 99 suitable for paper and pulp industry: Purification and characterization. Applied Biochemistry and Biotechnology, 2010, 162(7): 2049-2057.
[34]   Kumar G S, Chandra M S, Sumanth M, Vishnupriya A, Reddy B R, Choi Y L. Cellulolytic enzymes from submerged fermentation of different substrates by newly isolated Bacillus Sp.. Journal of Korean Society of Applied Biological Chemistry, 2009, 52: 17-21.
[35]   Xu J L, He J, Wang Z C, Wang K, Li W J, Tang S K, Li S P. Rhodococcus qingshengii sp. nov., a carbendazim-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 2007, 57(12): 2754-2767.
[36]   Hutchison J M, Poust S K, Kumar M, Cropek D M, Macallister I E, Arnett C M, Zilles J L. Perchlorate reduction using free and encapsulated Azospira oryzae enzymes. Environmental Science & Technology, 2013, 47 (17): 9934-9941.
[37]   Barbara R H, Thomas H. Reassessment of the taxonomic structure of the diazotrophic genus Azoarcus sensu lato and description of three new genera and new species, Azovibrio restrictus gen. nov., sp. nov.,Azospira oryzae gen. nov., sp. nov. and Azonexus fungiphilus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2000, 50(2): 649-659.
[38]   Levican A, Collado L, Figueras M J. Arcobacter cloacae sp. nov. and Arcobacter suis sp. nov., two new species isolated from food and sewage. Systematic and Applied Microbiology, 2013, 36(1): 22-27.
[39]   Ban Q Y, Li J Z, Zhang L G, Jha A K, Ai B L, Zhang Y P. Microbial community composition and response to temperature shock of a mesophilic propionate-degrading methanogenic consortium. International Journal of Agriculture & Biology, 2013, 15(5): 915-920.
[40]   Juhász T, Szengyel, Z, Szijártó N, Réczey K. Effect of pH on cellulase production of Trichoderma reesei RUT C30. Applied Biochemistry and Biotechnology, 2004: 201-211.
[41]   Juhász T, Egyházi A, Réczey K. β-Glucosidase production by Trichoderma reesei. Applied Biochemistry and Biotechnology, 2005, 21 (124) : 243-254.
[42]   温博婷, 袁旭峰, 华彬彬, 尹永焕, 王小芬, 钟萼蓉, 崔宗均. 纤维素分解菌系WSD-5常温产酶高温糖化小麦秸秆研究. 中国农业大学学报, 2014, 19(2): 36-42.
Wen B T, Yuan X F, Hua B B, Yin Y H, Wang X F, Zhong E R, Cui Z J. Enzymatic digestibility by the composite microbial system of WSD-5 enzyme production at room temperature and saccharification at high temperature. Journal of China Agricultural University, 2014, 19(2): 36-42. (in Chinese)
[43]   刘尧, 李力, 李俊, 关大伟, 姜昕, 沈德龙, 杜秉海. 玉米秸秆高效腐解复合菌系CSS-1的选育及其组成分析. 中国农业科学, 2010, 43(21): 4437-4446.
Liu Y, Li L, Li J, Guan D W, Jiang X, Shen D L, Du B H. Construction and composition analysis of the complex microbial system CSS-1 of high decomposition efficiency for corn stalks. Scientia Agricultura Sinica, 2010, 43(21): 4437-4446. (in Chinese)
[44]   盛铭浩, 徐凤花, 代欢, 张晴. 低温纤维素降解复合菌系的选育及性能分析. 湖北农业科学, 2013, 52(8): 1814-1816.
Sheng M H, Xu F H, Dai H, Zhang Q. Breeding and properties analysis of low temperature cellulose degrading strains. Hubei Agriculture Sciences, 2013, 52(8): 1814-1816. (in Chinese)
[1] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[2] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[3] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[4] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[5] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[6] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[7] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[8] WANG HuiLing,YAN AiLing,SUN Lei,ZHANG GuoJun,WANG XiaoYue,REN JianCheng,XU HaiYing. Effects of Low Temperature Storage on Monoterpenes in Table Grape [J]. Scientia Agricultura Sinica, 2021, 54(1): 164-178.
[9] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[10] LIU LeiLei,JI HongTing,LIU Bing,MA JiFeng,XIAO LiuJun,TANG Liang,CAO WeiXing,ZHU Yan. Effects of Jointing and Booting Low Temperature Treatments on Photosynthetic and Chlorophyll Fluorescence Characteristics in Wheat Leaf [J]. Scientia Agricultura Sinica, 2018, 51(23): 4434-4448.
[11] ZHANG Xun, HAO JianPing, WANG Pu, ZHANG Ping, CHEN LuJie. Effects of Low Temperature on Maize Superior and Inferior Kernels Development During Grain Filling in Vitro [J]. Scientia Agricultura Sinica, 2018, 51(12): 2263-2273.
[12] LIU FengJiao, CAI BingBing, SUN ShengNan, BI HuanGai,AI XiZhen. Effect of Hydrogen-Rich Water Soaked Cucumber Seeds on Cold Tolerance and Its Physiological Mechanism in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2017, 50(5): 881-889.
[13] WANG HuiJuan, ZHAO Jing, SHI ZuoKun, QIU LingYu, WANG Su, ZHANG Fan, WANG ShiGui, TANG Bin. Sequence Analysis and Induced Expression of Three Novel Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154.
[14] WU Meng-jing, XU Qing-ye, LIU Ya, SHI Xing-rong, SHEN Qi-da, YANG Meng-meng, WANG Shi-gui, TANG Bin. The Super Cooling Point Change of Harmonia axyridis Under   Low Temperature Stress and Its Cold-Resistance Genes’   Expression Analysis [J]. Scientia Agricultura Sinica, 2016, 49(4): 677-685.
[15] BO Xiao-pei1, WANG Meng-xin1, CUI Lin1, WANG Jin-he2, HAN Bao-yu1. Evaluation on Correlations of Three Kinds of Osmoregulation Substances in Tea Fresh Leaves with Low Temperature During Winter and Spring Respectively and Their Difference Among Cultivars [J]. Scientia Agricultura Sinica, 2016, 49(19): 3807-3817.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!