Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (19): 3807-3817.doi: 10.3864/j.issn.0578-1752.2016.19.012

• HORTICULTURE • Previous Articles     Next Articles

Evaluation on Correlations of Three Kinds of Osmoregulation Substances in Tea Fresh Leaves with Low Temperature During Winter and Spring Respectively and Their Difference Among Cultivars

BO Xiao-pei1, WANG Meng-xin1, CUI Lin1, WANG Jin-he2, HAN Bao-yu1   

  1. 1 Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018
    2 Jiangsu Yinchunbiya Tea Co. Ltd, Danyang 212345, Jiangsu
  • Received:2016-03-14 Online:2016-10-01 Published:2016-10-01

Abstract: 【Objective】 The content dynamics of three types of osmoregulation substances in fresh leaves of two cultivars of tea plants and their correlations with air temperatures during winter and early spring were investigated, to evaluate the differences in their responsiveness to the low temperature between the two tea cultivars. 【Method】 Two early bud tea cultivars, ‘Pingyangtezao’ and ‘Zhongcha 102’, were chosen, and air temperatures around their tea shoots were recorded every day from Oct. 21 to April 5 for two consecutive years. The temperature of the dry and wet bulb thermometer at 8:00, 14:00 and 20:00 was daily recorded, and the average of the three dry bulb thermometers set in the experimental tea plantations three times per day standard for the temperature of tea shoot habitat. During these two testing periods adult tea leaves of each cultivar were sampled on the fifth, fifteenth and twenty-fifth days of each month. The soluble sugar contents in the tea fresh leaves were measured by anthrone colorimetric method, the remaining clean fresh leaves were processed into the steamed green tea samples, whereas the contents of proline and free amino acids were determined by SDE-HPLC method. 【Result】The test phase was divided into two stages, the overwintering period (2013/10/21-2014/3/52014/10/21-2015/3/5) and early spring period (2014/3/6-2014/4/52015/3/6-2015/4/5) according to the developmental threshold temperature and the dormancy temperature of the tea plant. Accompanied with initial gradual drops and then maintaining at low air temperatures during the two winters (2013/10/21-2014/3/5, 2014/10/21-2015/3/5), the soluble sugar contents in fresh tea leaves of the two cultivars increased continuingly, negatively correlated with the 10-day average air temperatures. The proline contents increased first and then kept at a high level, also negatively correlated with the 10-day average air temperatures. The free amino acid contents dropped first and then stayed at a low level, which was positively correlated with the 10-day average air temperatures. When the temperature appeared the lowest value, the content of soluble sugars and the content of proline also correspondingly appeared the highest values subsequently, then the content of free amino acids also correspondingly appeared the lowest value. When the temperature was the highest value, the content of soluble sugar and the content of proline also correspondingly appeared the lowest value later, the content of the free amino acids also correspondingly appeared the highest value soon afterwards. During the two spring seasons (2014/3/6-2014/4/5, 2015/3/6-2015/4/5), as air temperatures increased gradually, the soluble sugar contents decreased, while the proline and the free amino acid contents appeared to increase. The frost-resistance of tea plant closely related with air temperature, and soluble sugar, the contents of proline and free amino acids in tea leaves closely related with the frost-resistance of tea plants. During the two winter seasons, compared with ‘Zhongcha 102’, when suffered from the low temperature stress in winter, the content of each of three kinds of osmoregulation substances of ‘pingyangtezao’ more sensitively response to low temperature than ‘Zhongcha 102’, and the contents of the three kinds of substances in cultivar ‘pingyangtezao’ were slightly high. 【Conclusion】 Tea plants are vulnerable to frost, freeze and the late spring coldness from late autumn to Qingming Festival. As important cold-resisting indices of tea plants, the contents of soluble sugars, proline and the free amino acids varied sensitively in responses to the low temperatures, and showed significant correlations with the 10-day average air temperatures during the winter and early spring seasons. The responsiveness of cultivar ‘Pingyangtezao’ to the low temperatures was greater than that of cultivar ‘Zhongcha 102’.

Key words: low temperature, Camellia sinensis L., cold damage, soluble sugar, proline, free amino acids

[1]    Hwang J G, Kim Y D. A survey low temperature damage of tea tree at South Korea in 2011. Korean Journal of Agricultural and Forest Meteorology, 2012, 14(4): 246-253.
[2]    杨俊虎, 张行才, 王超, 陆小强. 气象因子与春茶及中高档春茶产量的灰色关联分析. 山西农业科学, 2012, 40(1): 53-55.
Yang J H, Zhang H C, Wang C, Lu X Q. Grey connection analysis of spring tea and high-middle grade spring tea yield with meteorological factors. Journal of Shanxi Agricultural Sciences, 2012, 40(1): 53-55. (in Chinese)
[3]    朱秀红, 袁洪刚, 郑海涛. 近45年山东茶树冻害气候原因分析. 中国茶叶, 2012(3): 11-13.
Zhu X H, Yuan H G, Zheng H T. Analysis on frozen injury weather of Shandong tea plants. China Tea, 2012(3): 11-13. (in Chinese)
[4]    吴华玲, 陈栋, 李家贤. 广东茶区“倒春寒”冻害情况的调查与反思. 广东农业科学, 2010(7): 39-41.
Wu H L, Chen D, Li J X. Investigation and reflection of late spring coldness frozen injury from Guangdong tea-producing area. Guangdong Agricultural Sciences, 2010(7): 39-41. (in Chinese)
[5]    黄海涛, 余继忠, 王贤波, 张伟, 周铁锋, 敖存. 不同抗寒性茶树品种秋季新梢的生理特性研究. 浙江农业学报, 2014, 26(4): 925-928.
Huang H T, Yu J Z, Wang X B, zhang w, zhou t f, ao c. Study on physiological characters of new shoot in different cold-resistant tea varieties in autumn. Acta Agriculturae Zhejiangensis, 2014, 26(4): 925-928. (in Chinese)
[6]    李叶云, 庞磊, 陈启文, 周月琴, 江昌俊. 低温胁迫对茶树叶片生理特性的影响. 西北农林科技大学学报(自然科学版), 2012, 40(4): 134-138.
Li Y Y, Pang L, Chen Q W, Zhou Y Q, Jiang C J. Effects of low temperature stress on physiological characteristics of tea leaves (Camellia sinensis L.). Journal of Northwest A & F University (Natural Sciences Edition), 2012, 40(4): 134-138. (in Chinese)
[7]    孙海伟, 曹德航, 尚涛, 张虹, 刘静, 谢忠琴, 王相涛. 茶树抗寒育种及转基因研究进展. 山东农业科学, 2013, 45(6): 119-122, 129.
Sun H W, Cao D H, Shang T, Zhang H, Liu J, Xie Z Q, Wang X T. Advances in research of cold-resistant breeding and transgene of tea plant. Shandong Agricultural Sciences, 2013, 45(6): 119-122, 129. (in Chinese)
[8]    张婷, 车凤斌, 潘俨, 胡柏文, 许娟, 李萍. 低温胁迫对核桃枝条几个抗寒生理指标的影响. 新疆农业科学, 2011, 48(8): 1428-1433.
Zhang T, Che F B, Pan Y, Hu B W, Xu J, Li P. Influence of low temperature stress on several cold resistance indexes of the primary branches of walnuts. Xinjiang Agricultural Sciences, 2011, 48(8): 1428-1433. (in Chinese)
[9]    李叶云, 舒锡婷, 周月琴, 江昌俊. 自然越冬过程中3个茶树品种的生理特性变化及抗寒性评价. 植物资源与环境学报, 2014, 23(3): 52-58.
Li Y Y, Shu X T, Zhou Y Q, Jiang C J. Change in physiological characteristics and cold resistance evaluation of three cultivars of Camellia sinensis during natural overwintering period. Journal of Plant Resources and Environment, 2014, 23(3): 52-58. (in Chinese)
[10]   裴文, 李鹏, 裴海潮, 刘增喜, 杨秋生. 低温条件下9种木兰科植物抗寒性研究. 河南农业科学, 2014, 43(4): 101-105.
Pei W, Li P, Pei H C, Liu Z X, Yang Q S. Comparative analysis of physiological index related to cold resistance of nine magnoliaceae plants under natural and artificial low temperature conditions.  Journal of Henan Agricultural Sciences, 2014, 43(4): 101-105. (in Chinese)
[11]   田野, 王梦馨, 王金和, 韩宝瑜. 茶鲜叶可溶性糖和氨基酸含量与低温的相关性. 茶叶科学, 2015, 35(6): 567-573.
Tian Y, Wang M X, Wang J H, Han B Y. Correlation of low temperature with soluble sugar and amino acid content in fresh tea leaves. Journal of Tea Science, 2015, 35(6): 567-573. (in Chinese)
[12]   林平, 赵东. 平阳特早茶研究. 茶叶, 1998, 24(4): 200-204.
Lin P, Zhao D. A study of Pingyang Tezaocha (Camellia sinensis L.). Journal of Tea, 1998, 24(4): 200-204. (in Chinese)
[13]   杨亚军, 杨素娟, 曾建明, 孙涛, 王玉书. 茶树新品种中茶102选育研究报告. 中国茶叶, 2004(6): 14-15.
Yang Y J, Yang S J, Zeng J M, Sun T, Wang Y S. A study of Zhongcha 102 (Camellia sinensis L.). China Tea, 2004(6): 14-15. (in Chinese)
[14]   陈宗懋. 中国茶叶大辞典. 北京: 中国轻工业出版社, 2000: 117.
Chen Z M. A dictionary of Chinese tea. Beijing: China Light Industry Press, 2000: 117. (in Chinese)
[15]   LASTDRAGER J, HANSON J, SMEEKENS S. Sugar signals and the control of plant growth and development. Journal of Experimental Botany, 2014,65(3): 799-807.
[16]   QAYYUM A. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes. African Journal of Biotechnology, 2011, 10(64): 14038-14045.
[17]   MA Y Y, ZHANG Y L, LU J, SHAO H B. Roles of plant soluble sugars and their responses to plant cold stress. African Journal of Biotechnology, 2009, 8(10): 2004-2010.
[18]   骆耀平. 茶树冻害的发生及防御. 中国茶叶, 2008(1): 30-31.
Luo Y P. Introduction to frozen injury of tea plants and their prevention measures. China Tea, 2008(1): 30-31. (in Chinese)
[18]   邱乾栋, 吕晓贞, 臧德奎, 张雷, 张立才, 杜淑辉. 植物抗寒生理研究进展. 山东农业科学, 2009, 8: 53-57.
Qiu Q D, Lv X Z, Zang D K, Zhang L, Zhang L C, Du S H. Research progress on plant physiology of cold resistance. Shandong Agricultural Sciences, 2009, 8: 53-57. (in Chinese)
[20]   Yue C, Cao H L, Wang L. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season. Plant Molecular Biology, 2015, 88(6): 591-608.
[21]   朱政, 蒋家月, 江昌俊, 李雯. 低温胁迫对茶树叶片SOD、可溶性蛋白和可溶性糖含量的影响. 安徽农业大学学报, 2011, 38(1): 24-26.
Zhu Z, Jiang J Y, Jiang C J, Li W. Effect of low temperature stess on SOD activity, soluble protein content and soluble sugar content in Camellia sinensis leaves. Journal of Anhui Agricultural University, 2011, 38(1): 24-26. (in Chinese)
[22]   赵明明, 周余华, 彭方仁, 郝明灼, 梁有旺, 任莺, 华宏. 低温胁迫下冬青叶片细胞内Ca2+水平及可溶性糖含量的变化. 南京林业大学学报(自然科学版), 2013, 37(5): 1-5.
Zhao M M, Zhou Y H, Peng F R, Hao M Z, Liang Y W, Ren Y, Hua H. Changes of Ca2+ level and soluble sugar content in cells of Ilex L. leaflets under low temperature stress. Journal of Nanjing Forestry University (Natural Sciences Edition), 2013, 37(5): 1-5. (in Chinese)
[23]   姚远, 闵义, 胡新文, 李开绵, 郭建春. 低温胁迫对木薯幼苗叶片转化酶及可溶性糖含量的影响. 热带作物学报, 2010, 31(4): 556-560.
Yao Y, Min Y, Hu X W, Li K M, Guo J C. Effect of low temperature stress on the activity of invertase and soluble sugar content in leaves of Cassava seedlings. Chinese Journal of Tropical Crops, 2010, 31(4): 556-560. (in Chinese)
[24]   Sagisaka S, Araki T. Amino acid pools in perennial plants at the wintering stage and at the beginning of growth. Plant and Cell Physiology, 1983, 24(3): 479-494.
[25]   Delauney A J, Verma D P S. Proline biosynthesis and osmoregulation in plants. The Plant Journal, 1993, 4(2): 215-223.
[26]   罗丹, 张喜春, 田硕. 低温胁迫对番茄幼苗脯氨酸积累及其代谢关键酶活性的影响. 中国农学通报, 2013, 29(16): 90-95.
Luo D, Zhang X C, Tian S. Effect of low temperature stress on proline accumulation and the activities of the key enzymes involved in the proline metabolism in leaves of tomato seedling. Chinese Agricultural Science Bulletin, 2013, 29(16): 90-95. (in Chinese)
[27]   陈璇, 李金耀, 马纪, 张富春. 低温胁迫对春小麦和冬小麦叶片游离脯氨酸含量变化的影响. 新疆农业科学, 2007, 44(5): 553-556.
Chen X, Li J Y, Ma J, Zhang F C. Effect of low temperature stress on change of free proline content in the leaves of spring and winter wheat. Xinjiang Agricultural Sciences, 2007, 44(5): 553-556. (in Chinese)
[28]   杨亚军, 郑雷英, 王新超. 冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响. 茶叶科学, 2004, 24(3): 177-182.
Yang Y J, Zheng L Y, Wang X C. Effect of cold acclimation and ABA on cold hardiness, contents of proline in tea plants. Journal of Tea Science, 2004, 24(3): 177-182. (in Chinese)
[29]   BORGO L, MARUR C J, Vieira L G E. Effects of high proline accumulation on chloroplast and mitochondrial ultrastructure and on osmotic adjustment in tobacco plants. Acta Scientiarum Agronomy, 2015, 37(2): 153-175.
[30]   LÜ B S, MA H Y, LI X W, Wei, Li X, LÜ H Y, YANG H Y, JIANG C J, LIANG Z W. Proline accumulation is not correlated with saline-alkaline stress tolerance in rice seedlings. Agronomy Journal, 2015, 107(1): 51-60.
[31]   梁锁兴, 孟庆仙, 石美娟, 罗钢铁, 王贵珠. 平欧榛枝条可溶性蛋白及可溶性糖含量与抗寒性关系的研究. 中国农学通报, 2015, 31(13): 14-18.
Liang S X, Meng Q X, Shi M J, Luo G T, Wang G Z. Reasearch on relationship between cold-resistance and soluble protein and sugar of Corylus heterophylla × Corylus avellana branches. Chinese Agricultural Science Bulletin, 2015, 31(13): 14-18. (in Chinese)
[32]   龚明, 刘友良, 朱培仁. 低温下稻苗叶片中蛋白质及游离氨基酸的变化. 植物生理学通讯, 1989(4): 18-22.
Gong M, Liu Y L, Zhu P R. Changes of proteins and free amino acids in leaves of rice seedlings during chilling stress. Plant Physiology Communications, 1989(4): 18-22. (in Chinese)
[33]   KOVACS Z, Simon-Sarkadi L, Sovany C, Kirsch K, Galiba G,  Kocsy G. Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Science, 2011, 180(1): 61-68.
[34]   郭湘, 唐茜, 许燕, 陈玖琳, 王自琴. 早春霜冻对不同茶树品种芽叶的生化成分及制茶品质的影响. 云南大学学报(自然科学版), 2015(6): 930-938.
Guo X, Tang Q, Xu Y, Chen J L, Wang Z Q. Effect of frost in early spring on biochemical composition and sensory quality of new shoots in different tea cultivars. Journal of Yunnan University(Natural Science Edition), 2015(6): 930-938. (in Chinese)
[35]   林郑和, 钟秋生, 陈常颂. 茶树抗性育种研究进展. 福建茶叶, 2015(4): 2-4.
Lin Z H, Zhong Q S, Chen C S. Research progress on resistance breeding of tea plant. Fujian Tea, 2015(4): 2-4. (in Chinese)
[36]   韩宝瑜, 章正和, 房国宾, 黄安智. 茶树益微增强茶树抗寒和复壮效能的试验研究. 茶叶, 1996, 12(1): 18-19.
Han B Y, Zhang Z H, Fang G B, Huang A Z. Study on enhancing cold-resistant of tea plant by tea beneficial microbes. Journal of Tea, 1996, 12(1): 18-19. (in Chinese)
[1] GUO ShiBo,ZHANG FangLiang,ZHANG ZhenTao,ZHOU LiTao,ZHAO Jin,YANG XiaoGuang. The Possible Effects of Global Warming on Cropping Systems in China XIV. Distribution of High-Stable-Yield Zones and Agro-Meteorological Disasters of Soybean in Northeast China [J]. Scientia Agricultura Sinica, 2022, 55(9): 1763-1780.
[2] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[3] YIN GuangKun,XIN Xia,ZHANG JinMei,CHEN XiaoLing,LIU YunXia,HE JuanJuan,HUANG XueQi,LU XinXiong. The Progress and Prospects of the Theoretical Research on the Safe Conservation of Germplasm Resources in Genebank [J]. Scientia Agricultura Sinica, 2022, 55(7): 1263-1270.
[4] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[5] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[6] ZHU Yin,ZHANG Yue,YAN Han,LÜ HaiPeng,LIN Zhi. Enantiomeric Analysis of Free Amino Acids in Different Teas [J]. Scientia Agricultura Sinica, 2021, 54(4): 804-819.
[7] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[8] HOU ChengLi,HUANG CaiYan,ZHENG XiaoChun,LIU WeiHua,YANG Qi,ZHANG DeQuan. Changes of Antioxidant Activity and Its Possible Mechanism in Tan Sheep Meat in Different Postmortem Time [J]. Scientia Agricultura Sinica, 2021, 54(23): 5110-5124.
[9] ZHAO WeiSong,GUO QingGang,DONG LiHong,WANG PeiPei,SU ZhenHe,ZHANG XiaoYun,LU XiuYun,LI SheZeng,MA Ping. Transcriptome and Proteome Analysis of Bacillus subtilis NCD-2 Response to L-proline from Cotton Root Exudates [J]. Scientia Agricultura Sinica, 2021, 54(21): 4585-4600.
[10] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[11] LONG WeiHua,PU HuiMing,GAO JianQin,HU MaoLong,ZHANG JieFu,CHEN Song. Creation of High-Oleic (HO) Canola Germplasm and the Genetic and Physiological Analysis on HO Trait [J]. Scientia Agricultura Sinica, 2021, 54(2): 261-270.
[12] WANG HuiLing,YAN AiLing,SUN Lei,ZHANG GuoJun,WANG XiaoYue,REN JianCheng,XU HaiYing. Effects of Low Temperature Storage on Monoterpenes in Table Grape [J]. Scientia Agricultura Sinica, 2021, 54(1): 164-178.
[13] SHEN ShengFa,XIANG Chao,WU LieHong,LI Bing,LUO ZhiGao. Analysis on the Characteristics of Soluble Sugar Components in Sweetpotato Storage Root and Its Relationship with Taste [J]. Scientia Agricultura Sinica, 2021, 54(1): 34-45.
[14] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[15] REN ShengMao, DENG YuChuan, WEN FengJun, Sajad Hussain, PU QuanMing, YU XiaoBo, LIU WeiGuo, YANG WenYu. Effects of Intercropping on the Transformation of Carbohydrate Related Substances in Stem of Soybean Seedling Stage and Its Relationship with Leaf Photosynthesis [J]. Scientia Agricultura Sinica, 2018, 51(7): 1272-1282.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!