Scientia Agricultura Sinica ›› 2021, Vol. 54 ›› Issue (1): 164-178.doi: 10.3864/j.issn.0578-1752.2021.01.012

• HORTICULTURE • Previous Articles     Next Articles

Effects of Low Temperature Storage on Monoterpenes in Table Grape

WANG HuiLing1(),YAN AiLing2,SUN Lei3,ZHANG GuoJun1,WANG XiaoYue1,REN JianCheng1,XU HaiYing1()   

  1. 1Beijing Academy of Forestry and Pomology Sciences, Beijing 100093
    2Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100097
    3Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(North China), Ministry of Agriculture, Beijing 100097
  • Received:2020-04-29 Accepted:2020-08-19 Online:2021-01-01 Published:2021-01-13
  • Contact: HaiYing XU E-mail:wanghui198216@126.com;haiyingxu63@sina.com

Abstract:

【Objective】The content and composition of free and glycosidically-bound monoterpenes during low temperature storage were investigated, and the changes of aroma components for Muscat flavor from the perspective of more comprehensive metabolites were interpreted, so as to provide a theoretical basis for the better study of the change of grape flavor quality and the establishment of the best storage condition.【Method】Two new grape varieties RuiduHongmei and RuiduZaohong were used as materials. The healthy fruits were precooled to -1 - 0℃ firstly, and then were transferred into PE grape fresh-keeping film. The film was subsequently sealed and put into cold storage ((2±1)℃, 90% RH). The samples were taken every 15 days. The physical, chemical and appearance quality indexes of the fruits were determined by conventional methods. The contents of free and glycosidically-bound monoterpenes in grape berries were determined by headspace solid phase microextraction combined with gas chromatography and mass spectrometry (SPME-GC-MS).【Result】In the process of low temperature storage, the content of soluble solids showed a decreasing trend, while the changes of titratable acid showed slightly different in two grape cultivars; the berry weight loss, percentage of the decayed, berry drop ratio and the browning index were increased with the extension of low temperature storage time, but berry retention force exhibited a decrease; the compounds analysis results showed that the main free monoterpenes in the two grape varieties included linalool, β-Myrcene, β-cis-Ocimene, limonene, cis-furan linalool oxide and geraniol; and the major glycosidically-bound monoterpenes included linalool, β-Myrcene, geraniol, geranial, β-cis-Ocimene, nerol oxide and so on. During low temperature storage, the content of total free monoterpenes decreased significantly; the change patterns of 28 free monoterpenes were grouped into four types; compared to the initial storage stage, the content of most of the free type compounds was decreased sooner or later in the process of storage. Principal component analysis showed that free monoterpenes, such as geranic acid, nerol oxide, linalool and 4-Terpineol (M17) could be used as the major contributions for different storage time samples. Each glycosidically-bound monoterpene also showed different change trends during low temperature storage in two grape cultivars. The content of the total glycosidically-bound monoterpenes showed opposite trends to that of free monoterpenes. The glycosidically-bound rose oxides could be used as marker monoterpenes to distinguish the two grape varieties.【Conclusion】RuiduHongmei had a better low temperature storage characteristics than RuiduZaohong. The contents of free monoterpenes decreased significantly in low temperature storage, the free geranic acid, nerol oxide and linalool could be used as the main components for different storage time, and the bound oxidized rose could be used as the marker for variety differentiation.

Key words: grape, low temperature storage, free monoterpenes, glycosidically-bound monoterpenes

Fig. 1

The changes of physiochemical data of two grape varieties during storage at (2±1)℃"

Table 1

The changes of fruit appearance quality traits of two grape varieties during storage at (2±1)℃"

品种
Variety
贮藏天数
Days after storage (d)
失重率
Weight loss
(%)
果柄耐拉力
Berry retention force (N)
烂果率
Percentage of decayed (%)
落粒率
Berry drop ratio
(%)
果梗褐变指数
Browning index
(%)
瑞都红玫RDHM 0 0 3.94±0.11 0 0 0
15 0.67±0.13 3.95±0.18 5.66±1.50 0 0
30 2.15±0.80 4.49±0.22 9.26±1.654 14.04±2.22 30.00±2.10
45 5.46±0.64 2.82±0.14 29.82±2.31 14.81±1.60 35.00±3.50
瑞都早红RDZH 0 0 3.62±0.37 0 0 0
15 1.39±0.37 4.04±0.16 1.96±0.96 4.84±1.40 0
30 2.05±0.66 3.42±0.14 20.97±3.12 24.49±2.02 2.50±1.50
45 8.57±0.90 2.06±0.21 77.38±8.42 50.00±13.54 35.00±3.00

Table 2

Changes of free monoterpenes content in two grape varieties during storage at (2±1)℃ (μg?L-1)"

编号
Code
化合物
Compound
品种
Variety
贮藏天数Days after storage(d)
0 15 30 45
M1 β-月桂烯
β-Myrcene
瑞都红玫 RDHM 72.62±1.79a 29.98±1.07c 10.10±2.19d 35.39±0.64b
瑞都早红 RDZH 48.94±0.12a 36.79±0.74b 25.38±1.81c 8.84±0.04d
M2 柠檬烯
Limonene
瑞都红玫 RDHM 30.66±1.24a 11.71±0.50c 7.40±0.12d 24.2±0.32b
瑞都早红 RDZH 12.36±0.12c 15.17±0.90a 13.04±0.22b 6.37±0.27d
M3
水芹烯
phellandrene
瑞都红玫RDHM 7.79±0.14a 5.78±0.30bc 1.87±0.08c 6.07±0.03b
瑞都早红 RDZH 6.06±0.01a 5.82±0.12b 5.77±0.12c 1.65±0.03d
M4
β-trans-罗勒烯
β-trans-Ocimene
瑞都红玫 RDHM 19.74±0.84a 7.33±0.30c 3.83±0.03d 12.45±0.01b
瑞都早红RDZH 9.98±0.07a 9.58±0.37b 8.98±0.31c 3.11±0.02d
M5
γ-松油烯
γ-Terpinen
瑞都红玫 RDHM 3.27±0.05a 1.55±0.12b 0.67±0.06c 3.05±0.01a
瑞都早红 RDZH 1.81±0.10c 2.44±0.18a 2.10±0.01b 0.52±0.01d
M6
β-cis-罗勒烯
β-cis-Ocimene
瑞都红玫 RDHM 44.57±2.22a 14.26±0.73c 6.09±0.13d 28.24±0.23b
瑞都早红 RDZH 19.69±0.19a 19.75±0.92a 13.09±0.72b 4.52±0.02c
M7
异松油烯
Terpinolen
瑞都红玫 RDHM 9.87±0.43a 4.75±0.14c 3.88±0.41d 8.84±0.06b
瑞都早红 RDZH 4.30±0.05c 5.74±0.19b 6.60±0.06a 1.93±0.20d
M8
cis-氧化玫瑰
cis Rose oxide
瑞都红玫 RDHM 0.20±0.01 tr tr tr
瑞都早红 RDZH 0.38±0.03b 0.72±0.03a 0.73±0.04a tr
M9
trans-氧化玫瑰
trans-Rose oxide
瑞都红玫 RDHM tr nd nd nd
瑞都早红 RDZH tr tr 0.43±0.07 tr
M10
别罗勒烯
Allo-Ocimene
瑞都红玫 RDHM 16.13±0.64a 5.76±0.26c 3.28±0.05d 10.41±0.66b
瑞都早红 RDZH 7.76±0.05a 7.76±0.41a 6.49±0.38b 2.37±0.07c
M11
(E,Z)-别罗勒烯
(E,Z)-Allo-Ocimene
瑞都红玫 RDHM 6.85±0.19a 4.27±0.06c 1.46±0.01d 5.01±0.35b
瑞都早红 RDZH 4.92±0.04a 4.70±0.12b 4.33±0.13c 0.90±0.01d
M12
cis-呋喃型氧化里那醇
cis-furan linalool oxide
瑞都红玫 RDHM 25.02±1.17a 12.55±0.26c 2.61±0.07d 11.23±2.07b
瑞都早红 RDZH 14.47±0.27c 24.99±0.71a 15.19±1.48b 3.09±0.04c
M13
trans-呋喃型氧化里那醇
trans-furan linalool oxide
瑞都红玫 RDHM 7.38±0.09a 5.68±0.21b 1.20±0.04c 5.75±0.94b
瑞都早红 RDZH 7.56±0.30b 9.19±0.13a 8.68±1.03a 2.51±0.06c
M14
橙花醚
Nerol oxide
瑞都红玫 RDHM 15.87±1.64b 2.74±0.32c 1.69±1.12d 16.73±3.60a
瑞都早红 RDZH 3.43±0.37c 15.44±2.20a 15.18±1.43b 1.98±0.13d
M15
香茅醛
Citronellal
瑞都红玫 RDHM 3.08±0.02a 0.62±0.10c 0.71±0.04c 2.86±0.13b
瑞都早红 RDZH 1.10±0.03c 1.37±0.03b 1.86±0.03a 0.34±0.04d
M16
里那醇
Linalool
瑞都红玫 RDHM 448.10±29.13a 117.34±1.87b 18.43±1.53c 113.71±34.04b
瑞都早红 RDZH 317.18±1.10a 199.00±7.22b 186.07±37.64c 28.51±0.60d
M17
4-松油烯醇
4-Terpineol
瑞都红玫 RDHM 2.73±0.04a 0.61±0.08b 0.24±0.02c 2.65±0.05a
瑞都早红 RDZH 0.54±0.07c 1.10±0.11b 3.26±0.03a 0.19±0.02d
M18
橙花醛
Neral
瑞都红玫 RDHM 0.83±0.04b 0.67±0.03c 1.20±0.08a 0.54±0.08d
瑞都早红 RDZH 0.55±0.02c 0.18±0.02d 0.63±0.07b 0.83±0.05a
M19
α-衣兰油烯
α-muurolene
瑞都红玫 RDHM 0.33±0.01a tr 0.12±0.00c 0.30±0.01b
瑞都早红 RDZH 0.27±0.01a 0.13±0.01c 0.18±0.01b 0.10±0.01d
表2 Continued table 2
编号
Code
化合物
Compound
品种
Variety
贮藏天数Days after storage(d)
0 15 30 45
M20
α-萜品醇
α-Terpineol
瑞都红玫 RDHM 15.27±1.02a 5.91±0.24c 4.85±0.09d 13.10±0.62b
瑞都早红 RDZH 4.97±0.06c 7.46±0.36a 6.42±1.22b 4.48±0.05d
M21
香叶醛
geranial
瑞都红玫 RDHM 8.13±0.29a 3.70±0.02d 4.46±0.12c 6.70±0.42b
瑞都早红 RDZH 6.94±0.21a 4.99±0.10b 3.77±0.28c 3.32±0.04d
M22
β-香茅醇
β-Citronellol
瑞都红玫 RDHM 3.82±0.03a 3.58±0.01c 1.41±0.05d 3.67±0.02b
瑞都早红 RDZH 4.47±0.04a 4.29±0.03b 3.49±0.10c 3.66±0.01d
M23
γ-香叶醇
γ-geraniol
瑞都红玫 RDHM 1.61±0.01a 0.42±0.01b 0.47±0.01b 1.55±0.01a
瑞都早红 RDZH 1.51±0.01a 0.74±0.03c 0.87±0.02b 0.21±0.02d
M24
橙花醇
Nerol
瑞都红玫 RDHM 5.39±0.12a 3.70±0.02c 3.74±0.01c 4.69±0.11b
瑞都早红 RDZH 4.13±0.01b 4.14±0.04b 4.60±0.16a 1.76±0.11c
M25
cis-异香叶醇
cis-isogeraniol
瑞都红玫 RDHM 0.17±0.01a 0.15±0.01a 0.16±0.01a 0.17±0.01a
瑞都早红 RDZH 0.16±0.01a 0.17±0.01a 0.09±0.01b tr
M26
trans-异香叶醇
trans-isogeraniol
瑞都红玫 RDHM tr tr tr nd
瑞都早红 RDZH tr tr tr nd
M27
香叶醇
Geraniol
瑞都红玫 RDHM 23.67±0.68a 10.72±0.06d 12.63±0.05c 16.08±0.85b
瑞都早红 RDZH 17.02±0.05a 14.37±0.19b 13.63±0.91b 7.70±0.22c
M28
香叶酸
Geranic acid
瑞都红玫 RDHM 3.89±0.11a 0.23±0.05c 0.61±0.18b 4.01±0.05a
瑞都早红 RDZH 2.74±1.73c 4.22±0.26b 4.74±0.03a 0.34±0.30d

Table 3

Changes of glycosidically-bound monoterpenes content in two grape varieties during storage at (2±1)℃ (μg?L-1)"

编号
Code
化合物
Compound
品种
Variety
贮藏天数Days after storage (d)
0 15 30 45
CM1 β-月桂烯
β-Myrcene
瑞都红玫 RDHM 104.17±3.62a 66.87±6.59c 87.94±4.74b 53.44±0.70d
瑞都早红 RDZH 71.91±6.55a 81.90±0.69b 67.63±0.74c 78.49±0.91d
CM2 柠檬烯
Limonene
瑞都红玫 RDHM 35.58±0.14a 22.81±2.46c 32.67±1.65b 21.00±0.50d
瑞都早红 RDZH 28.28±2.87c 37.00±0.12a 33.91±0.49b 27.44±0.22d
CM3
水芹烯
phellandrene
瑞都红玫 RDHM 21.63±0.45a 12.69±1.74bc 18.16±1.35b 10.54±0.02d
瑞都早红 RDZH 15.25±1.41c 18.37±0.26a 15.61±0.19b 15.91±0.02b
CM4
β-trans-罗勒烯
β-trans-Ocimene
瑞都红玫 RDHM 29.91±0.65a 19.52±1.88c 27.09±1.87b 17.66±0.74d
瑞都早红 RDZH 21.77±1.69c 23.95±0.29a 21.51±0.18c 22.97±0.20b
CM5
γ-松油烯
γ-Terpinen
瑞都红玫 RDHM 3.49±0.10a 1.96±0.21c 2.67±0.16b 1.77±0.19d
瑞都早红 RDZH 2.42±0.20c 3.06±0.06a 2.75±0.03b 2.35±0.02d
CM6
β-cis-罗勒烯
β-cis-Ocimene
瑞都红玫 RDHM 49.82±1.26a 29.78±3.29c 43.87±2.66b 24.85±3.11d
瑞都早红 RDZH 34.02±3.27c 39.01±0.33a 34.21±0.38c 36.25±0.66b
CM7
异松油烯
Terpinolen
瑞都红玫 RDHM 9.39±0.21a 3.23±0.38d 5.35±0.36b 3.81±0.58c
瑞都早红 RDZH 4.61±0.52c 6.33±0.05b 7.69±0.20a 4.34±0.09c
CM8
cis-氧化玫瑰
cis-Rose oxide
瑞都红玫 RDHM tr tr tr tr
瑞都早红 RDZH 3.06±0.15c 3.35±0.01b 3.77±0.04a 2.54±0.03d
表3 Continued table 3
编号
Code
化合物
Compound
品种
Variety
贮藏天数Days after storage (d)
0 15 30 45
CM9
trans-氧化玫瑰
trans-Rose oxide
瑞都红玫 RDHM tr nd nd nd
瑞都早红 RDZH 2.89±0.02c 2.97±0.02b 3.03±0.01a tr
CM10
别罗勒烯
Allo-Ocimene
瑞都红玫 RDHM 20.36±0.51a 14.61±1.21c 19.20±0.32b 11.51±1.92d
瑞都早红 RDZH 16.38±1.06c 17.93±0.10a 16.15±0.03d 17.03±0.15b
CM11
(E,Z)-别罗勒烯
(E,Z)-Allo-Ocimene
瑞都红玫 RDHM 10.27±0.15a 5.45±0.61c 9.21±0.61b 4.49±0.76d
瑞都早红 RDZH 6.83±1.04c 8.23±0.04a 6.35±0.12d 7.43±0.05b
CM12
cis-呋喃型氧化里那醇
cis-furan linalool oxide
瑞都红玫 RDHM 32.46±1.25a 12.39±0.37d 17.31±0.29b 14.71±1.96c
瑞都早红 RDZH 31.09±1.09b 51.48±3.39a 66.26±5.82a 28.75±0.73c
CM13
trans-呋喃型氧化里那醇
trans-furan linalool oxide
瑞都红玫 RDHM 6.15±0.04a 5.15±0.01d 5.26±0.01c 5.42±0.16b
瑞都早红 RDZH 5.77±0.11b 6.50±0.21a 8.27±0.61a 5.58±0.06c
CM14
橙花醚
Nerol oxide
瑞都红玫 RDHM 40.48±1.11a 18.96±1.54d 26.04±0.81b 19.30±3.26c
瑞都早红 RDZH 31.93±1.95c 37.62±1.82b 39.80±1.12a 31.49±0.37c
CM15
香茅醛
Citronellal
瑞都红玫 RDHM 4.65±0.13b 3.22±0.01c 5.26±0.21a 2.36±0.31d
瑞都早红 RDZH 3.97±0.31c 4.27±0.19a 2.62±0.07d 4.19±0.38b
CM16
里那醇
Linalool
瑞都红玫 RDHM 170.62±3.37a 85.49±3.52b 76.27±0.74c 68.43±13.08d
瑞都早红 RDZH 79.89±4.25c 123.71±3.55b 140.54±4.86a 62.86±0.93d
CM17
4-松油烯醇
4-Terpineol
瑞都红玫 RDHM 1.00±0.01a 0.47±0.01c 0.72±0.07b 0.70±0.05b
瑞都早红 RDZH 0.72±0.01b 0.76±0.01b 0.92±0.03a 0.61±0.05c
CM18
橙花醛
Neral
瑞都红玫 RDHM 19.16±0.67b 19.89±0.04b 24.73±0.92a 5.79±1.46c
瑞都早红 RDZH 22.79±0.05c 23.09±3.22b 23.61±0.27b 26.43±0.68a
CM19
α-衣兰油烯
α-muurolene
瑞都红玫 RDHM 0.92±0.01a 0.74±0.01b 0.98±0.00a 0.59±0.06c
瑞都早红 RDZH 0.98±0.03a 0.98±0.04a 0.94±0.01c 0.96±0.01b
CM20
α-萜品醇
α-Terpineol
瑞都红玫 RDHM 22.75±0.08a 5.25±0.36c 21.57±0.05a 14.17±5.62b
瑞都早红 RDZH 14.09±1.47c 21.75±0.09b 22.44±0.03a 6.30±0.32d
CM21
香叶醛
Geranial
瑞都红玫 RDHM 57.75±0.08b 54.82±0.10c 67.55±2.05a 29.45±3.76d
瑞都早红 RDZH 51.72±0.23c 56.79±5.86b 51.57±0.91c 60.27±0.09a
CM22
β-香茅醇
β-Citronellol
瑞都红玫 RDHM 7.29±0.22a 5.75±0.49b 7.19±0.23a 2.95±0.64c
瑞都早红 RDZH 19.41±0.12b 19.83±0.07a 19.22±0.07c 19.07±0.04d
CM23
γ-香叶醇
γ-geraniol
瑞都红玫 RDHM 7.63±0.05a 3.35±0.03b 7.61±0.04a 1.83±0.39c
瑞都早红 RDZH 5.59±2.73b 7.57±0.03a 2.62±0.09c 7.54±0.01a
CM24
橙花醇
Nerol
瑞都红玫 RDHM 20.77±0.24b 20.22±0.23b 21.82±0.14a 17.83±0.33c
瑞都早红 RDZH 22.46±0.24b 23.96±0.26a 19.79±0.07d 20.94±0.15c
CM25
cis-异香叶醇
cis-isogeraniol
瑞都红玫 RDHM 0.85±0.02a 0.80±0.01b 0.80±0.01b tr
瑞都早红 RDZH 0.82±0.02b 0.86±0.01a tr 0.86±0.01a
CM26
trans-异香叶醇
trans-isogeraniol
瑞都红玫 RDHM 0.78±0.01b 0.81±0.01a 0.81±0.01a nd
瑞都早红 RDZH tr tr tr nd
CM27
香叶醇
Geraniol
瑞都红玫 RDHM 74.25±2.45b 66.16±1.66c 84.83±2.22a 42.11±3.66d
瑞都早红 RDZH 64.09±2.65b 63.96±2.21c 45.40±0.17d 71.37±0.05a
CM28
香叶酸
Geranic acid
瑞都红玫 RDHM 0.42±0.11d 2.42±0.04a 1.80±0.28b 0.85±0.12c
瑞都早红 RDZH 3.44±2.44b 3.03±1.49c 4.57±2.55a 2.87±0.13d

Fig. 2

Changes of total free and glycosidically-bound monoterpenes content in two grape varieties during storage at (2±1)℃"

Fig. 3

Changes of free and glycosidically-bound monoterpenes content in Ruidu Hongmei during storage at (2±1)℃ A: Free; B: Bound"

Fig. 4

Changes of free and glycosidically-bound monoterpenes content in Ruidu Zaohong during storage at (2±1)℃ A: Free; B: Bound"

Fig. 5

PCA analysis of total free and glycosidically-bound monoterpenes content in two grape varieties during storage at (2±1)℃ Square represent Ruidu Hongmei; Triangle represent Ruidu Zaohong; Aqua blue indicate 0 days after storage; Bisque indicate 15 days after storage; Blueviolet indicate 30 days after storage; Cadetblue indicate 45 days after storage"

[1] MAOZ I, DE ROSSO M, KAPLUNOV T, VEDOVA A D, SELA N, FLAMINI R, LEWINSOHN E, LICHTER A. Metabolomic and transcriptomic changes underlying cold and anaerobic stresses after storage of table grapes. Scientific Reports, 2019,9:2917.
pmid: 30814549
[2] LIN J, MÉLANIE M, CANTU D. The genetic basis of grape and wine aroma. Horticulture Research, 2019,6:81.
pmid: 31645942
[3] 涂崔, 潘秋红, 朱保庆, 吴玉文, 王志群, 段长青. 葡萄与葡萄酒单萜化合物的研究进展. 园艺学报, 2011,38(7):1397-1406.
TU C, PAN Q H, ZHU B Q, WU Y W, WANG Z Q, DUAN C Q. Progress in study of monoterpene compounds in grape and wine. Acta Horticulturae Sinica, 2011,38(7):1397-1406. (in Chinese)
[4] MATEO J J, JIMÉNEZ M. Monoterpenes in grape juice and wines. Journal of Chromatography A, 2000,881(1):557-567.
[5] LI X Y, WEN Y Q, MENG N, QIAN X, PAN Q H. Monoterpenyl glycosyltransferases differentially contribute to production of monoterpenyl glycosides in two aromatic Vitis vinifera varieties. Frontier Plant Science, 2017,8:1226.
[6] EL HADI M A M, ZHANG F J, WU F F, ZHOU C H, TAO J. Advances in fruit aroma volatile research. Molecules, 2013,18(7):8200-8229.
pmid: 23852166
[7] ALEM H, RIGOU P, SCHNEIDER R, OJEDAA H, TORREGROSA L. Impact of agronomic practices on grape aroma composition: A review. Journal of Agricultural and Food Chemistry, 2019,99(3):975-985.
[8] 王慧玲, 王晓玥, 闫爱玲, 孙磊, 张国军, 任建成, 徐海英. 不同架式‘爱神玫瑰’葡萄果实成熟期间单萜积累及相关基因的表达. 中国农业科学, 2019,52(7):1136-1149.
WANG H L, WANG X Y, YAN A L, SUN L, ZHANG G J, REN J C, XU H Y. The accumulation of monoterpenes and the expression of its biosynthesis related genes in ‘Aishen Meigui’ grape berries cultivated in different trellis systems during ripening stage. Scientia Agricultura Sinica, 2019,52(7):1136-1149. (in Chinese)
[9] YUAN X, WU Z, LI H, WANG Y, LIU F, CAI H, NEWLOVEA A A, WANG Y. Biochemical and proteomic analysis of ‘Kyoho’ grape (Vitis labruscana) berries during cold storage. Postharvest Biology and Technology, 2014,88:79-87.
doi: 10.1016/j.postharvbio.2013.10.001
[10] BARCHENGER D W, CLARK J R, THRELFALL R T, HOWARD L R, BROWNMILLER C R. Evaluation of physicochemical and storability attributes of muscadine grapes. (Vitis rotundifolia Michx.). Hortscience, 2015,50(1):104-111.
[11] CRUPI P, PICHIERRI A, BASILE T, ANTONACCI D. Postharvest stilbenes and flavonoids enrichment of table grape cv redglobe (Vitis vinifera L.) as affected by interactive uv-c exposure and storage conditions. Food Chemistry, 2013,141(2):802-808.
doi: 10.1016/j.foodchem.2013.03.055 pmid: 23790850
[12] 成明. 不同贮藏条件对葡萄香气成分变化影响的研究[D]. 天津: 天津科技大学, 2011.
CHENG M. Study on aroma compounds of grape under different storage conditions during storage period[D]. Tianjin: Tianjin University of Science and Technology, 2011. (in Chinese)
[13] 张鹏, 邵丹, 李江阔, 颜廷才, 陈绍慧. 葡萄冷藏时间对贮后货架期芳香物质的影响. 食品科学, 2016,37(2):218-224.
doi: 10.1111/jfds.1972.37.issue-2
ZHANG P, SHAO D, LI J K, YAN T C, CHEN S H. Effects of cold storage time on aroma components of grape during subsequent shelf life. Food Science, 2016,37(2):218-224. (in Chinese)
doi: 10.1111/jfds.1972.37.issue-2
[14] MATSUMOTO H, IKOMA Y. Effect of postharvest temperature on the muscat flavor and aroma volatile content in the berries of ‘shine muscat’ (Vitis labruscana baily × V. vinifera L.). Postharvest Biology and Technology, 2016,112:256-265.
[15] 张国军, 闫爱玲, 孙磊, 王慧玲, 王晓玥, 任建成, 徐海英. 红色玫瑰香味葡萄新品种—‘瑞都红玫’的选育. 果树学报, 2015,32(5):991-993.
ZHANG G J, YAN A L, SUN L, WANG H L, WANG X Y, REN J C, XU H Y. A new red muscat flavor table grape cultivar ‘Ruidu Hongmei’. Journal of Fruit Science, 2015,32(5):991-993. (in Chinese)
[16] 孙磊, 张国军, 闫爱玲, 徐海英. 葡萄新品种—‘瑞都早红’的选育. 果树学报, 2016,33(1):120-123.
SUN L, ZHANG G J, YAN A L, XU H Y. A new table grape cultivar- ‘Ruiduzaohong’. Journal of Fruit Science, 2016,33(1):120-123. (in Chinese)
[17] WEN Y Q, ZHONG G Y, GAO Y, LAN Y B, DUAN C Q, PAN Q H. Using the combined analysis of transcripts and metabolites to propose key genes for differential terpene accumulation across two regions. BMC Plant Biology, 2015,15:240.
pmid: 26444528
[18] WU Y W, ZHU B Q, TU C, DUAN C Q, PAN Q H. Generation of volatile compounds in litchi wine during winemaking and short-term bottle storage. Journal of Agriculture and Food Chemistry, 2011,59(9):4923-4931.
[19] 孙磊, 朱保庆, 王晓玥, 孙晓荣, 闫爱玲, 张国军, 王慧玲, 徐海英. 早中熟鲜食葡萄5个品种及其亲本果实单萜成分分析. 园艺学报, 2016,43(11):2109-2118.
doi: 10.16420/j.issn.0513-353x.2016-0164
SUN L, ZHU B Q, WANG X Y, SUN X R, YAN A L, ZHANG G J, WANG H L, XU H Y. Monoterpene analysis of five middle-early ripening table grape varieties and their parents. Acta Horticulturae Sinica, 2016,43(11):2109-2118. (in Chinese)
doi: 10.16420/j.issn.0513-353x.2016-0164
[20] RUIZ-GARCÍA L, HELLIN P, FLORES P, FENOLL J. Prediction of Muscat aroma in table grape by analysis of rose oxide. Food Chemistry, 2014,154:151-157.
doi: 10.1016/j.foodchem.2014.01.005 pmid: 24518327
[21] LAN Y B, QIAN X, YANG Z J, XIANG X F, YANG W X, LIU T, ZHU B Q, PAN Q H, DUAN C Q. Striking changes in volatile profiles at sub-zero temperatures during over-ripening of ‘Beibinghong’ grapes in Northeastern China. Food Chemistry, 2016,212:172-182.
pmid: 27374521
[22] MARTIN D M, CHIANG A, LUND S T, BOHLMANN J. Biosynthesis of wine aroma: Transcript profiles of hydroxymethylbutenyl diphosphate reductase, geranyl diphosphate synthase, and linalool/ nerolidol synthase parallel monoterpenol glycoside accumulation in Gewürztraminer grapes. Planta, 2012,236(3):919-929.
doi: 10.1007/s00425-012-1704-0 pmid: 22824963
[23] FENOLL J, MANSO A, HELLIN P, RUIZ L, FLORES P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chemistry, 2009,114:420-428.
doi: 10.1016/j.foodchem.2008.09.060
[24] WU Y S, ZHANG W W, SONG S R, XU W P, ZHANG C X, MA C, WANG L, WANG S P. Evolution of volatile compounds during the development of Muscat grape ‘Shine Muscat’ (Vitis labrusca×V. vinifera). Food Chemistry, 2020,309:125778.
doi: 10.1016/j.foodchem.2019.125778 pmid: 31704071
[25] SEFTON M A, FRANCIS I L, WILLIAMS P J. Free and bound volatile secondary metabolites of Vitis vinifera grape cv. Sauvignon Blanc. Journal of Food Science, 1994,59(1):142-147.
[26] OBENLAND D, COLLIN S, MACKEY B, SIEVERT J, ARPAIA M L. Storage temperature and time influences sensory quality of mandarins by altering soluble solids acidity and aroma volatile composition. Postharvest Biology and Technology, 2011,59:187-193.
doi: 10.1016/j.postharvbio.2010.09.011
[27] OBENLAND D, COLLIN S, SIEVERT J, ARPAIA M L. Mandarin flavor and aroma volatile composition are strongly influenced by holding temperature. Postharvest Biology and Technology, 2013,82:6-14.
doi: 10.1016/j.postharvbio.2013.02.013
[28] ZHANG B, XI W P, WEI W W, SHEN J Y, FERGUSON I, CHEN K S. Changes in aroma-related volatiles and gene expression during low temperature storage and subsequent shelf-life of peach fruit. Postharvest Biology and Technology, 2011,60(1):7-16.
doi: 10.1016/j.postharvbio.2010.09.012
[29] ZHU X Y, LUO J, LI Q M, LI J, LIU T X, WANG R, CHEN W X, LI X P. Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 2018,146:68-78.
doi: 10.1016/j.postharvbio.2018.08.015
[30] ZHANG B, TIEMAN D M, JIAO C, XU Y, KLEE H J. Chilling- induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proceedings of the National Academy of Sciences of the USA, 2016,113(44):12580-12585.
[31] ILC T, WERCKREICHHART D, NAVROT N. Meta-analysis of the core aroma components of grape and wine aroma. Frontiers in Plant Science, 2016,7:1472.
pmid: 27746799
[32] MORALES M L, CALLEJÓN R M, UBEDA C, GUERREIRO A, GAGO C, MIGUEL M G, ANTUNES M D. Effect of storage time at low temperature on the volatile compound composition of Sevillana and Maravilla raspberries. Postharvest Biology and Technology, 2014,96:128-134.
doi: 10.1016/j.postharvbio.2014.05.013
[33] TIETEL Z, LEWINSOHN E, FALLIK E, PORAT R. Importance of storage temperatures in maintaining flavor and quality of mandarins. Postharvest Biology and Technology, 2012,64:175-182.
doi: 10.1016/j.postharvbio.2011.07.009
[1] ZHANG KeKun,CHEN KeQin,LI WanPing,QIAO HaoRong,ZHANG JunXia,LIU FengZhi,FANG YuLin,WANG HaiBo. Effects of Irrigation Amount on Berry Development and Aroma Components Accumulation of Shine Muscat Grape in Root-Restricted Cultivation [J]. Scientia Agricultura Sinica, 2023, 56(1): 129-143.
[2] LÜ XinNing,WANG Yue,JIA RunPu,WANG ShengNan,YAO YuXin. Effects of Melatonin Treatment on Quality of Stored Shine Muscat Grapes Under Different Storage Temperatures [J]. Scientia Agricultura Sinica, 2022, 55(7): 1411-1422.
[3] GUO ZeXi,SUN DaYun,QU JunJie,PAN FengYing,LIU LuLu,YIN Ling. The Role of Chalcone Synthase Gene in Grape Resistance to Gray Mold and Downy Mildew [J]. Scientia Agricultura Sinica, 2022, 55(6): 1139-1148.
[4] WANG HuiLing, YAN AiLing, SUN Lei, ZHANG GuoJun, WANG XiaoYue, REN JianCheng, XU HaiYing. eQTL Analysis of Key Monoterpene Biosynthesis Genes in Table Grape [J]. Scientia Agricultura Sinica, 2022, 55(5): 977-990.
[5] WANG Bo,QIN FuQiang,DENG FengYing,LUO HuiGe,CHEN XiangFei,CHENG Guo,BAI Yang,HUANG XiaoYun,HAN JiaYu,CAO XiongJun,BAI XianJin. Difference in Flavonoid Composition and Content Between Summer and Winter Grape Berries of Shine Muscat Under Two-Crop-a-Year Cultivation [J]. Scientia Agricultura Sinica, 2022, 55(22): 4473-4486.
[6] LIU Xin,ZHANG YaHong,YUAN Miao,DANG ShiZhuo,ZHOU Juan. Transcriptome Analysis During Flower Bud Differentiation of Red Globe Grape [J]. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035.
[7] MA YuQuan,WANG XiaoLong,LI YuMei,WANG XiaoDi,LIU FengZhi,WANG HaiBo. Differences in Nutrient Absorption and Utilization of 87-1 Grape Variety Under Different Rootstock Facilities [J]. Scientia Agricultura Sinica, 2022, 55(19): 3822-3830.
[8] JI XiaoHao,LIU FengZhi,WANG BaoLiang,LIU PeiPei,WANG HaiBo. Genetic Variation of Alcohol Acyltransferase Encoding Gene in Grape [J]. Scientia Agricultura Sinica, 2022, 55(14): 2797-2811.
[9] YANG ShengDi,MENG XiangXuan,GUO DaLong,PEI MaoSong,LIU HaiNan,WEI TongLu,YU YiHe. Co-Expression Network and Transcriptional Regulation Analysis of Sulfur Dioxide-Induced Postharvest Abscission of Kyoho Grape [J]. Scientia Agricultura Sinica, 2022, 55(11): 2214-2226.
[10] HAN Xiao, YANG HangYu, CHEN WeiKai, WANG Jun, HE Fei. Effects of Different Rootstocks on Flavonoids of Vitis vinifera L. cv. Tannat Grape Fruits [J]. Scientia Agricultura Sinica, 2022, 55(10): 2013-2025.
[11] XU XianBin,GENG XiaoYue,LI Hui,SUN LiJuan,ZHENG Huan,TAO JianMin. Transcriptome Analysis of Genes Involved in ABA-Induced Anthocyanin Accumulation in Grape [J]. Scientia Agricultura Sinica, 2022, 55(1): 134-151.
[12] LIU Chuang,GAO Zhen,YAO YuXin,DU YuanPeng. Functional Identification of Grape Potassium Ion Transporter VviHKT1;7 Under Salt Stress [J]. Scientia Agricultura Sinica, 2021, 54(9): 1952-1963.
[13] XuXian XUAN,ZiLu SHENG,ZhenQiang XIE,YuQing HUANG,PeiJie GONG,Chuan ZHANG,Ting ZHENG,Chen WANG,JingGui FANG. Function Analysis of vvi-miR172s and Their Target Genes Response to Gibberellin Regulation of Grape Berry Development [J]. Scientia Agricultura Sinica, 2021, 54(6): 1199-1217.
[14] PeiPei ZHU,YiJia LUO,Wen XIANG,MingLei ZHANG,JianXia ZHANG. Rescue and Molecular Marker Assisted-Selection of the Cold-Resistant Seedless Grape Hybrid Embryo [J]. Scientia Agricultura Sinica, 2021, 54(6): 1218-1228.
[15] ZHANG Lu,ZONG YaQi,XU WeiHua,HAN Lei,SUN ZhenYu,CHEN ZhaoHui,CHEN SongLi,ZHANG Kai,CHENG JieShan,TANG MeiLing,ZHANG HongXia,SONG ZhiZhong. Identification, Cloning, and Expression Characteristics Analysis of Fe-S Cluster Assembly Genes in Grape [J]. Scientia Agricultura Sinica, 2021, 54(23): 5068-5082.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!