Scientia Agricultura Sinica ›› 2016, Vol. 49 ›› Issue (4): 677-685.doi: 10.3864/j.issn.0578-1752.2016.04.007

• PLANT PROTECTION • Previous Articles     Next Articles

The Super Cooling Point Change of Harmonia axyridis Under   Low Temperature Stress and Its Cold-Resistance Genes’   Expression Analysis

WU Meng-jing, XU Qing-ye, LIU Ya, SHI Xing-rong, SHEN Qi-da, YANG Meng-meng, WANG Shi-gui, TANG Bin   

  1. College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036
  • Received:2015-10-08 Online:2016-02-16 Published:2016-02-16

Abstract: 【Objective】Harmonia axyridis is an important predatory lady beetle as natural enemies attacking agricultural and forestry pests. H. axyridis has strong cold-hardiness as it can overwinter as disapausing adults in Northeast population of China. The objective of this study is to use the super cooing point and the changes of cold resistance gene mRNA level as the index of cold-resistance ability, and to define the effect of low temperature stress on improving cold resistance of H. axyridis.【Method】The wild H. axyridis adults were collected and treated for 2, 12 and 24 h by three different low temperatures of 0, 5 and 10 to get the best low temperature stress. The changes of super cooling point were detected all the time during the period of low temperature processing. The H. axyridis adults of experimental populations and wild adults were used as the control groups and experimental groups, respectively. All of these adults were treated under the condition of 5 low temperature and stored for 10, 20 and 30 d, and the changes of super cooling point and survival rate were measured after the treatment. Six important cold hardiness genes were sure by transcriptome and digital gene expression tag profiling (DGE). The relative expressions of six important cold hardiness genes at mRNA level were detected by real-time fluorescent quantitative PCR. 【Result】The super cooling point was decreased significantly after acclimation for 12 h at 5. Acclimation for 12 h at 5 could effectively decrease the super cooling point and other indexes of cold resistance in H. axyridis. Setting treatment group which was acclimated for 12 h at 5 and control group deposited for 10 , 20, and 30 d at 5, the survival rate and super cooling point of control group were all higher than the treatment group. In the same time, the 6 genes’ relative expression of mRNA level results showed HSP21.4, trehalase, transketolase, ATP-grasp fold domain protein and dopa decarboxylase were up-regulated when cold acclimation, but erythrocyte binding protein was down-regulated. HSP21.4 was always highly expressed in cryopreservation, and the treatment group was strikingly higher than the control group. Others were on low expression in cryopreservation, and strikingly lower than the control group. 【Conclusion】The low temperature stress can reduce the super cooing point of the H. axyridis, but it can’t improve the survival ability of summer high temperature resistant population. HSP21.4 and erythrocyte binding protein can help H. axyridis to improve the cold-resistance ability respectively by high expression and low expression. Trehalase, transketolase, ATP-grasp fold domain protein and dopa decarboxylase are highly expressed in cold acclimation to resist cold environment.

Key words: Harmonia axyridis, low temperature stress, cold-resistant gene, quantitative expression, preservation in low temperature

[1]    Koch R L. The multicolored Asian lady beetle, Harmonia axyridis: A review of its biology, uses in biological control, and non-target impacts. Journal of Insect Science, 2003, 3: 32.
[2]    申智慧, 杨洪, 袁瑞, 张帆. 异色瓢虫的交配及配后的保护行为研究. 山地农业生物学报, 2011, 30(1): 27-31.
Shen Z H, Yang H, Yuan R, Zhang F. An investigation in mating behavior and post-copulatory guarding behavior of Harmonia axyridis Pallas. Journal of Mountain Agriculture and Biology, 2011, 30(1): 27-31. (in Chinese)
[3]    王小艺, 沈佐锐. 异色瓢虫的应用研究概况. 昆虫知识, 2002, 39(4): 255-261.
Wang X Y, Shen Z R. Progress of applied research on multicolored Asian ladybird beetle. Entomological Knowledge, 2002, 39(4): 255-261. (in Chinese)
[4]    郭建英, 万方浩. 三种饲料对异色瓢虫和龟纹瓢虫的饲喂效果. 中国生物防治, 2001, 17(3): 116-120.
Guo J Y, Wan F H. Effects of three diets on development and fecundity of the ladybeetles Harminia axyridis and Propylaea japonica. Chinese Journal of Biological Control, 2001, 17(3): 116-120. (in Chinese)
[5]    杨洪, 熊继文, 张帆. 异色瓢虫人工饲料研究进展. 山地农业生物学报, 2003, 22(2): 169-172.
Yang H, Xiong J W, Zhang F. Advances of artificial diet for Harminia axyridis. Journal of Mountain Agriculture and Biology, 2003, 22(2): 169-172. (in Chinese)
[6]    滕树兵, 徐志强. 人工扩繁代异色瓢虫卵和成虫最适冷藏条件的探讨. 昆虫知识, 2005, 42(2): 180-182.
Teng S B, Xu Z Q. The cold storage conditions of Harmonia axyridis eggs and adults in mass-rearing. Chinese Bulletin of Entomology, 2005, 42(2): 180-182. (in Chinese)
[7]    杨俊成, 沈佐锐. 冷藏条件对瓢虫存活的影响. 昆虫学报, 2000, 43(增刊): 211-214.
Yang J C, Shen Z R. Effect of cold storage on survival of the ladybird beetles, Leis axyridis and Coccoinella septempunctata. Acta Entomologica Sinica, 2000, 43(Suppl.): 211-214. (in Chinese)
[8]    孙锐, 王洪平. 异色瓢虫成虫越冬能力的研究. 山东农业科学, 2008(2): 73-74.
Sui R, Wang H P. Overwintering capability of Leis axyridis adults. Shandong Agricultural Sciences, 2008(2): 73-74. (in Chinese)
[9]    Watanabe M. Cold tolerance and myo-inositol accumulation in overwintering adults of a lady beetle, Harmonia axyridis (Coleoptera: Coccinellidae). European Journal of Entomology, 2002, 99: 5-9.
[10]   Koch R L, Carrillo M A, Venette R C, Cannon C A, Hutchison W D. Cold hardiness of the multicolored Asian lady beetle(Coleoptera: Coccinellidae). Environmental Entomology, 2004, 33(4): 815-822.
[11]   Labrie G, Coderre D, Lucas E. Overwintering strategy of multicolored Asian lady beetle (Coleoptera: Coccinellidae): cold-free space as a factor of invasive success. Annals of the Entomological Society of America, 2008, 101(5): 860-866.
[12]   Berkvens N, Bale J S, Berkvens D, Tirry L, De Clercq P. Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. Journal of Insect Physiology, 2010, 56: 438-444.
[13]   Qin W, Neal S J, Robertson R M, Westwood J T, Walker V K. Cold hardening and transcriptional change in Drosophila melanogaster. Insect Molecular Biology, 2005, 14(6): 607-613.
[14]   鞠瑞亭, 杜予州. 昆虫过冷却点的测定及抗寒机制研究概述. 武夷科学, 2002, 18(2): 252-257.
Ju R T, Du Y Z. Mensuration of super cooling point and cold hardiness of insects. Wuyi Science Journal, 2002, 18(2): 252-257. (in Chinese)
[15]   刘奎, 彭正强, 李文德, 符悦冠, 金启安. 椰心叶甲过冷却点的测定. 植物检疫, 2005, 19(1): 24-26.
Liu K, Peng Z Q, Li W D, Fu Y G, Jin Q A. The super-cooling point measure of Brontispa lngissima. Plant Quarantine, 2005, 19(1): 24-26. (in Chinese)
[16]   纪冬, 辛绍杰. 实时荧光定量PCR的发展和数据分析. 生物技术通讯, 2009, 20(4): 598-600.
Ji D, Xin S J. Development and data analysis of real-time fluorescent quantitative PCR. Letters in Biotechnology, 2009, 20(4): 598-600. (in Chinese)
[17]   Lee R E, Chen C P, Denlinger D L. A rapid cold hardening process in insects. Science, 1987, 238(4832): 1415-1417.
[18]   Denlinger D L, Lee R E. Low Temperature Biology of Insects. Cambridge University Press, 2010.
[19]   Chen C P, Denlinger D L, Lee R E. Cold shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiological Zoology, 1987, 60(3): 297-304.
[20]   Worland M R, Convey P. Rapid cold hardening in Antarctic microarthropods. Functional Ecology, 2001, 15: 515-524.
[21]   Shintani Y, Ishikawa Y. Relationship between rapid cold-hardening and cold acclimation in the eggs of the yellow-spotted longicorn beetle, Psacothea hilaris. Journal of Insect Physiology, 2007, 53: 1055-1062.
[22]   Czajka M C, Lee R E. A rapid cold hardening response protecting against cold-shock injury in Drosophila melanogaster. Journal of Experimental Biology, 1990, 148: 245-254.
[23]   Yi S X, Lee R E. Rapid cold-hardening blocks cold-induced apoptosis by inhibiting the activation of pro-caspases in the flesh fly Sarcophaga crassipalpis. Apoptosis, 2011, 16: 249-255.
[24]   Powell S J, Bale J S. Cold shock injury and ecological costs of rapid cold hardening in the grain aphid Sitobion avenae (Hemiptera: Aphididae). Journal of Insect Physiology, 2004, 50: 277-284.
[25]   Larsen K J, Lee R E. Cold tolerance including rapid cold-hardening and inoculative freezing of fall migrant monarch butterflies in Ohio. Journal of Insect Physiology, 1994, 40(10): 859-864.
[26]   Qiang C K, Du Y Z, Yu L Y, Cui Y D, Zheng F S, Lu M X. Effect of rapid cold hardening on the cold tolerance of the larvae of the rice stem borer, Chilo suppressalis (Walker). Agricultural Sciences in China, 2008, 7(3): 321-328.
[27]   Wang X H, Kang L. Rapid cold hardening in young hoppers of the migratory locust Locusta migratoria L. (Orthoptera: Acridiidae). CryoLetters, 2003, 24: 331-340.
[28]   Mcdonald J R, Bale J S, Walters K F A. Rapid cold hardening in the western flower thrips Frankliniella occidentalis. Journal of Insect Physiology, 1997, 43(8): 759-766.
[29]   Broufas G D, Koveos D S. Rapid cold hardening in the predatory mite Euseius (Amblyseius) finlandicus (Acari: Phytoseiidae). Journal of Insect Physiology, 2001, 47: 699-708.
[30]   Hawes T C, Bale J S. Plasticity in arthropod cryotypes. The Journal of Experimental Biology, 2007, 210: 2585-2592.
[31]   秦资. 异色瓢虫TPS与Treh1基因低温诱导表达分析[D]. 杭州: 杭州师范大学, 2012.
Qin Z. The expression analysis of TPS and Trehl genes under cold induction in Harmonia axvridis[D]. Hangzhou: Hangzhou Normal University, 2012. (in Chinese)
[32]   赵静, 陈珍珍, 曲建军, 张帆, 印象初, 许永玉. 异色瓢虫成虫冷驯化反应及体内几种酶活力的相关变化. 昆虫学报, 2010, 53(2): 147-153.
Zhao J, Chen Z Z, Qu J J, Zhang F, Yin X C, Xu Y Y. Responses of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) adults to cold acclimation and the related changes of activities of several enzymes in their bodies. Acta Entomologica Sinica, 2010, 53(2): 147-153. (in Chinese)
[33]   Bale J S. Insect cold hardiness: a matter of life and death. European Journal of Entomology, 1996, 93: 369-382.
[34]   Bonnett T R, Robert J A, Pitt C, Fraser J D, Keeling C I, Bohlmann J, Huber D P. Global and comparative proteomic profiling of overwintering and developing mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae), larvae. Insect Biochemistry and Molecular Biology, 2012, 42(12): 890-901.
[35]   陈豪, 梁革梅, 邹朗云, 郭芳, 吴孔明, 郭予元. 昆虫抗寒性的研究进展. 植物保护, 2010, 36(2): 18-24.
Chen H, Liang G M, Zou L Y, Guo F, Wu K M, Guo Y Y. Research progress in the cold hardiness of insects. Plant Protection, 2010, 36(2): 18-24. (in Chinese)
[36]   王鹏, 于毅, 门兴元, 张思聪, 张安盛, 许永玉, 李丽莉. 越冬过程中桃小食心虫结茧和裸露幼虫体内耐寒性物质动态变化. 昆虫学报, 2011, 54(3): 279-285.
Wang P, Yu Y, Men X Y, Zhang S C, Zhang A S, Xu Y Y, Li L L. Dynamic of cold-resistant substances in overwintering cocooned and non-cocooned larvae of the peach fruit moth, Carposina niponensis Walsingham (Lepidoptera: Carposinidae). Acta Entomologica Sinica, 2011, 54(3): 279-285. (in Chinese)
[37]   Denlinger D, Li A, Rinehart J. Heat shock proteins are critical for insect winter survival. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2007, 146(4): S151-S152.
[38]   Huang L H, Wang H S, Kang L. Different evolutionary lineages of large and small heat shock proteins in eukaryotes. Cell Research, 2008, 18(10): 1074-1076.
[39]   Huang L H, Wang C Z, Kang L. Cloning and expression of five heat shock protein genes in relation to cold hardening and development in the leaf miner, Liriomyza sativa. Journal of Insect Physiology, 2009, 55(3): 279-285.
[40]   Elbein A D, Pan Y T, Pastuszak I, Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiology, 2003, 13(4): 17R-27R.
[41]   Argüelles J C. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Archives of Microbiology, 2000, 174(4): 217-224.
[42]   周洁. 海藻糖对酵母抗冻能力的影响[D]. 无锡: 江南大学, 2005.
Zhou J. Effect of trehalose on the frozen tolerance of yeast[D]. Wuxi: Jiangnan University, 2005. (in Chinese)
[43]   Ueno T, Tomita J, Kume S, Kume K. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PloS One, 2012, 7(2): e31513.
[1] WANG JunJuan,LU XuKe,WANG YanQin,WANG Shuai,YIN ZuJun,FU XiaoQiong,WANG DeLong,CHEN XiuGui,GUO LiXue,CHEN Chao,ZHAO LanJie,HAN YingChun,SUN LiangQing,HAN MingGe,ZHANG YueXin,FAN YaPeng,YE WuWei. Characteristics and Cold Tolerance of Upland Cotton Genetic Standard Line TM-1 [J]. Scientia Agricultura Sinica, 2022, 55(8): 1503-1517.
[2] DONG SangJie,JIANG XiaoChun,WANG LingYu,LIN Rui,QI ZhenYu,YU JingQuan,ZHOU YanHong. Effects of Supplemental Far-Red Light on Growth and Abiotic Stress Tolerance of Pepper Seedlings [J]. Scientia Agricultura Sinica, 2022, 55(6): 1189-1198.
[3] CUI Peng,ZHAO YiRen,YAO ZhiPeng,PANG LinJiang,LU GuoQuan. Starch Physicochemical Properties and Expression Levels of Anabolism Key Genes in Sweetpotato Under Low Temperature [J]. Scientia Agricultura Sinica, 2022, 55(19): 3831-3840.
[4] XIAO LiuJun,LIU LeiLei,QIU XiaoLei,TANG Liang,CAO WeiXing,ZHU Yan,LIU Bing. Testing the Responses of Low Temperature Stress Routine to Low Temperature Stress at Jointing and Booting in Wheat [J]. Scientia Agricultura Sinica, 2021, 54(3): 504-521.
[5] JIN Rong,LIU Ming,ZHAO Peng,ZHANG QiangQiang,ZHANG AiJun,TANG ZhongHou. IbMKP6, A Mitogen-Activated Protein Kinase, Confers Low Temperature Tolerance in Sweetpotato [J]. Scientia Agricultura Sinica, 2021, 54(20): 4265-4273.
[6] XU Shu,LI Ling,ZHANG SiMeng,CAO RuXia,CHEN LingLing,CUI Peng,Lü ZunFu,WU LieHong,LU GuoQuan. Evaluation of Genotype Differences of Cold Tolerance of Sweet Potato Seedlings by Subordinate Function Value Analysis [J]. Scientia Agricultura Sinica, 2019, 52(17): 2929-2938.
[7] LIU FengJiao, CAI BingBing, SUN ShengNan, BI HuanGai,AI XiZhen. Effect of Hydrogen-Rich Water Soaked Cucumber Seeds on Cold Tolerance and Its Physiological Mechanism in Cucumber Seedlings [J]. Scientia Agricultura Sinica, 2017, 50(5): 881-889.
[8] YAN Shuo, XIONG XiaoFei, CHU YanNa, LI Zhen, WU PengXiang, YANG QingPo, CUI WeiNa, XU JinTao5, XU LiXia, ZHANG QingWen, LIU XiaoXia. Effects of Predator-Induced Stress from Harmonia axyridis on the Development and Stress Protein Gene Expression of Helicoverpa armigera [J]. Scientia Agricultura Sinica, 2017, 50(21): 4118-4128.
[9] WANG HuiJuan, ZHAO Jing, SHI ZuoKun, QIU LingYu, WANG Su, ZHANG Fan, WANG ShiGui, TANG Bin. Sequence Analysis and Induced Expression of Three Novel Small Heat Shock Proteins Mediating Cold-Hardiness in Harmonia axyridis [J]. Scientia Agricultura Sinica, 2017, 50(16): 3145-3154.
[10] WANG Jun-juan, MU Min, WANG Shuai, LU Xu-ke, CHEN Xiu-gui, WANG De-long, FAN Wei-li, YIN Zu-jun, GUO Li-xue, YE Wu-wei, YU Shu-xun. Molecular Clone and Expression of GhDHN1 Gene in Cotton (Gossypium hirsutum L.) [J]. Scientia Agricultura Sinica, 2016, 49(15): 2867-2878.
[11] ZHAO Jing, XIAO Da, ZHANG Fan, WANG Su. Life Tables of Harmonia axyridis Pallas Under Laboratory Constant and Greenhouse Fluctuating Temperatures [J]. Scientia Agricultura Sinica, 2015, 48(16): 3176-3185.
[12] SUN Xia, WANG Xiu-Feng, ZHENG Cheng-Shu, XING Shi-Yan, SHU Huai-Rui. The cDNA Cloning and Analysis of Sequence Information and Quantitative Express of Chrysanthemum Rhythms Clock Output Gene CmGI (GIGANTEA) [J]. Scientia Agricultura Sinica, 2012, 45(13): 2690-2703.
[13] ZHANG Xiao-yan,XU Kun. Effect of Interaction Between Rootstock and Scion on Chilling Tolerance of Grafted Eggplant Seedlings Under Low Temperature and Light Conditions
[J]. Scientia Agricultura Sinica, 2009, 42(10): 3734-3740 .
[14] . Effects of Different Concentrations of Cu2+,Zn2+ and Mn2+ in nutrient solution on SOD Activity of Grafted and Own-Root Cucumber Seedling Leaves under Low temperature [J]. Scientia Agricultura Sinica, 2008, 41(3): 772-778 .
[15] Xuecheng Sun,,,,. Effects of Molybdenum on Antioxidative Enzymes in Winter Wheat Under Low Temperature Stress [J]. Scientia Agricultura Sinica, 2006, 39(05): 952-959 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!